备战中考数学——相似的综合压轴题专题复习及详细答案
备战中考数学压轴题专题相似的经典综合题及答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时,s有最小值,且最小值为1(3)解:在中,,,则;在中,,,则;∴;以P、B、D为顶点的三角形与相似,已知,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。
2.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的影子是什么形状?(2)当把白炽灯向上平移时,影子的大小会怎样变化?(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?【答案】(1)解:球在地面上的影子的形状是圆.(2)解:当把白炽灯向上平移时,影子会变小.(3)解:由已知可作轴截面,如图所示:依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,在Rt△OAE中,∴OA= = = (m),∵∠AOH=∠EOA,∠AHO=∠EAO=90°,∴△OAH∽△OEA,∴,∴OH= == (m),又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,∴△OAE∽△AHE,∴ = ,∴AH= ==2625 (m).依题可得:△AHO∽△CFO,∴ AHCF=OHOF ,∴CF= AH⋅OFOH = 2625×32425=64 (m),∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).答:球在地面上影子的面积是0.375π m2.【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.3.如图1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一个动点,连接AD,以AD为边向右侧作等腰直角△ADE,其中∠ADE=90°.(1)如图2,G,H分别是边AB,BC的中点,连接DG,AH,EH.求证:△AGD∽△AHE;(2)如图3,连接BE,直接写出当BD为何值时,△ABE是等腰三角形;(3)在点D从点B向点C运动过程中,求△ABE周长的最小值.【答案】(1)证明:如图2,由题意知△ABC和△ADE都是等腰直角三角形,∴∠B=∠DAE=45°.∵H为BC中点,∴AH⊥BC.∴∠BAH=45°=∠DAE.∴∠GAD=∠HAE.在等腰直角△BAH和等腰直角△DAE中,AH= AB= AG,AE= AD.∴,∴△AGD∽△AHE;(2)解:分三种情况:①当B与D重合时,即BD=0,如图3,此时AB=BE;②当AB=AE时,如图4,此时E与C重合,∴D是BC的中点,∴BD= BC=2 ;③当AB=BE时,如图5,过E作EH⊥AB于H,交BC于M,连接AM,过E作EG⊥BC于G,连接DH,∵AE=BE,EH⊥AB,∴AH=BH,∴AM=BM,∵∠ABC=45°,∴AM⊥BC,△BMH是等腰直角三角形,∵AD=DE,∠ADE=90°,易得△ADM≌△DEG,∴DM=EG,∵∠EMG=∠BMH=45°,∴△EMG是等腰直角三角形,∴ME= MG,由(1)得:△AHD∽△AME,且,∴∠AHD=∠AME=135°,ME= DH,∴∠BHD=45°,MG=DH,∴△BDH是等腰直角三角形,∴BD=DH=EG=DM= ;综上所述,当BD=0或或2 时,△ABE是等腰三角形;(3)解:当点D与点B重合时,点E的位置记为点M,连接CM,如图6,此时,∠ABM=∠BAC=90°,∠AMB=∠BAM=45°,BM=AB=AC.∴四边形ABMC是正方形.∴∠BMC=90°,∴∠AMC=∠BMC-∠AMB=45°,∵∠BAM=∠DAE=45°,∴∠BAD=∠MAE,在等腰直角△BAM和等腰直角△DAE中,AM= AB,AE= AD.∴.∴△ABD∽△AME.∴∠AME=∠ABD=45°∴点E在射线MC上,作点B关于直线MC的对称点N,连接AN交MC于点E′,∵BE+AE=NE+AE≥AN=NE′+AE′=BE′+AE′,∴△ABE′就是所求周长最小的△ABE.在Rt△ABN中,∵AB=4,BN=2BM=2AB=8,∴AN=.∴△ABE周长最小值为AB+AN=4+4 .【解析】【分析】(1)由等腰直角三角形的性质可得∠B=∠DAE=∠BAH=45°,所以∠GAD=∠HAE,计算可得比例式:,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似可得△AGD∽△AHE;(2)根据等腰三角形的定义可知分3种情况讨论:①当B与D重合时,即BD=0,此时AB=BE;②当AB=AE时,此时E与C重合,用勾股定理可求得BD的值;③当AB=BE时,过E作EH⊥AB于H,交BC于M,连接AM,过E作EG⊥BC于G,连接DH,由已知条件和(1)的结论可求解;(3)当点D与点B重合时,点E的位置记为点M,连接CM,作点B关于直线MC的对称点N,连接AN交MC于点E′,由已知条件易证四边形ABMC是正方形,由已知条件通过计算易得比例式:,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似可得△ABD∽△AME,则∠AME=∠ABD=45°,于是可得点E在射线MC上,根据轴对称的性质可得△ABE′就是所求周长最小的△ABE,在Rt△ABN中,用勾股定理即可求得AN的值,则△ABE周长最小值=AB+AN即可求解。
备战中考数学压轴题专题复习—相似的综合及答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)(2)解:如图1,过F作FG⊥x轴于点G,设F(x, x2+2x+6),则FG= ,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,∴当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),综上可知F点的坐标为(-1,)或(-3,)(3)解:如图2,不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6解得k1= 或k2=∴满足条件的点Q有两个,Q1(2,)或Q2(2,).【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。
中考数学—相似的综合压轴题专题复习含答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,O为原点,平行四边形A BCD的边BC在x轴上,D点在y 轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)请直接写出点B、D的坐标:B(________),D(________);(2)求抛物线的解析式;(3)求证:ED是⊙P的切线;(4)若点M为抛物线的顶点,请直接写出平面上点N的坐标,使得以点B,D,M,N为顶点的四边形为平行四边形.【答案】(1)-4,0;0,2(2)解:将(2,0),B(-4,0),D(0,);三点分别代入y=ax2+bx+c得,解得∴所求抛物线的解析式y=- x2- x+(3)证明:在Rt△OCD中,CD=2OC=4,∵四边形ABCD为平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴,∵∴∵四边形ABCD是平行四边形,∴∠DAE=∠DCB=60°,∴△AED∽△COD,∴∠ADE=∠CDO,而∠ADE+∠ODE=90°∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线(4)解:点N的坐标为(-5,)、(3,)、(-3,- )【解析】【解析】解:(1)∵C点坐标为(2,0),∴OC=2 ,∵BC=6 ,∴OB=BC-OC=4 ,∴B(-4,0),∵∠BCD=60°,tan∠BCD= ,∴ ,∴OD=,∴D(0,);(4存在,∵y=−x2−x+=−(x+1)2+∴M(−1,),∵B(−4,0),D(0,),如图,当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,再向下平移个单位得到B,则点M(−1,)向左平移4个单位,再向下平移个单位得到N1(−5,);当DM为平行四边形BDMN的对角线时,点B向右平移3个单位,再向上平移个单位得到D,则点M(−1,)向右平移4个单位,再向上平移个单位得到N2(3,);当BD为平行四边形BDMN的对角线时,点M向右平移1个单位,再向下平移个单位得到D,则点B(−4,0)向右平移1个单位,再向下平移个单位得到N3(−3,−);综上所述,以点B,D,M,N为顶点的四边形为平行四边形时,点N的坐标为(−5,,)或(3,)或(−3,−)【分析】(1)根据点C的坐标,求出OC的长度,进而求出OB的长度,得出B点的坐标。
中考数学—相似的综合压轴题专题复习及答案解析
中考数学—相似的综合压轴题专题复习及答案解析一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
中考数学《相似》专项复习综合练习题-附带答案
中考数学《相似》专项复习综合练习题-附带答案一、单选题1.已知△ABC∽△DEF相似比为3:1 且△ABC的周长为18,则△DEF的周长为()A.6 B.3 C.18 D.542.如图,在△ABC中,两条中线BE CD相交于点O,则S△DOE:S△COB等于()A.1:2 B.1:3 C.1:4 D.2:33.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米4.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE ,(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米5.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积, S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.不能确定6.如图,在平行四边形ABCD中,E是BC上一点 BE:EC=1:2 ,AE与BD相交于点F ,若S△BEF=2,则S△ABD=()A .24B .25C .26D .237.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后 在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米 桌面距离地面1米 若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36 π 平方米B .0. 81 π 平方米C .2 π 平方米D .3.24 π 平方米8.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。
如图,如果扇形AOB 与扇形 A1O1B1 是相似扇形 且半径 O1A1( r 为不等于0的常数)那么下面四个结论:①∠AOB =∠ A 1O 1B 1;②△AOB ∽△ A 1O 1B 1 ;③AB:A 1B 1 =k ;④扇形AOB 与扇形 A 1O 1B 1的面积之比为 k2 。
备战中考数学——相似的综合压轴题专题复习附答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
备战中考数学压轴题专题复习—相似的综合附答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答2.如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;(2)求S与t之间的函数关系式;(3)当t为何值时,S有最大值,最大值是多少?(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.【答案】(1)解:过点C作CE⊥AB,垂足为E,如图1,∵DA=DB,AM=BM,∴DM⊥AB.∵CE⊥AB,∴∴CE∥DM.∵DC∥ME,CE∥DM,∴四边形DCEM是矩形,∴CE=DM=4,ME=DC=1.∵AM=BM,AB=8,∴AM=BM=4.∴BE=BM−ME=3.∵∴CB=5.∵当t=4时,点P与点M重合,不能构成△MPQ,∴t≠4.∴当且t≠4(s)时,点Q在BC上运动;当 (s)时,点Q在CD上运动.(2)解:①当0<t<4时,点P在线段AM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图2,∵QF⊥AB,CE⊥AB,∴∴QF∥CE.∴△QFB∽△CEB.∴∵CE=4,BC=5,BQ=t,∴∴∵PM=AM−AP=4−t,∴②当时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,∵QF⊥AB,CE⊥AB,∴∴QF∥CE.∴△QFB∽△CEB.∴∵CE=4,BC=5,BQ=t,∴∴∵PM=AP−AM=t−4,∴③当时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,此时QF=DM=4.∵PM=AP−AM=t−4,∴综上所述:当0<t<4时当时, 当时,S=2t−8.(3)解:①当0<t<4时,∵ 0<2<4,∴当t=2时,S取到最大值,最大值为②当时, 对称轴为x=2.∵∴当x>2时,S随着t的增大而增大,∴当t=5时,S取到最大值,最大值为③当时,S=2t−8.∵2>0,∴S随着t的增大而增大,∴当t=6时,S取到最大值,最大值为2×6−8=4.综上所述:当t=6时,S取到最大值,最大值为4(4)解:当点Q在CD上运动即时,如图5,则有,即∵MP=t−4<6−4,即MP<2,∴QM≠MP,QP≠MP.若△MPQ是等腰三角形,则QM=QP.∵QM=QP,QF⊥MP,∴MF=PF=12MP.∵MF=DQ=5+1−t=6−t,MP=t−4,∴解得:∴当t= 秒时,△MPQ是等腰三角形【解析】【分析】(1)过点C作CE⊥AB于E,结合题中条件得出四边形DCEM是矩形,结合矩形性质和勾股定理求出BC的长,最后考虑不能构成△MPQ,即可解决问题。
中考数学压轴题专题相似的经典综合题含详细答案
中考数学压轴题专题相似的经典综合题含详细答案一、相似1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。
中考数学——相似的综合压轴题专题复习附答案解析
中考数学——相似的综合压轴题专题复习附答案解析一、相似1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。
(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。
2.如图,在中,,点M是AC的中点,以AB为直径作分别交于点.(1)求证:;(2)填空:若,当时, ________;连接,当的度数为________时,四边形ODME是菱形.【答案】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM.∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME(2)2;【解析】【解答】解:(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴ =.∵AD=2DM,∴DM:MA=1:3,∴DE= AB= ×6=2.故答案为:2.②当∠A=60°时,四边形ODME是菱形.理由如下:连接OD、OE.∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°.∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为:60°.【分析】(1)要证MD=ME,只须证∠MDE=∠MED即可。
中考数学—相似的综合压轴题专题复习含答案解析
中考数学—相似的综合压轴题专题复习含答案解析一、相似1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)解:如图1,过点P作PH⊥BC于点H,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD∥BC,∴∠CDP=90°,∴四边形PHCD是矩形,∴PH=CD=3,HC=PD=2t,∵CQ=t,BC=4,∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,∴BQ2= ,BP2= ,PQ2= ,由BQ2=BP2可得:,解得:无解;由BQ2=PQ2可得:,解得:;由BP2= PQ2可得:,解得:或,∵当时,BQ=4-4=0,不符合题意,∴综上所述,或;(3)(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD∥BC,DM∥PQ,∴四边形PQMD是平行四边形,∴QM=PD=2t,∵QC=t,∴CM=QM-QC=t,∵∠BCD=∠MCD=90°,∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,∵BM2=(BC+CM)2=(4+t)2,∴由BM2=BD2+DM2可得:,解得:,∴当时,∠BDM=90°,即当时,PQ⊥BD.【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴,解得:,∴MQ= ,又∵PM=3,∠PMQ=90°,∴tan∠BPQ= ;【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
中考数学压轴题专题相似的经典综合题附详细答案
【答案】(1)证明::∵
°,
°,
∴
°
∵
,
∴
∵∥,
∴
∴
°,
∴
过点 作
于点 ,则
.
在
中,
∴ ∴
(2)解:在 ∴ ∵ a.当点 在线段
中, 上时,过点 作
在
中,
, 于点 ,
由(1)可知: ,
∴
∴
∴ b.当点 在线段 延长线上时,过点 作
在
中,
,
在
中,
,
∴
,
∴ (3)解:连接 ,交 于点 .
于点
∵ 为 的中点
【答案】(1) (2)解:如图 3,过 P 作 PG⊥BC 于 G,作 PH⊥CD 于 H,
则∠ PGM=∠ PHN=90°,∠ GPH=90° ∵ Rt△ PEF 中,∠ FPE=90° ∴ ∠ GPM=∠ HPN ∴ △ PGM∽ △ PHN
∴
由 PG∥ AB,PH∥ AD 可得,
,
∵ AB=a,BC=b
S△ AEF= AE•AF•sin45°,
∴
=2,
∴ S△ AMN=2S△ AEF . 【解析】【分析】(1)此题分两种情况:①当 MN 为最大线段时,②当 BN 为最大线段
时,根据线段的勾股分割点的定义,利用勾股定理分别得出 BM 的长;
(2)利用尺规作图,将线段 AC,CD,DB 转化到同一个直角三角形中,①在 AB 上截取
换得出结论;②证明:如图 4 中,连接 FM,EN.根据正方形的性质及对顶角相等判断出
△ AFE∽ △ DFN,根据相似三角形对应角相等,对应边成比例得出∠ AEF=∠ DNF, AF∶ DF
中考数学——相似的综合压轴题专题复习及答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)解:如图1,过点P作PH⊥BC于点H,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD∥BC,∴∠CDP=90°,∴四边形PHCD是矩形,∴PH=CD=3,HC=PD=2t,∵CQ=t,BC=4,∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,∴BQ2= ,BP2= ,PQ2= ,由BQ2=BP2可得:,解得:无解;由BQ2=PQ2可得:,解得:;由BP2= PQ2可得:,解得:或,∵当时,BQ=4-4=0,不符合题意,∴综上所述,或;(3)(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD∥BC,DM∥PQ,∴四边形PQMD是平行四边形,∴QM=PD=2t,∵QC=t,∴CM=QM-QC=t,∵∠BCD=∠MCD=90°,∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,∵BM2=(BC+CM)2=(4+t)2,∴由BM2=BD2+DM2可得:,解得:,∴当时,∠BDM=90°,即当时,PQ⊥BD.【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴,解得:,∴MQ= ,又∵PM=3,∠PMQ=90°,∴tan∠BPQ= ;【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
中考数学——相似的综合压轴题专题复习含答案解析
中考数学——相似的综合压轴题专题复习含答案解析一、相似1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。
(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。
(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。
2.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
备战中考数学专题复习相似的综合题附详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.如图1,过等边三角形ABC边AB上一点D作交边AC于点E,分别取BC,DE 的中点M,N,连接MN.(1)发现:在图1中, ________;(2)应用:如图2,将绕点A旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且,M,N分别是底边BC,DE的中点,若,请直接写出的值.【答案】(1)(2)解:如图2中,连接AM、AN,,都是等边三角形,,,,,,,,,,∽,(3)解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图1中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、N、M共线,,四边形MNDH时矩形,,,故答案为:;【分析】(1)作DH ⊥BC 于H,连接AM.证四边形MNDH时矩形,所以MN=DH,则MN:BD=DH:BD=sin60°,即可求解;(2)利用△ABC ,△ADE 都是等边三角形可得AM:AB=AN:AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽△ MAN,则NM:BD=AM:AB=sin60°,从而求解;(3)连接AM、AN,延长AD交CE于H,交AC于O.先证明△BAD ∽△MAN可得NM:BD=AM:AB=sin∠ABC;再证明△ BAD ≌△ CAE,则∠ ABD = ∠ ACE ,进而可得∠ ABC = 45°,可求出答案.3.在平面直角坐标系中,点 A 点 B 已知满足.(1)点A的坐标为________,点B的坐标为________;(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF交轴于点D,若点D(-1,0),求点E的坐标;(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由。
备战中考数学—相似的综合压轴题专题复习含答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。
(1)若点N在BC之间时,如图:①求证:∠NPQ=∠PQN;②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;(2)当△PBN与△NCQ的面积相等时,求AP的值.【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°,AB//CD,∴∠APM=∠DQM,∵M是AD边的中点,∴AM=DM,在△APM和△DQM中,,∴△APM≌△DQM(AAS),∴PM=QM,∵MN⊥PQ,∴MN是线段PQ的垂直平分线,∴PN=QN,∴∠NPQ=∠PQN② 是定值理由:如图,过点M作ME⊥BC于点E,∴∠MEN=∠MEB=∠AME=90°,∴四边形ABEM是矩形,∠MEN=∠MAP,∴AB=EM,∵MN⊥PQ,∴∠PMN=90°,∴∠PMN=∠AME,∴∠PMN-∠PME=∠AME-∠PME,∴∠EMN=∠AMP,∴△AMP∽△EMN,∴,∴,∵AD=12,M是AD边的中点,∴AM= AD=6,∵AB=8,∴;(2)解:分点N在BC之间和点N在BC延长线上两种情况(ⅰ)当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,∴∠BFS=∠CGT=90°,BS= PN,CT= QN,∵PN=QN,S△PBN=S△NCQ,∴BF=CG,BS=CT在Rt△BFS和Rt△CGT中,,∴Rt△BFS≌Rt△CGT(HL),∴∠BSF=∠CTG,∴∠BNP=∠BSF=∠CTG=∠CQN,在△PBN和△NCQ中,,∴△PBN≌△NCQ(AAS),∴BN=CQ,BP=CN,∵AP=AB-BP=8-CN,又∵CN=BC-BN=12-CQ,∴AP=CQ-4又∵CQ=CD+DQ,DQ=AP,∴AP=4+AP(舍去),∴此种情况不成立;(ⅱ)当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,同理可得,△PBN≌△NCQ,∴PB=NC,BN=CQ,∵AP=DQ,∵AP+8=DQ+CD=CQ=BC+CN=12+BP,∴AP-BP=4 ①,∵AP+BP=AB=8②,①+②得:2AP=12,∴AP=6.【解析】【分析】(1)①由矩形的性质用角角边易证△APM≌△DQM,可得PM=QM,已知MN⊥PQ,由线段的垂直平分线的定义可得MN是线段PQ的垂直平分线,再根据线段的垂直平分线的性质可得PN=QN,由等边对等角可得∠NPQ=∠PQN;②过点M作ME⊥BC于点E,由矩形的性质跟据有两个角对应相等的两个三角形相似易证△AMP∽△EMN,可得比例式,结合已知条件易求得为定值;(2)根据MN⊥PQ交射线BC于N点可知分两种情况:①当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证Rt△BFS≌Rt△CGT和△PBN≌△NCQ可求解;②当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证△PBN≌△NCQ可求解。
2024年中考数学复习专题:相似及参考答案
2024年中考数学复习专题:相似一、选择题1.下列说法正确的是()A.有一个角等于100°的两个等腰三角形相似B.两个矩形一定相似C.有一个角等于45°的两个等腰三角形相似D.相似三角形一定不是全等三角形2.在△ABC中,AD平分∠BAC交边BC于点D,点E在线段AD上,若∠ABE=∠C,AE:ED=2:1,则△BDE 与△ADC的面积比为()A.16:45B.1:9C.2:9D.1:3 3.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③AC CD=AB BC;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.4B.3C.2D.14.如图:为了测量某棵树的高度,小刚用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影6m,与树相距15m,那么这棵的高度为()A.5米B.7米C.7.5米D.21米5.如图,四边形ABCD中,对角线AC,BD交于点E,若∠BAC=∠BDC,则下列结论中正确的是()①AE DE=BE CE;②△ABE与△DCE的周长比BE CE;③∠ADE=∠ABC;④S△ABE•S△DCE=S△ADE•S△BCE.A.③④B.①②③C.①②④D.①②③④6.如图,在△ABC 中,∠ACB=90°,CD⊥AB,若AD=4,BD=8,则CD 的长为()A.42B.4C.437.如图,在平行四边形ABCD 中,E 为CD 上一点,DE:CE=2:3,连接AE,BD 交于点F,则S ∆DEF :S ∆ADF :S ∆ABF 等于()A.2:3:5B.4:9:25C.4:10:25D.2:5:258.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,D、E 在斜边AB 边上,∠DCE =45°,若AE ⋅BD =8,则△ABC 的面积为()A.6B.42C.4D.32二、填空题9.若2a−b a+b=34,则ba=.10.如图,身高1.8米的轩轩从一盏路灯下的B 处向前走了4米到达点C 处时,发现自己在地面上的影子CE 长与他的身高一样,则路灯的高AB 为米.11.在平面直角坐标系中,点A(2,3),B(5,−2),以原点O 为位似中心,把△ABO 扩大为原来2倍,则点B 的对应点B ′的坐标是.12.如图,在平行四边形ABCD 中,点E 是边BC 上的黄金分割点,且BE >CE ,AE 与BD 相交于点F .那么FD :BF 的值为.13.如图,在△ABC 中,∠ACB=90°,AC=BC,点D 为AB 边上的一点,连接CD,过A 点作AE⊥CD 于点B,过B 点作BF⊥GD 于点F,若CD=5,DF=1,(CE>DE)则线段AD 的长为.三、解答题14.如图,已知AD•AC=AB•AE,∠DAE=∠BAC.求证:△DAB∽△EAC.15.如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C.(1)若29ADE ∠=︒,求∠C 的度数;(2)若AC =1CE =,求⊙O 半径的长.16.如图,AH是△ABC的高,D是边AB上一点,CD与AH交于点E.已知AB=AC,AD:DB=3:5.(1)求DE:EC;(2)若以H为圆心、HB为半径的圆恰好经过点D,求cosB的值.17.如图,在梯形中,点F,E分别在线段,上,且,(1)求证:(2)若,求证:18.如图1,已知四边形ABCD是矩形,点E在AD上,AE=AB,EC与BD相交于点F,且BD⊥EC.(1)连接BE,求证:△AFD∽△BED;(2)如图2,连接AF并延长交CD于点G,求∠DFG的度数;(3)若AD=1,求AB的长.参考答案1.A2.C3.B4.A5.C6.A7.C8.C9.5710.5.811.(10,-4)或(-10,4)213.21014.证明:∵AD•AC=AB•AE,∴,∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠DAB=∠EAC,∴△DAB∽△EAC.15.(1)解:连接OA,∠ADE=29°,则∠AOE=2∠ADE=58°,∵AC是圆的切线,∴∠OAC=90°,∴∠C=90°-∠AOE=90°-58°=32°.(2)解:连接AE,OA,∵AC 是圆的切线,∴∠OAC=90°,∴∠EAC=90°-∠OAE,∵BE 是圆的直径,∴∠BAE=90°,∴∠BAO=90°-∠OAE,∴∠EAC=∠BAO,∵OA=OB,∴∠OBA=∠BAO,∴∠OBA=∠EAC,∴△CAE∽△CBA,∴CA CECB CA=,∴21(1)BE =⨯+,解得BE=2,故圆的半径为1.16.(1)解:过点D 作DF⊥BC 交BC 于点F∵DF ⊥BC ,AH 为△ABC 的高,∴∠DFB =∠DFC =∠AHF =∠AHC =98°∵∠ABC =∠DBF ,∴△ABH∼ΔDBF∴AB DB=BH BF∴AD DB=FH BF∵AD DB=35∴FH BF=35设FH=3x,则BF=5x∴BH=BF+FH=5x+3x=8x∵AB=AC,AH⊥BC∴BH=CH∴CH=BH=8x∴FC=CH+FH=11x∵∠DFC=∠AHC,∠DCF=∠FCH∴△DFC∼ΔEHC∴DC EC=FC HC∴DC EC=11x8x=118.∴DE EC=38(2)解:以H为圆心,HB为半径作圆,如图,∵BC=2HB∴BC是⊙O的直径∴∠BDC=90°.由(1)知,BC=2BH=16x.∵AD:DB=3:5∴设AD=3k,DB=5k∴AB=AD+DB=3k+5k=8k∴AC=AB=8k在RtΔACD中,CD2=Ac2−AD2=(8k)2−(3k2)=55k2在RtΔBDC中,CD2=BC2−BD2=(16x)2−(5k)2=256x2−25k2∴256x25k2=55k2∴x k=±∵x k>∴x k=在RtΔBDC中,cosB=BD BC=5k16x=17.(1)证明:,,在和中,,,.(2)证明:,,,即,在和中,,,,由(1)已证:,,.18.(1)证明:∵四边形ABCD是矩形,BD⊥EC,∴∠DFE=∠DAB=90°,∠FDE=∠ADB,∴△FDE∽△ADB,∴DF AD=DE BD,∵∠EDB=∠FDA,∴△AFD∽△BED(2)解:连接BE,∵△AFD∽△BED∴∠DFA=∠DEB,∴∠BEA=∠BFA,∵AE=AB,∠DAB=90°,∴∠BEA=45°,∴∠BFA=45°,∴∠DFG=∠BFA=45°;(3)解:∵四边形ABCD是矩形,∴AB=CD,∠CDE=∠DAB=90°,∵BD⊥EC,∴∠ADB=∠DCE,∴△CDE∽△DAB,∴CD AD=DE AB,设AB的长为x,则DE=1−x,∴x1=1−x x,解得x1==舍去),∴AB。
备战中考数学压轴题专题复习——相似的综合及答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.如果三角形的两个内角与满足=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=________°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.【答案】(1)15°(2)解:存在,如图①,连结AE,在Rt△ABC中,∴∠B+∠BAC=90°,∵AD是∠BAC的平分线,∴∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,又∵△ABE也是“准互余三角形”,∴∠B+2∠BAE=90°,∵∠B+∠BAE+∠EAC=90°,∴∠EAC=∠B,又∵∠C=∠C,∴△CAE∽△CBA,∴ ,即CA2=CB·CE,∵AC=4,BC=5,∴CE= .∴BE=BC-CE=5- = .(3)解:如图②,将△BCD沿BC翻折得到△BCF,∵CD=12,∴CF=CD=12,∠BCF=∠BCD,∠CBD=∠CBF,又∵BD⊥CD,∠ABD=2∠BCD,∴∠CBD+∠BCD=90°,∴2∠CBD+2∠BCD=180°,即∠ABD+∠CBD+∠CBF=180°,∴A、B、F三点共线,在Rt△AFC中,∴∠CAB+∠ACF=90°,即∠CAB+∠ACB+∠BCF=90°,∴∠CAB+2∠ACB≠90°,∵△ABC是“准互余三角形”,∴2∠CAB+∠ACB=90°,∴∠CAB=∠BCF,∵∠F=∠F,∴△FCB∽△FAC,∴ ,即FC2=FA·FB,设BF=x,∵AB=7,∴FA=x+7,∴x(x+7)=122,解得:x1=9,x2=-16(舍去)∴AF=7+9=16.在Rt△AFC中,∴AC= = =20.【解析】【解答】(1)解:∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=90°,∴2∠B+60°=90°,∴∠B=15°.故答案为:15°【分析】(1)根据“准互余三角形”,的定义,结合题意得2∠B+∠A=90°,代入数值即可求出∠B度数.(2)存在,根据直角三角形两内角互余和角平分线定义得∠B+2∠BAD=90°,根据“准互余三角形”,定义即可得△ABD是“准互余三角形”;根据△ABE是“准互余三角形”,以及直角三角形两内角互余可得∠EAC=∠B,根据相似三角形判定“AA”可得△CAE∽△CBA,再由相似三角形性质得 ,由此求出CE= .从而得BE长.(3)如图②,将△BCD沿BC翻折得到△BCF,根据翻折性质、直角三角形性质、“准互余三角形”定义可得到△FCB∽△FAC,再由相似三角形性质可得 ,设BF=x,代入数值即可求出x值,从而求出AF值,在Rt△AFC中,根据勾股定理即可求得AC长.2.如图1,直线l:与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<),以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.【答案】(1)解:把A(4,0)代入,得 ×4+b=0,解得b=3,∴直线l的函数表达式为,∴B(0,3),∵AO⊥BO,OA=4,BO=3,∴tan∠BAO= .(2)①证明:如图,连结AF,∵CE=EF,∴∠CAE=∠EAF,又∵AC=AE=AF,∴∠ACE=∠AEF,∴∠OCE=∠OEA,又∵∠COE=∠EOA,∴△OCE∽△OEA.②解:如图,过点E作EH⊥x轴于点H,∵tan∠BAO= ,∴设EH=3x,AH=4x,∴AE=AC=5x,OH=4-4x,∴OC=4-5x,∵△OCE∽△OEA,∴ = ,即OE2=OA·OC,∴(4-4x)2+(3x)2=4(4-5x),解得x1= ,x2=0(不合题意,舍去)∴E(,).(3)解:如图,过点A作AM⊥OF于点M,过点O作ON⊥AB于点N,∵tan∠BAO= ,∴cos∠BAO= ,∴AN=OA·cos∠BAO= ,设AC=AE=r,∴EN= -r,∵ON⊥AB,AM⊥OF,∴∠ONE=∠AME=90°,EM= EF,又∵∠OEN=∠AEM,∴△OEN∽△AEM,∴ = ,即OE· EF=AE·EN,∴OE·EF=2AE·EN=2r·( -r),∴OE·EF=-2r2+ r-2(r- )2+ (0<r<),∴当r= 时,OE·EF有最大值,最大值为 .【解析】【分析】(1)将点A坐标代入直线l解析式即可求出b值从而得直线l的函数表达式,根据锐角三角函数正切定义即可求得答案.(2)①如图,连结AF,根据等腰三角形性质等边对等角可得两组对应角相等,根据相似三角形的判定即可得证.②如图,过点E作EH⊥x轴于点H,根据锐角三角函数正切值即可设EH=3x,AH=4x,从而得出AE、OH、OC,由①中相似三角形的性质可得OE2=OA·OC,代入数值即可得一个关于x的方程,解之即可求出E点坐标.(3)如图,过点A作AM⊥OF于点M,过点O作ON⊥AB于点N,根据锐角三角函数定义可求得AN=OA·cos∠BAO= ,设AC=AE=r,则EN= -r,根据相似三角形判定和性质可知 =,即OE·EF=-2r2+ r=(0<r<),由二次函数的性质即可求此最大值.3.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B 在x轴上,点B的坐标为(3,0),抛物线y=﹣x2+bx+c经过A、C两点.(1)求该抛物线所对应的函数关系式;(2)点P是抛物线上的一点,当S△PAB= S△ABC时,求点P的坐标;(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M 也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.【答案】(1)解:将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,得,解得∴抛物线y=﹣x2+2x+5.(2)解:∵点A(-1,2),B(3,0),C(3,2),∴BC⊥x轴,AC=4,BC=2,∴,∴设直线AB为y=mx+n,将点A(-1,2),B(3,0),代入可得,解得,∴直线AB为y=,设点P(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),∴PM= ,∴即,∴或,解得,则点P .(3)解:当时,如图1,点N在BC的线段上,BN= ,BM= ,∵MN⊥AB,∴,又∵A(-1,2),B(3,0),C(3,2),∴AC∥x轴,BC∥y轴,∴∠ACB=90°,∴,∴又∵∠MBN=∠ACB=90°,∴△BNM~△CAB,∴,则,解得t= .当时,点N在线段AC上,如图2,MN与AB交于点D,BM= ,由A(-1,2),B(3,0),得AB= ,设AD=a,则BD= ,∵∠ADN=∠ACB=90°, ∠DAN=∠CAB,∴△ADN~△ACB,∴;则 = ,则a=∵∠BDM=∠ACB=90°, ∠DBM=∠CAB,∴△BDM~△ACB,∴ =,则解得 .综上, .【解析】【分析】(1)将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,联立方程组解答即可求出b和c的值;(2)由A(-1,2),B(3,0),C(3,2)可求出直线AB 的解析式和,从而求出 .设PP(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),可得代入求出P的横坐标x的值,再代入抛物线的解析式求出点P的纵坐标;(3)首先要明确时间t表示点N运动的时间,由点M,N的速度可求出它们当到达终点时的时间t,取其中的较小值为t所能取到的最大值;由点M只在线段OB上运动,点N在线段BC和线段AC上运动,则要分成两部分进行讨论,当点N在线段BC上时和当点N在线段AC上时,并分别求出相应时间t的取值范围;结合相似三角形的判定和性质得到相应边成比例,列方程解答即可.4.如图,在矩形ABCD中,AB=4,BC=3,点P是边AB上的一动点,连结DP.(1)若将△DAP沿DP折叠,点A落在矩形的对角线上点A′处,试求AP的长;(2)点P运动到某一时刻,过点P作直线PE交BC于点E,将△DAP与△PBE分别沿DP 与PE折叠,点A与点B分别落在点A′,B′处,若P,A′,B′三点恰好在同一直线上,且A′B′=2,试求此时AP的长;(3)当点P运动到边AB的中点处时,过点P作直线PG交BC于点G,将△DAP与△PBG 分别沿DP与PG折叠,点A与点B重合于点F处,连结CF,请求出CF的长.【答案】(1)解:①当点A落在对角线BD上时,设AP=PA′=x,在Rt△ADB中,∵AB=4,AD=3,∴BD==5,∵AB=DA′=3,∴BA′=2,在Rt△BPA′中,(4﹣x)2=x2+22,解得x=,∴AP= .②当点A落在对角线AC上时,由翻折性质可知:PD⊥AC,则有△DAP∽△ABC,∴=,∴AP=== .∴AP的长为或(2)解:①如图3中,设AP=x,则PB=4﹣x,根据折叠的性质可知:PA=PA′=x,PB=PB′=4﹣x,∵A′B′=2,∴4﹣x﹣x=2,∴x=1,∴PA=1;②如图4中,设AP=x,则PB=4﹣x,根据折叠的性质可知:PA=PA′=x,PB=PB′=4﹣x,∵A′B′=2,∴x﹣(4﹣x)=2,∴x=3,∴PA=3;综上所述,PA的长为1或3(3)解:如图5中,作FH⊥CD由H.由翻折的性质可知;AD=DF=3.BG=BF,G、F、D共线,设BG=FG=x,在Rt△GCD中,(x+3)2=42+(3﹣x)2,解得x=,∴DG=DF+FG=,CG=BC﹣BG=,∵FH∥CG,∴==,∴==,∴FH=,DH=,∴CH=4﹣=,在Rt△CFH中,CF==【解析】【分析】(1)分两种情形:①当点A落在对角线BD上时,设AP=PA′=x,构建方程即可解决问题;②当点A落在对角线AC上时,利用相似三角形的性质构建方程即可解决问题;(2)分两种情形分别求解即可解决问题;(3)如图5中,作FH⊥CD由H.想办法求出FH、CH即可解决问题5.在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N 在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长. 【答案】(1)解:∵AE是AM和AN的比例中项∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE(2)解:∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=(3)解:∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3【解析】【分析】(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得 MN=;(3)分∠ENM=∠EAC和∠ENM =∠ECA两种情况分别求解可得.6.已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【答案】(1)解:∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE= ,∵CA= ,∴,∴CF= ;(2)解:∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2)(3)解:由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE= ,∴x= ,∴AB=x+2= .【解析】【分析】(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.7.已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.(1)求抛物线解析式;(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.【答案】(1)解:如图1,当x=0时,y=3,∴A(0,3),∴OA=OC=3,∵BC=4,∴OB=1,∴B(﹣1,0),C(3,0),把B(﹣1,0),C(3,0)代入抛物线y=ax2+bx+3中得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)解:如图2,设P(t,﹣t2+2t+3)(0<t<3),过P作PG⊥x轴于G,∵OQ∥PG,∴△BOQ∽△BGP,∴,∴,∴d=d=﹣t+3(0<t<3)(3)解:如图3,连接AN,延长PN交x轴于G,由(2)知:OQ=3﹣t,OA=3,∴AQ=OA﹣OQ=3﹣(3﹣t)=t,∴QN=OG=AQ=t,∴△AQN是等腰直角三角形,∴∠QAN=45°,AN= t,∵PG∥OK,∴,∴,OK=3t+3,AK=3t,∵∠QAN=∠NKQ+∠ANK,。
中考数学压轴题专题复习——相似的综合含答案解析
中考数学压轴题专题复习——相似的综合含答案解析一、相似1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。
2020-2021备战中考数学压轴题专题复习——相似的综合及答案解析
2020-2021备战中考数学压轴题专题复习——相似的综合及答案解析一、相似1.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)1.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN= EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.【答案】(1)证明::∵ °, ° ,∴ °∵ ,∴∵∥ ,∴∴ °,∴过点作于点 ,则 .在中,∴∴(2)解:在中,,∴∵a.当点在线段上时,过点作于点 ,在中,由(1)可知:,∴∴∴b.当点在线段延长线上时,过点作于点在中, ,在中, ,∴ ,∴(3)解:连接 ,交于点 .∵为的中点∴ ,∴ .∵ ,∴ ,∴ ,∴ ,∴ .∵∥∴ ,∴ ,,∵ ,∴ ,又∵ ,∴∽ ,∴,即 ,∴【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G根据所得的比例式即可求解.,2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)(2)解:如图1,过F作FG⊥x轴于点G,设F(x, x2+2x+6),则FG= ,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,∴当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),综上可知F点的坐标为(-1,)或(-3,)(3)解:如图2,不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6解得k1= 或k2=∴满足条件的点Q有两个,Q1(2,)或Q2(2,).【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。
(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。
(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。
3.书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸……若这张矩形印刷用纸的短边长为a.(1)如图②,若将这张矩形印刷用纸ABCD(AB BC)进行折叠,使得BC与AB重合,点C落在点F处,得到折痕BE;展开后,再次折叠该纸,使点A落在E处,此时折痕恰好经过点B,得到折痕BG,求的值.(2)如图③,2开纸BCIH和4开纸AMNH的对角线分别是HC、HM.说明HC⊥HM.(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A、B、M、I,则四边形ABMI的面积是________.(用含a的代数式表示,直接写出结果)【答案】(1)解:∵四边形ABCD是矩形,∴∠ABC ∠C 90°.∵第一次折叠使点C落在AB上的F处,并使折痕经过点B,∴∠CBE ∠FBE 45°,∴∠CBE ∠CEB 45°,∴BC CE a,BE .∵第二次折叠纸片,使点A落在E处,得到折痕BG,∴AB BE ,∴(2)解:根据题意和(1)中的结论,有AH BH ,.∴.∵四边形ABCD是矩形,∴∠A ∠B 90°,∴△MAH∽△HBC,∴∠AHM ∠BCH.∵∠BCH ∠BHC 90°,∴∠AHM ∠BHC 90°,∴∠MHC 90°,∴HC⊥HM.(3)【解析】【解答】解:(3)如图④,根据题意知(1)中的结论,有BC=AD= a,AF=IG= a,NI=MP= a,OP= a,又∵∠C=∠ADE=90°, ∠BEC=∠AED,∴∆BCE≌∆ADE,∴S ∆BCE=S ∆ADE,同理可得,S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,∴四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC= .【分析】(1)利用矩形的性质及第一次折叠使点C落在AB上的F处,可得出∠CBE=∠FBE=∠CEB=45°,可得出CE=BC,利用勾股定理可用含a的代数式求出BE的长,再根据第二次折叠纸片,使点A落在E处,得到折痕BG,可用含a的代数式表示出AB的长,然后求出AB与BC的比值。
(2)利用(1)的结论,可用含a的代数式表示出AH、BH、AM的长,就可求出,利用矩形的性质可得出∠A = ∠B,再根据相似三角形的性质,证明△MAH∽△HBC,利用相似三角形的性质,去证明∠AHM + ∠BHC = 90°,然后利用垂直的定义可解答。
(3)利用已知条件证明∆BCE≌∆ADE,可证得S ∆BCE=S ∆ADE, S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,再根据四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC,可求出答案。
4.如图,抛物线经过A(-3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.①当t为何值时,点N落在抛物线上;②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.【答案】(1)解:∵y=ax2+bx+ 经过A(﹣3,0),C(5,0)两点,∴,解得:,∴抛物线的解析式为(2)解:∵ =﹣(x2﹣2x+1)+ =﹣(x﹣1)2+8,∴点B的坐标为(1,8).设直线BC的解析式为y=kx+m,则,解得:,所以直线BC的解析式为y=﹣2x+10.∵抛物线的对称轴与x轴交于点D,∴BD=8,CD=5﹣1=4.∵PM⊥BD,∴PM∥CD,∴△BPM∽△BDC,∴,即,解得:PM= t,∴OE=1+ t.∴ME=-2(1+ t)+10=8-t..∵四边形PMNQ为正方形,∴NE=NM+ME=8﹣t+ t=8﹣ t.①点N的坐标为(1+ t,8﹣ t),若点N在抛物线上,则﹣(1+ t﹣1)2+8=8﹣ t,整理得,t(t﹣4)=0,解得t1=0(舍去),t2=4,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:∵PM= t,四边形PMNQ为正方形,∴QD=NE=8﹣ t.∵直线BC的解析式为y=﹣2x+10,∴﹣2x+10=8﹣ t,解得:x= t+1,∴QR= t+1﹣1= t.又∵EC=CD﹣DE=4﹣ t,根据平行四边形的对边平行且相等可得QR=EC,即 t=4﹣ t,解得:t= ,此时点P在BD上所以,当t= 时,四边形ECRQ为平行四边形【解析】【分析】(1)用待定系数法,将A,C两点的坐标分别代入y=ax2+bx+ ,得出一个关于a,b的二元一次方程组,求解得出a,b的值,从而得出抛物线的解析式;(2)首先求出抛物线的顶点B的坐标,然后用待定系数法求出直线BC的解析式为y=﹣2x+10.根据点到坐标轴的距离得出BD,CD的长度,根据垂直于同一直线的两条直线互相平行得出PM∥CD,根据平行于三角形一边的直线,截,其它两边,所截的三角形与原三角形相似得出△BPM∽△BDC,根据相似三角形对应边成比例得出B P ∶B D = P M ∶C D ,进而得出关于t的方程,求解得出PM,进而得出OE,ME,根据正方形的性质由NE=NM+ME得出NE的长,进而表示出N点的坐标,若点N在抛物线上,根据抛物线上的点的特点,得出关于t的方程,求解得出t的值,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:根据PM的长及正方形的性质从而表示出QD=NE的长度,进而得出方程,求出x的值,进而表示出QR根据线段的和差及平行四边形的对边平行且相等可得QR=EC,从而得出关于t的方程,求解得出答案。