盈亏问题小升初数学复习资料
小升初数学专题复习人教版 盈亏问题、年龄问题
周期、盈亏、年龄问题辅导教案一、复习回顾错题订正【浓度问题】1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?【组合图形】二、教学内容【盈亏问题】在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
例1:一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?练习一1、幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?例2:学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?练习二1、将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。
求花瓶的只数和月季花的朵数。
例3:有一些少先队员到山上去种一批树。
如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。
问有多少名少先队员?有多少棵树?练习三1、小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。
有多少敌人?多少发子弹?例4:学校给一批新入学的学生分配宿舍。
如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。
求学生宿舍有多少间?住宿学生有多少人?例5:少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑。
少先队员一共挖多少树坑?练习五1、老师给幼儿园的小朋友分苹果。
如果每个小朋友分2个,还多30个;如果其中的12个小朋友每人分3个,剩下的每人分4个,则正好分完。
最新整理小升初数学模块练习题:盈亏问题
小升初数学模块练习题:盈亏问题
知识点
(大盈-小盈)÷两次分配的个数差=分配对象数
(大亏-小亏)÷两次分配的个数差=分配对象数
(盈+亏)÷两次分配的个数差=分配对象数
1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?
2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?。
小升初奥数第18讲 盈亏问题
第十七讲盈亏问题学生年级小升初科目数学总课时第课过程盈亏问题知识点:盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1,两盈:两次分配都有多余;2,两不足:两次分配都不够;3. 一盈一亏:一次分配有余,一次分配不够4. 盈适足:一次分配有余,一次分配够分;5. 不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1,“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2,“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3,“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
金钥匙:少少减,多多减,一多一少就相加,然后除以分配差。
1.一盈一亏:例1:幼儿园老师拿出苹果发给小朋友。
如果平均分给小朋友每人5个,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。
有多少个小朋友?共有多少个苹果?例2:把一些桃子分给猴子吃,每只猴子分的一样.如果分给5只猴子,那么还剩下12个桃子;如果分给7只猴子,就会缺4个桃子.问:每只猴子分到多少个桃子?例3:运动会上,班长给参赛选手发矿泉水,如果每名选手分4瓶水,那么还多5瓶;如果每名选手分5瓶水,就会缺少3瓶.请问:有多少名选手,多少瓶水?练习:1.同学们早餐吃面包,每袋面包有10片,开始来了9个同学,老师给每人发了同样多片面包之后,还剩下半袋.后来又来了5个同学,老师发现还要再买两袋面包才够给新来的同学每人发同样多的面包.问:老师开始准备了几袋面包?2.过年了,某工厂打算拿出一笔钱给表现优秀的工人发资金,每人发同样多的钱.开始一数,共有40名优秀的工人,按原计划发完奖之后还能剩下400元.后来发现少统计了10名优秀工人,结果总钱数不够了,还缺500元.如果公司只有这么些资金,那么只能给每名优秀工人发多少元钱?3.冬冬请三名同学去看电影,买完票之后还剩下一张10元钱、一张5元钱和两张1元钱.这时又来了两名同学,冬冬也想请他们一起看,可是他发现还差3元钱.请问:冬冬一共有多少钱?类型2:两盈问题例1:绵羊村村长给羊羊们发青草丸子,每只羊分到的同样多,还剩下20个青草丸子.后来又来了1只小山羊.村长也发给它同样多的青草丸子,这时只剩下10个青草丸子了.请问:每只羊分到多少个与草丸子?例2:老师给同学们发作业本,每人发了同样多的作业本后,还剩下20本,后来给新来的2个人也发了同样数目的作业本,就只剩下12本了.请问:每个人发了几本?剩下的作业本还能再发给几个人?例3:小悦去文具店买水彩笔,如果买7支,还能剩7元9角钱;后来小悦决定买13支,结果只剩1角钱.请问:小悦一共带了多少元钱?练习:1.裁缝做衣服,他已经做好一些西服,现在要往上面缝扣子,如果每件西服缝3个扣子,还会剩下26个扣子;如果每件缝5个,就只剩下4个扣子了.请问:裁缝一共有多少个扣子?他已经做了几件西服?2.学校组织学生们去农村郊游,如果每户农家住4名同学,就会有7个人没地方住;(1)如果每户农家住5名同学,就会空出3个床位,这批学生一共有多少人?(2)如果每户农家住5名同学,最后2个农家就正好空着没有同学住了,这批学生一共有多少人?3.老师把一堆苹果分给小朋友,每人分的同样多.如果分给9个人,那么还剩下21个苹果;如果分给12个人,就只剩下12个苹果.请问:这堆苹果一共有多少个?类型3:两亏问题例1:绵羊村村长给羊羊们发青草蛋糕,每只羊分到的同样多,还缺少5块青草蛋糕.后来又来了1只小山羊,村长也想发给它同样多的青草蛋糕,这时就会缺少10块青草蛋糕.请问:每只羊分到多少块青草蛋糕?练习:小明计划在若干天内做完一章习题,如果每天做5道题,恰好提前1天做完,如果每天做7道题,恰好提前3天做完.这章习题一共有多少道题?类型4:盈适足例1:绵羊村村长给羊羊们发青草蛋糕,每只羊分到的同样多,还剩下10块青草蛋糕.后来又来了2只小山羊,村长也发给它们同样多的青草蛋糕,这时青草蛋糕恰好全部分完.请问:每只羊分到多少块青草蛋糕?例2:幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块。
数学专项复习小升初典型奥数之盈亏问题
数学专项复习小升初典型奥数之盈亏问题在小升初的数学学习中,奥数的盈亏问题是一个重要且常考的知识点。
对于即将升入初中的同学们来说,掌握这一问题的解题思路和方法至关重要。
什么是盈亏问题呢?简单来说,就是把一定数量的物品平均分给一定数量的人,如果每人少分,则物品有余(盈);如果每人多分,则物品不足(亏)。
通过已知条件,求出物品的总数和人数。
为了更好地理解盈亏问题,我们先来看几个简单的例子。
例 1:老师给小朋友们分糖果,如果每人分 5 颗,还剩 12 颗;如果每人分 7 颗,就缺 4 颗。
请问有多少个小朋友?一共有多少颗糖果?在这个例子中,我们可以发现两种分糖方式产生了不同的结果,一种是有剩余(盈),一种是有缺少(亏)。
我们先来分析一下,第一次每人分 5 颗,剩余 12 颗;第二次每人分 7 颗,缺少 4 颗。
这两次分糖的差别在哪里呢?关键就在于第二次每人比第一次多分了 7 5 = 2 颗糖。
正是因为这每人多分的 2 颗糖,导致了从剩余 12 颗变成了缺少 4 颗,所以总共的差距就是 12 + 4 = 16 颗糖。
而每人多分 2 颗就产生了 16 颗的差距,那么小朋友的人数就是 16 ÷ 2 = 8 人。
知道了小朋友的人数,我们就可以算出糖果的总数。
按照第一次分糖的方式,每人 5 颗,8 个小朋友,还剩 12 颗,糖果总数就是 5×8 +12 = 52 颗。
再来看一个例子。
例 2:学校将一批铅笔奖给三好学生。
如果每人奖 9 支,则缺 45 支;如果每人奖 7 支,则缺 7 支。
三好学生有多少人?铅笔有多少支?同样,我们先找到两次分铅笔的差异。
每人奖 9 支和每人奖 7 支,相差 9 7 = 2 支。
而因为这 2 支的差异,导致从缺 45 支变成缺 7 支,差距为 45 7 =38 支。
所以三好学生的人数就是 38 ÷ 2 = 19 人。
铅笔的数量按照第一种分法就是 9×19 45 = 126 支。
第24讲 盈亏问题(提高版)-2022-2023学年小升初数学专项复习讲义(通用版)
第24讲盈亏问题(提高版)-2022-2023学年小升初数学专项复习讲义(通用版)教学目标:1. 了解盈亏问题的基本概念和相关术语。
2. 理解盈利和亏损的概念和计算方法。
3. 能够运用所学知识,解决实际问题。
教学重难点:1. 盈亏问题的概念和计算方法。
2. 能够灵活运用所学知识,解决实际问题。
教学准备:1. 小黑板、白板笔、彩色粉笔。
2. 盈亏问题的教学PPT。
3. 练习册。
教学过程:一、导入(5分钟)1. 回顾上节课学习的内容,询问学生是否还记得。
2. 学生介绍日常购物或跳蚤市场上的经验。
3. 引入本节课的学习主题:盈亏问题。
二、讲解(30分钟)1. 概念解释1)盈亏问题:在商品买卖的过程中,根据买入价和卖出价的高低关系得到盈利或亏损,这就是盈亏问题。
其中,卖出价比买入价高,实现盈利;卖出价比买入价低则亏损。
2)盈利和亏损的概念:当卖出价比买入价高时,就实现了盈利;而当卖出价比买入价低时,就出现了亏损。
2. 相关术语1)买入价:购买商品的价格。
2)卖出价:出售商品的价格。
3)交易量:表示购买或销售的商品数量。
4)盈利:卖出价比买入价高,实现盈利。
5)亏损:卖出价比买入价低,实现亏损。
3. 盈利和亏损的计算方法1)盈利:卖出价 - 买入价 = 盈利2)亏损:买入价 - 卖出价 = 亏损三、练习(20分钟)1. 练习1:王超花了150元买了一个电视机,他准备以190元的价格卖出去。
请问他能够获得多少盈利?2. 练习2:唐霖花了40元买了3个苹果,她准备以20元的价格卖出去。
请问她将会获得多少亏损?3. 练习3:林峦花了25元买了5个鱼饼和3个炸鸡,他准备以38元的价格卖出去。
请问他将会获得多少盈利?4. 练习4:宋燕花了70元买了10个香蕉,她准备以7元的价格卖出去,请问她将会获得多少亏损?四、总结(5分钟)1. 邀请几位学生上台口述练习题的答案,并解释计算方法。
2. 对盈亏问题的概念和计算方法进行总结。
备战小升初数学知识点之盈亏问题
备战小升初数学知识点之盈亏问题一、小升初数学盈亏问题知识点基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
本文导航 1、首页2、盈亏问题练习题二、盈亏问题练习题1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?解:总差为17+10=27(块);分配之差为7-4=3(块);所以有少先队员27÷3=9(人)共有砖:4×9+17=53(块).答:这个班少先队有9个人,要搬的砖共有53块。
考点:盈亏问题,一盈一亏2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?解:第一次盈22人,第二次多出一个房间则是亏3+5=8(人); 总差为22+8=30(人);两次分配之差为5人,所以宿舍有30÷5=6(间),新生共有3×6+22=40(人).答:宿舍有6间,新生有40人。
考点:盈亏问题注意点:空出一个房间,则是少了8人入住,则是亏8人3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?解:其中两人分4个,其余每人分2个,则多出4个"转化为"全家每人都分2个,多出4+2×(4-2)=8个;一人分6个,其余每人分4个,则缺少12个"转化为"全家每人都分4个,缺少12-(6-4)=10个;由盈亏问题基本公式可知:全家的人数有(8+10)÷(4-2)=9(人)买来橘子2×9+8=26(个)考点:盈亏问题注意点:把每个对象分配的数量转换成一致的以上是为大家分享的小升初数学知识点之盈亏问题,大家还满意吗?希望能够满足大家的需求!同时预祝大家考入自己心目中理想的中学!。
专题28-盈亏问题(考点聚焦+重点速记+真题专练)-六年级数学复习(通用版)
专题28 盈亏问题2023-2024学年六年级备战小升初数学专项复习精讲练(考点聚焦+重点速记+真题专练)1、盈亏问题。
在等分除法的基础上发展起来的。
他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
2、解题关键。
盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
3、解题规律。
总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足,总差额= 大不足-小不足一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2022•镇安县)一箱乒乓球有40多个,如果把这箱乒乓球每6个装一盒,还剩余5个,如果每9个装一盒,也剩余5个。
这盒乒乓球有()个。
A.40 B.41 C.43 D.462.(2分)(2022•邢台)六(2)班有40多人,体操汇演,如果每8人站一排,最后一排是6人;如果每10人站一排,最后一排也是6人。
这个班一共( )人。
A.42 B.46 C.47 D.493.(2分)(2020•保德县)有一段木头用一根绳子来量,绳子多出150公分,将绳子对折后量,又短了35公分。
问这段木头有多长?()A.220 B.250 C.320 D.3604.(2分)(2020•宁德)小王从家开车上班,其实行驶10分钟后发生了故障,小王从后备箱中取出自行车继续赶路,由于自行车的车速只有汽车的3/5,小王比预计时间晚了20分钟到达单位,如果汽车再多行驶6公里,他就能少迟到10分钟,从小王家到单位的距离是()公里。
盈亏 问 题小升初
第9讲盈亏问题一、基础知识1、盈亏问题就是把一定的总数,分配给一定的对象,由于每份数分法不同,导致分后结果有盈(多)有亏(少)的一种典型应用题。
解题关键:解决盈亏问题,往往先用结果的相差数除以每份的相差数,求出对象的数量,进一步求出分配的总数。
所以在讲解时,不要刻意区分这三类基本题型,而应引导学生牢牢抓住两种分法上总的相差数和每次相差数2、盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换二、典型例题模块一、盈亏基本例题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人要搬的砖共有多少块例2、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.例3、某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?板块二、条件关系转换型盈亏问题例4、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫猫妈妈一共有多少条鱼例5、甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸例6、王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友多少个苹果和桔子例7、学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间新生有多少人例8、幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.随堂练习:1、一盒咖啡中有若干袋,一包方糖中有若干块.小唐喝前两盒咖啡时每袋咖啡都放3块方糖,结果共用了1包方糖和第2包中的24块;小唐喝后三盒咖啡时每袋咖啡都只放1块方糖,最后第3包方糖还剩下36块,那么每盒咖啡有多少袋2、有若干盒卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张.现在把所有卡片都分完,每人分到60张,而且还多出4张.问:共有多少个小朋友3、有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个?4、幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块5、有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人6、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球7、四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔?8、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个9、学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍10、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生巩固练习:1、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
小升初数学总复习(八)---应用题之其它8类常考(解析版)全国通用版
小升初数学专题突破8应用题之其它8类常考一.盈亏问题1.华校给思维训练课老师发洗衣粉.如果给男老师每人3包,女老师每人4包,那么就会多出8包;如果给男老师每人4包,女老师每人5包,那么就会少7包.已知男老师比女老师多1人,那么共有多少包洗衣粉?画龙点睛:“男老师每人3包,女老师每人4包”到“男老师每人4包,女老师每人5包”每位老师增加1包,共用去了8+7=15包,说明有15位老师,其中男老师8位,女老师7位.要求共有多少包洗衣粉,列式为3×8+4×7+8,计算即可.答案与解析:老师人数:8+7=15(人),其中男老师8位,女老师7位.共有洗衣粉:3×8+4×7+8,=24+28+8,=60(包).答:共有60包洗衣粉.2.一种商品随季节出售,如果按现价降低10%,每件仍可盈利200元;如果按现价降低20%,则每件亏损220元.这种商品每件的进价是多少元?画龙点睛:要求这种商品的进价是多少元,应先求出这种商品的定价,根据前后价格之差和分率之差即可求出定价,即从降价10%到降价20%,商品的销售就从每件盈利200元到每件亏损220元,相差200+220=420(元),每件现价为420÷10%=4200(元),再由每件现价的(1﹣10%)减去盈利的200元就是每件进价了.答案与解析:(200+220)÷(20%﹣10%)=420÷10%=4200(元)4200×(1﹣10%)﹣200=4200×90%﹣200=3780﹣200=3580(元)答:这种商品每件的进价是3580元.3.一个旅游团去旅馆住宿,若6人一间,多2个房间;若4人一间又少2个房间.旅游团共有多少人?画龙点睛:若6人一间,多2个房间,即不足6×2=12人;若4人一间又少2个房间,即盈4×2=8人;两次分配的差为6﹣4,根据盈亏问题公式可知共有房间(12+8)÷(6﹣4)=10间,则旅游团共有6×(10﹣2)人.答案与解析:(6×2+4×2)÷(6﹣4)=(12+8)÷2=20÷2=10(间)6×(10﹣2)=6×8=48(人)答:旅游团共有48人.4.李师傅做一批零件,如果他平均每天做24个,将比计划推迟一天完成,如果他平均每天做40个,将比计划提前一天完成,为了按计划完成,他平均每天要做多少个零件?画龙点睛:每天做24个,迟一天完成,说明时间到时还有24个没有完成;每天做40个,提前一天完成,说明时间到时还可以多做40个,64个就是每天做24个和40个的差别.所以规定时间为(24×1+40×1)÷(40﹣24)=4(天),有零件24×(4+1)=120(个),或40×(4﹣1)=120(个),按时完成每天做120÷4=30(个).答案与解析:①规定时间为(24×1+40×1)÷(40﹣24),=64÷16,=4(天);②按时完成每天做24×(4+1)÷4,=120÷4,=30(个).答:他平均每天要做30个零件.5.用一根绳子测量一口枯井的深度,把绳子对折一次量,井外多6米,把绳子对折两次量,井外多1米.井深多少米?绳子长多少米?画龙点睛:由题意可知,绳子长度的12比井深多6米,长度的14比井深多1米,所以绳长的12比它的14多5米,因此绳长:5÷(12−14)=20(米);井深:20×12−6,计算即可. 答案与解析:绳长:(6﹣1)÷(12−14) =5÷14=20(米);井深:20÷2﹣6=10﹣6=4(米);答:井深4米,绳子长20米.6.一只白山狐滑雪橇从山顶到山脚参加雪山动物联欢会.如果它每分钟行250米,预计15分钟到达,但滑行到35路程时,雪橇突然出了故障,急忙停下来修理,用了1.2分钟才修好,之后它继续前进,如果它要在原来预定的时间内到达山脚,那么余下的路程它每分钟必须比原来多行多少米?画龙点睛:由题意,滑行到35路程时,雪橇突然出了故障,急忙停下来修理,则剩下的路程为250×15×25=1500(米),还剩下的时间为:15×(1−35)﹣1.2=4.8(分钟),根据速度=路程÷时间可求得后来的速度,再减去原来的速度即可得解.答案与解析:剩下的路程:250×15×25=1500(米)剩下的时间:15×(1−35)﹣1.2=6﹣1.2=4.8(分钟)每分钟必须比原来多行:1500÷4.8﹣250312.5﹣250=62.5(米)答:余下的路程它每分钟必须比原来多行62.5米.二.归一归总问题7.李师傅开车从郑州去距离680km的地方运送物资.货车每100km耗油20L,按照这个耗油量,出发时加满100L油,途中还需要加油吗?请写出判断过程.画龙点睛:已知货车每100千米耗油20升,根据“等分”除法的意义,用除法可以求出货车每行1千米耗油多少升,再根据乘法的意义,用乘法再求出行680千米耗的油多少升,然后与100升进行比较,如果行驶680千米的耗油量等于或小于100升,说明不用加油,否则就需要加油.据此解答.答案与解析:20÷100×680=0.2×680=136(升)136>100答:途中需要加油.8.张师傅要加工120个零件,2.5小时加工了15个,照这样的速度,完成任务一共需要多少个小时?画龙点睛:用15除以2.5,求每小时加工零件的个数,再用零件总数除以每小时加工的零件数即可。
2024人教版六年级下册数学小升初专题训练 盈亏问题(含答案)
=15÷0.5
=30(千克)
(30×1.6+9)÷30
=(48+9)÷30
=57÷30
=1.9(元)
答:每千克应卖1.9元。
【点睛】本题的关键是根据盈亏问题中的数量关系:(盈+亏)÷两次的价格差=梨的数量,再进行解答。
12.猴子:8只;桃子:36个
【分析】可以设猴子有x只,如果每只猴子分3个,剩12个桃子,此时桃子的数量:3x+12;如果每只猴子分5个,又缺4个,则此时桃子的数量是:5x-4,两个式子都表示桃子的总数,由此即可列方程:3x+12=5x-4,再根据等式的性质解方程即可,之后用猴子的数量×3+12即可求出桃子的数量。
【详解】解:设有x名小朋友。
4x+10=5x-5
10=5x-5-4x
10=x-5
10+5=x
x=15
答:有15名小朋友。
4.144米;32米
【分析】把绳子三折来量,井外余16米,也就是绳长比井深的3倍还多16×3=48米;把绳子四折来量,井外余4米,也就是绳长比井深的4倍还多4×4=16米。根据盈亏问题公式可知,井深为(48-16)÷(4-3)=32米,则绳长为(32+16)×3=144米。
19.老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个。这篮苹果一共有多少个?
20.把一些铅笔奖给三好学生。每人5支则多4支,每人7支则少4支。老师有多少支铅笔?奖给多少个三好学生?
21.万老师给在学校住校的男生分配宿舍。如果每个房间住4人,那么多出24人;如果每个房间住6人,那么恰好住满。学校有多少名男生住校?
20-4=16(道)
答:他做对了16道题目。
2022-2023学年小升初数学专项备考高频考点一轮复习系列之:盈亏问题(原卷版)
2022-2023学年小升初数学专项备考高频考点一轮复习系列之:盈亏问题(原卷版)姓名:__________ 班级:__________考号:__________一、单选题1.一次数学测试时,老师出了33道题,规定答对一道题得8分,答错一道题扣3分.小红全部答出了题,但得了0分,小红答对了()道题.A.7 B.8 C.9D.102.某商店以每件60元的价格售出两件不同的衣服,其中一件赚25%,另一件亏25%。
那么卖出这两件衣服商店()。
A.赚8元B.赚15元C.亏8元D.不亏不赚3.用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,绳子长()厘米.A.240B.210C.2804.甲乙二人买同一种杂志,甲买一本差2角8分,乙买一本差2角6分,而他俩的钱合起来买一本还剩2角6分,那么这种杂志每本价钱是()A.1元B.7角C.8角D.9角5.四年级一些同学去划船,他们算了一下,如果增加一条船,正好每条船坐7人,如果每条船坐9人,则有3条空船.共有()名同学去划船.A.118 B.122 C.126D.130二、填空题6.小芳做20道题,做对一道得5分,做错一道倒扣2分,小芳每一道题都做了,结果只得了72分,她做对了道题,做错了道题.7.有一堆苹果分给幼儿园小朋友,若每人分4个还剩6个;若每人分6个还差10个,求这堆苹果有()个.8.果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840元,预计损耗为1%,如果希望全部进货销售后能获利17%,每千克苹果零售价应当定为元.9.甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价.后来都按定价的90%打折出售,结果仍获利131元.甲种商品的成本是元.三、应用题10.某运输工搬运1000只花瓶,规定每只运费0.4元,如果打碎一只不但不给运费,还要赔1.6元。
某运输工运完后得到运费360元,他打碎了几只花瓶?11.神童幼儿园里买来一些玩具,如果每班分8个玩具,就多出2个玩具,如果每班分10个玩具,就少12个玩具,幼儿园里有多少个班?12.把一堆苹果分给几个小朋友,每人6个还多5个,每人5个还多8个.一共有多少个苹果?多少个小朋友?13.在某一次小学数学竞赛里,同学总共要答15题问题.每题答对的得8分,答错的倒扣5分.某同学作答了15题共得55分,他答对了多少题?14.现在有一批书发给六年级(2)班,如果每人4本则多17本,如果每人5本则少33本,那么这批书共多少本?15.小朋友们分苹果,每人分18个,还多出2个,每人分20个,就有一位小朋友没分到苹果.问:共有多少个小朋友?多少个苹果?16.光明小学买回一批图书,如果每班发12本,则少16本;如果每班发10本,则剩下20本;这个学校一共有多少个班?一共买回多少本书?17.一根绳子三折后绕树一圈余10厘米,如果四折后绕树一圈就差20厘米,树的周长和绳长各是多少厘米?18.妈妈给一批上衣缝纽扣,如果每天缝15件,就比规定的工期晚2天完成;如果每天缝18件,就可比规定的工期提前3天完成.这批上衣共多少件?。
小升初数学专题4盈亏问题(原卷版)
小升初数学专题4:从课本到奥数盈亏问题(原卷版)基本概念盈亏问题是把一定数量的物品平均分给一定数量的人,由于物品和人数都未知,仅仅已知在两次分配中一次是盈(有余),一次是亏(不足);或者两次都盈余,或者两次都亏的数量时,求参加分配的物品总量及人员总数。
基本数量关系(盈+亏)÷(两次分得之差)=人数;(大盈小盈)÷(两次分得之差)=人数;(大亏小亏)÷(两次分得之差)=人数。
主要类型基本的盈亏问题类型1:“盈+亏”型1.高新区小学六(2)班的同学集体买了一个足球,如果每人拿2.5元钱,则少4元钱;如果每人拿2.8元钱,则多8元钱。
六(2)班一共有多少人?足球单价是多少元?2.幼儿园老师给小朋友分糖果,若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。
那么糖果最多有多少块?类型2:“盈+盈”型3.用一根绳子测量一口井的深度:若把绳子折成3折后垂到井底,则绳子的长度超过井口4米;若把绳子折成4折后垂到井底,则绳子的长度超过井口1米。
求井的深度和绳子的长度各是多少米?4.一位老师给学生分糖果,如果每人分4粒就多9粒;如果每人分5粒正好分完。
有多少位学生?共多少粒糖果?类型3:“亏+亏”型5.王老师去买儿童小提琴,若买7把,则所带的钱差 110元;若买5把,则所带的钱还差 30 元。
儿童小提琴多少钱一把?王老师带了多少钱?6.实验小学买来一批小足球分给各班:如果每班分4个,就差66个;如果每班分2个,则正好分完。
实验小学一共有多少个班?买来多少个足球?拓展的盈亏问题类型4:盈亏问题在长方形面积中的拓展7.一个长方形菜园,如果把宽改成30米,长不变,那么它的面积减少500平方米;如果使宽为52米,长不变,那么它的面积比原来增加600平方米,原来的长是多少米?面积是多少平方米?类型5:盈亏问题在复杂分配中的拓展8.妈妈买来一篮橘子分给全家人,如果其中两人各分4个,其余人每人分2个,则多4个;如果其中一人分6个,其余人每人分4个,则少12个,妈妈买来橘子多少个?全家共有多少人?9.有若干个苹果和若干个梨,如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。
第二十讲盈亏(优化)问题(专项复习讲义)小升初数学专项复习讲义(苏教版)
第二十讲盈亏(优化)问题(专项复习讲义)(知识梳理+专项练习)1、盈亏问题是在等分除法的基础上发展起来的。
他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
2、解题关键盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
3、解题规律总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足,总差额=大不足-小不足一、选择题1.甲、乙两商场,甲商场以“打九折”优惠售货,乙商场以“满200元送30元购物券”形式促销,小明打算花掉300元,他在()购物合算一些。
A.甲商场B.乙商场C.甲、乙商场一样D.无法确定2.某品牌的旅游鞋搞促销活动,在甲商场打五折销售,在乙商场打“折上折”销售,即先打八折,在此基础上再打五折,在丙商场按“满100元减50元”的方式销售,在丁商场按“满200元减100元”的方式销售。
李阿姨要买一双标价320元的该品牌的旅游鞋。
这双该品牌的旅游鞋实际售价最便宜的是()。
A.甲商场B.乙商场C.丙商场D.丁商场3.妈妈下班回家做饭,淘米要2分钟,煮饭要20分钟,洗菜要3分钟,切菜要2分钟,炒菜要10分钟.如果煮饭和炒菜要用不同的锅和炉子,妈妈要将饭菜都做好,最少要用()时间.A.22 B.25 C.274.《中国好少年》的定价是20元,甲书店打八五折出售,乙书店“买四送一”。
王老师想买10本该书,去()买划算。
A.甲书店B.乙书店C.甲、乙两家书店一样5.一根跳绳的单价是2.5元,李老师要买100根跳绳,选择第()种购买方式比较合算。
人教版小学数学小升初思维拓展(知识梳理+典题精讲+专项训练)专题11-盈亏问题
专题11-盈亏问题小升初数学思维拓展典型应用题专项训练(知识梳理+典题精讲+专项训练)1、把若干物体平均分给一定数量的对象,并不是每次都能正好分完.如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏.凡是研究盈和亏这一类算法的应用题就叫盈亏问题.2、解盈亏问题的公式。
一盈一亏的解法:(盈数+亏数)÷两次每人分配数的差双盈的解法:(大盈-小盈)÷两次每人分配数的差双亏的解法:(大亏-小亏)÷两次每人分配数的差.【典例一】某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等。
如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完。
原有树苗()棵。
A.100B.105C.106D.120【答案】C【分析】根据题目分析,题目暗含的等量关系是不管缺少,还是正好,这段公路的长不变,根据这个列方程解答。
设原有树苗x棵,如果每隔5米栽一棵,树苗就需要(21)x+棵;因为两端栽,所以间隔数就要用树苗的数量减“1”,再用“间隔数⨯间距=公路全长”列出关系式。
【解答】解:设原来树苗有x棵。
+-⨯=-⨯(211)5(1)6x x+=-x x510066x=106【点评】两端栽的植树问题:间隔数=棵树1-,本题的解题思路就是要用到这个关系式。
【典例二】六一儿童节,一批小朋友决定分乘若干辆至多可乘32人的大巴前去东辰,如果打算每辆车座22个人,就会有1个人没有座位;如果少开一辆车,那么这批小朋友刚好平均分乘余下的大巴。
那么有个人,原有辆大巴。
【答案】529,24。
【分析】根据题意,先判断23人同坐一辆车中是否超人数,再求共有的人数,最后求原有大巴的辆数。
【解答】解:22123+=(人)(少开一辆车,共有23人无座位)=⨯23231>(如果23人坐到一辆车中,则人数超过32人,不符合题意)+=(人)4532222345<人平均分到23辆车中,每车坐23人小于32人,符合题意)+=(人),2332(2322123共有的人数:⨯=(人)2323529原有大巴的辆数:+=(辆)23124检验:22241⨯+=+5281=(人)529故答案为:529,24。
小升初数学专项复习课件(通用版)第八讲 盈亏问题(课件)
二、典例精讲
例二:(“一亏一尽”题型) 饲养员将一筐香蕉分给猴子吃,每只猴子分到的香蕉一样多。 如果分给4只猴子,一筐 香蕉刚好分完;如果分给6只猴子,就会少12根香蕉。请问每只猴子分到几根香蕉?一 共有多少根香蕉? 解析: 一亏一尽类:亏数÷两次分得之差=人数 每只猴子分到: 12÷(6-4)=6 (根) 香蕉总数: 6x4=24 (根)或6x6-12=24 (根) 答:每只猴子分到6根香蕉;一共有24根香蕉。
3.光明小学新买来一批书,将他们分给几位老师,如果每人发10本,还差9本,每人发9本, 还差2本。请问有多少老师?多少本书? 本题属于两次皆亏题型。 (9-2)÷(10-9)=7(人) 7×10+9=79(本) 答:有7名老师,79本书。
三、基础训练
4.有一个班的同学去划船,他们算一下,如果增加一条船,正好每条船坐9人,如果减少一 条船,正好每条船坐12人。问这个班共有多少人同学? 本题属于一盈一亏问题。 (12+9) ÷(12-9) =21÷3 =7(人) 9×(7+1)=72(人) 答:这个班共有72人。
2
典例精讲
Part Two
二、典例精讲
例一:(“一盈一尽”题型) 小芳在街边买豆包,她发现自己带的钱如果买7个豆包就刚好花完。为了省下一些钱, 她只买了5个豆包,这样她还剩下4元钱。1个豆包的价钱是多少元钱?小芳带了多少元 钱? 解析: 一盈一尽类:盈数÷两次分得之差=人数 1个豆包的价钱: 4÷ ( 7-5)=2 (元) 小芳带的总钱数: 2x7=14(元)或2x5+4=14 (元) 答:1个豆包的价钱是2元钱,小芳带了14元。
二、典例精讲
例三:(“一盈一亏”题型) 老师给同学们分糖果,如果每人分4个,则余下17个;如果每人分7个,则缺少10个。那 么一共有多少名学生?老师准备了多少个糖果? 解析: 一盈一亏类: (盈+亏) ÷两次分得之差=人数 学生人数:(17+10)÷(7-4)=9(名) 糖果:4x9+17= 53 (个)或7x9-10=53 (个) 答:一共有9名学生;老师准备了53个糖果。
2023小升初《应用题专项》总复习(试题)六年级下册数学
小升初《应用题专题》总复习四1.盈亏问题数量关系:(1)一次有余(盈),一次不够(亏):(盈+亏)÷两次每份的差额=份数(2)两次都有余(盈):(大盈-小盈)÷两次每份的差额=份数(3)两次都不够(亏):(大亏-小亏)÷两次每份的差额=份数.题型:(1)小朋友分糖果,若每人分4粒则少9粒;若每人分5粒则少16粒。
问:有多少个小朋友分多少粒糖?(2)小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。
问:有多少个小朋友?多少粒糖果?(3)分糖果,每人5个剩8个,每人6个剩5个,求多少人多少糖果?(4)同学们去划船,增加1条船,刚好每条船坐8人,如果减去1条船,每条船坐12人,求多少个同学?(5)猴子分桃子,如果每只猴子分10个,则有2只猴子没分到,如果每只猴子分8个,刚好分完,有多少个桃子?(6)用绳子测量井深,折2折测量,井外多2米。
如果折3折去量,差1米到井口。
求绳子和井深。
2.还原问题方法:(1)学会逆运算(2)学会逆向思维(3)从结果推原始题型:(1)某数加上6,再乘以6,再减去6,再除以6,其结果等于6,则这个数是多少?(2)一根绳子,每次剪下其中的一半多1米,这样剪了5次,还剩下3米,求绳子的原长?(3)三(2)班参加活动,一半人参加了剪纸活动,余下的人中又有一半人参加了电脑小组,这时候还剩下12人都参加了合唱小组,求一共多少人?3.年龄问题数量关系:两数差÷(倍数-1)=较小数两数之差不变两数和÷(倍数+1)=较小数两数之和和倍数是改变的三个体系:和差、和倍、差倍题型:(1)母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?(2)父女年龄和是42, 3年后,父亲年龄是女儿的3倍?求父女今年各多少岁?(3)爸爸今年36,妈妈今年32,当他们年龄和等于98岁的时候,他们各多少岁?(4)爸爸和女儿的年龄相除,商12,余数是7,父女年龄和、商、余数总和是286, 求他们今年多大?(5)小胖比姐姐小12岁,4年后姐姐的年龄是小胖的3倍,求小胖和姐姐今年的年龄和?(6)妈妈的年龄是小强的5倍少12岁,也比小强的3倍多16岁,求妈妈多少岁?4. 平均数问题数量关系:(1)总数÷份数=平均数(2)找基准数法题型:(1)植树小组植树,前2天植树113棵,第3天植树55棵,求前2天平均植树多少?这3天一起平均植树多少棵?(2)宁宁期中考试语文、数学、科学三科平均分是91分,英语成绩公布后,平均分提高了2分,求英语考了多少分?(3)8个数的平均数是50,若把其中的一个数改为90,平均数就变成60,被改动的数原来是多少?(4)某校有100名学生参加数学竞赛,平均分是63分,其中参赛男生的平均分是60分,女同学平均分是70分,那么该校参赛男同学比女同学多多少人?。
第24讲-盈亏问题(讲义)-小升初数学精讲精练专题汇编讲义
小升初数学盈亏问题专项训练班级:姓名:一、填空题1.老师给学生发邮票,如果每人发240角邮票则缺1800角邮票,如果每人发200角邮票则余2200角,那么平均每人能发邮票( )角。
2.四(2)班举行“六•一”联欢晚会,辅导员老师带着一笔钱去买糖果。
如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元。
已知每千克芒果比奶糖贵2元,那么辅导老师带了_______元钱。
3.有红、白球若干,若每次拿出1个红球和1个白球,拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个,那么这堆红球、白球共有( )个。
4.幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.5.东东从家去学校,如果每分走80米,结果比上课提前6分到校,如果每分走50米,则要迟到3分,那么东东家到学校的路程是______米.6.猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多______只.7.一盘草莓约20个左右,几位小朋友分.若每人分3个,则余下2个;若每人分4个,则差3个.这盘草莓有_____个.8.某一筐水果中有苹果和梨若干个.若每次拿出1个苹果和1个梨,则拿到没有苹果时,还剩下50个梨;若每次拿走1个苹果和3个梨,则拿到没有梨时,苹果还剩下50个.那么这筐水果共有________个.9.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长_______米,井深_______米.10.某校学生搞课外活动,分成若干组,每组8人,后因需要每组改为12人,因此减少2个组.则参加活动的学生有________ 人,原来共分成________ 组.11.四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了( )元钱.12.(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多_____只.二、选择题1.搬运工每搬运一个货物可得运费4元,若打碎一个货物不仅得不到运费,还要赔6元。
六年级下小升初典型奥数之盈亏问题
六年级下小升初典型奥数之盈亏问题在六年级的数学学习中,小升初的奥数题里,盈亏问题是一个比较常见且重要的知识点。
它不仅考验我们对数学概念的理解,还锻炼我们的逻辑思维和解题能力。
那什么是盈亏问题呢?简单来说,就是把一定数量的物品平均分给固定的对象,如果按照某种分配方式会有剩余(盈),按照另一种分配方式则会不足(亏),求物品的总数和分配对象的数量。
我们先来看一个简单的例子:老师给同学们分糖果,如果每人分 5 颗,还剩下 10 颗;如果每人分 7 颗,就少了 4 颗。
请问有多少个同学,多少颗糖果?我们来分析一下,第一次每人分 5 颗,剩余 10 颗;第二次每人分 7 颗,缺少 4 颗。
这两次分配的结果不同,一个是有剩余,一个是不够分,为什么会这样呢?因为第二次比第一次每人多分了 7 5 = 2 颗糖果。
第一次多出来 10 颗,第二次少了 4 颗,那么两次分配的差距就是10 + 4 = 14 颗。
这 14 颗就是因为每人多分了 2 颗产生的,所以同学的人数就是 14 ÷ 2 = 7 人。
知道了同学的人数,糖果的数量就容易算出来了。
按照第一种分法,每人 5 颗,还剩 10 颗,所以糖果总数就是 5 × 7 + 10 = 45 颗。
再来看一个稍微复杂一点的例子:学校给一批新生安排宿舍,如果每个房间住 4 人,就有 30 人没有房间住;如果每个房间住 6 人,就空出 5 个房间。
请问学校有多少间宿舍,这批新生一共有多少人?同样的,我们来分析。
第一次每个房间住 4 人,多了 30 人;第二次每个房间住 6 人,空出 5 个房间,这意味着少了 6 × 5 = 30 人。
第二次每个房间比第一次多住 6 4 = 2 人。
第一次多 30 人,第二次少 30 人,两次的差距就是 30 + 30 = 60 人。
这 60 人就是因为每个房间多住 2 人造成的,所以房间的数量就是60 ÷ 2 = 30 间。
小升初复习:知识点20盈亏问题
第二十节:典型应用题(五)盈亏问题“一盈一亏”问题【例1】猴子们分桃子,如果每只猴子分3个,就剩余12个桃子;如果每只猴子分5个,又缺4个桃子。
问有多少只猴子?多少个桃子?思路引导正确解答:12+4=16(个)5-3=2(个)16÷2=8(只)8×3+12=36(个)或8×5-4=36(个)答:有8只猴子,36个桃子解决“一盈一亏”问题时,套用公式:(盈+亏)÷两次分得的差=人数,再根据人数求出总量即可。
【变式1】1. 把一筐苹果分给小朋友,如果每人分6个则多了10个苹果,如果每人分8个则少了12个苹果。
问有多少个小朋友?“双盈”问题【例2】农民叔叔购买农作物种子,如果买5千克,剩下63.2元;如果购买8千克,剩下8元。
他一共带了多少钱?思路引导如果买5千克,剩下63.2元,如果购买8千克,剩下8元,那么多买了8-5=3(千克),少剩下了63.2-8=55.2(元),也就是55.2元是3千克的总价,再用55.2元除以3千克即可求出种子的单价,然后用单价乘8千克,求出8千克需要的钱数,再加上8元就是他一共带的钱数(或求出5千克需要的钱数再加上63.2元)。
正确解答:63.2-8=55.2(元)8-5=3(千克)55.2÷3=18.4(元)18.4×8+8=155.2(元)或18.4×5+63.2=155.2(元)答:他一共带了155.2元。
解决“双盈”问题时,套用公式:(大盈—小盈)÷两次分得的差=人数,再根据人数求出总量即可。
【变式2】2. 动物园饲养员把一堆桃子分给一群猴子。
如果每只猴子分10个桃子,则有两只猴子没有分到;如果有两只猴子分8个桃子,其余猴子分9个,则还差3个桃子。
一共有多少只猴子?“双亏”问题【例3】阿姨给幼儿园小朋友分饼干,如果每人分3块,则少4块饼干;如果每人分5块,那么就少16块饼干。
问有多少个小朋友,有多少块饼干?思路引导如果每人分3块,则少4块饼干,如果每人分5块,就少16块饼干,那么每人多分了5-3=2(块),多少了16-4=12(块),也就是12块是每人分2块的总量,再用12块除以2块即可求出有多少个小朋友,然后用人数6个乘5块,求出每人分5块需要的饼干总数,再减去16块就是饼干总数(或求出每人分3块需要的饼干总数,再减去4块)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盈亏问题小升初数学复习资料
盈亏问题小升初数学复习资料
盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于
分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的`总量。
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。