七年级初一数学数学第八章 二元一次方程组的专项培优易错试卷练习题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级初一数学数学第八章 二元一次方程组的专项培优易错试卷练习题及解
析
一、选择题
1.方程组2x y x y 3+=
⎧+=⎨⎩
的解为{
x 2
y ==,则被遮盖的两个数分别为( )
A .2,1
B .5,1
C .2,3
D .2,4
2.已知方程组27
28x y x y +=⎧⎨+=⎩
,则5510x y -+的值是( )
A .5
B .-5
C .15
D .25 3.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种 4.三元一次方程5x y z ++=的正整数解有( )
A .2组
B .4组
C .6组
D .8组
5.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )
A .①②③
B .①②④
C .①③④
D .①②③④
6.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )
A .200
B .201
C .202
D .203
7.已知方程组()21119x y kx k y +=⎧
⎨+-=⎩
的解满足 x +y =3,则 k 的值为( )
A .k =-8
B .k =2
C .k =8
D .k =﹣2
8.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm ,9只饭碗摆起来的高度为21cm ,食堂的碗橱每格的高度为35cm ,则一摞碗最多只能放( )只. A .20
B .18
C .16
D .15
9.若a 为方程250x x +-=的解,则22015a a ++的值为( )
A.2010 B.2020 C.2025 D.2019
10.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()
A.
83
74
x y
x y
+=
⎧
⎨
+=
⎩
B.
83
74
x y
x y
-=
⎧
⎨
-=
⎩
C.
83
74
x y
x y
+=
⎧
⎨
-=
⎩
D.
83
74
x y
x y
-=
⎧
⎨
+=
⎩
二、填空题
11.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的
1 2用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的
9
20
,同时将餐饮区、百货
区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月
份收到的管理费比5月份增加了
1
12
,则百货区新增的摊位数量与该夜市总摊位数量之比是
______.
12.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.
13.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.14.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.
15.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植
这三种中药材,经测算需将余下土地面积的
9
16
种植黄连,则黄连种植总面积将达到这三种
中药材种植总面积的19
40
.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村
还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.
16.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本. 17.a 与b 互为相反数,且4a b -=,那么
2
1
1
a a
b a ab -+++=_______. 18.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 19.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 20.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.
三、解答题
21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?
(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.
22.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?
23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨
15吨及以下
a
超过15吨但不超过25吨的部分 b
超过25吨的部分
5
(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.
(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.
(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.
24.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组
2250(1)3100(2)
αβαβ∠+∠=︒⎧⎨
∠-∠=︒
⎩,
(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.
25.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?
26.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B 种原料2吨/件,生产乙产品需要A 种原料3吨/件,B 种原料1吨/件,每个季节该厂能获得A 种原料120吨,B 种原料50吨.
(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元? (2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A ,B 两种原料还剩下多少吨?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
把x=2代入x+y=3中,得:y=1,
把x=2,y=1代入得:2x+y=4+1=5,
故选B.
2.A
解析:A
【分析】
将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】
解:
27
28 x y
x y
+=
⎧
⎨
+=
⎩
①
②
①-②,得:x-y=-1,
∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.
故选A.
【点睛】
本题考查了用加减法解二元一次方程组.
3.C
解析:C
【分析】
设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x张+20y张=100元,根据等量关系列出方程求整数解即可.
【详解】
解:设兑换成10元x张,20元的零钱y元,由题意得:
10x+20y=100,
整理得:x+2y=10,
方程的整数解为:
方程的整数解为:
246810x0
,,,,,,
432105 x x x x x
y y y y y y
======⎧⎧⎧⎧⎧⎧
⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩
因此兑换方案有6种,
故选C.
【点睛】
此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列
出方程.
4.C
解析:C
【分析】
最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.
【详解】
解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;
当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;
所以正整数解的组数共:3+2+1=6(组).
故选:C.
【点睛】
本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.
5.D
解析:D
【分析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
【详解】
E点有4中情况,分四种情况讨论如下:
由AB∥CD,可得∠AOC=∠DCE1=β
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β-α
过点E2作AB的平行线,由AB∥CD,
可得∠1=∠BAE2=α,∠2=∠DCE2=β
∴∠AE2C=α+β
由AB∥CD,可得∠BOE3=∠DCE3=β
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α-β
由AB∥CD,可得
∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°-α-β
∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.
【点睛】
此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
6.A
解析:A 【分析】
分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m
+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】
解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得:
43{2x y n x y m
+=+=, 则两式相加得
5()m n x y +=+,
∵x 、y 都是正整数 ∴m n +一定是5的倍数;
∵200、201、202、203四个数中,只有200是5的倍数, ∴m n +的值可能是200. 故选A. 【点睛】
本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出
5()m n x y +=+,是解答本题的关键.
7.C
解析:C 【分析】
方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】
解:()21119x y kx k y +=⎧⎪
⎨
+-=⎪⎩①
②
,
②-①得:()()2218k x k y -+-=,即()()218k x y -+=, 代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
8.D
解析:D 【解析】 【详解】
试题分析:设1个碗的高度为xcm ,没加一个碗的高度增加的高度为ycm ,列方程组
515{
821
x y x y +=+= ,解得5
2x y =⎧⎨
=⎩
, 设可摆k 个碗,则5+2k≤35,解得:k≤15, 故选D . 【点睛】
本题考查了二元一次方程组的应用,关键是根据题意,找出合适的等量关系,列方程组求解.
9.B
解析:B 【分析】
先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答. 【详解】
解:∵a 为方程250x x +-=的解 ∴250a a +-=,即25a a += ∴22015a a ++=5+2015=2020. 故答案为B . 【点睛】
本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.
10.D
解析:D 【分析】
一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据
此即可列出方程组. 【详解】
解:设有x 人,买鸡的钱数为y ,根据题意,得:8374x y
x y -=⎧⎨
+=⎩
. 【点睛】
本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.
二、填空题
11.【分析】
由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式, 解析:3:20
【分析】
由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为
1
2
m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了1
12
建立关系式,进行代入分析即可得出答案. 【详解】
解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元), 6月份的管理费为:1
(1)60065012
n n +
⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为1
2
m , 由餐饮区的摊位数量占到了夜市总摊位数量的
9
20
,可得: 91
(12)5202
n m n m +⨯
=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,
且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,
由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),
当百货区新增3n ,杂项区新增n 时,满足条件, 所以百货区新增的摊位数量与该夜市总摊位数量之比是
3:(128)3:203:20n n n n n +==.
故答案为:3:20. 【点睛】
本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了
1
12
建立关系式,进行代入分析是解答本题的关键. 12.【分析】
设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和 解析:c
【分析】
设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答. 【详解】
设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2
y ,
依题意有x 2-y 2=48,即()()48x y x y +-=, ∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性, 又∵x y x y +>-,48=24×2=12×4=8×6,
∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩
,
解得13x =,11y =或8x =,4y =或7x =,1y =,
符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件, 同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件, ∴C 买了7件,c 买了11件.
由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a . 故答案为:c . 【点睛】
本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.
13.15% 【分析】
设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长
率为x ,根据题意列出方程组进行解答便可.
【详解】
解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻
解析:15%
【分析】
设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.
【详解】
解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,
300500400450()4003004
300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩
, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩
,
把(2)代入(1)得,b =6a (4),
把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,
∴x =15%,
故答案为15%.
【点睛】
本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.
14.【分析】
本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档
解析:【分析】
本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.
【详解】
设x 道难题,y 道中档题,z 道容易题。
10023180x y x x y z ++=⎧⎨++=⎩
①② ①×2−②,得x−z =20,
∴难题比容易题多20道.
故填20.
【点睛】
本题考查三元一次方程组的应用,本题中列方程组时有三个未知数,但只能列两个方程,所以不能把所有的未知数都解出来,只需要解出x-z即可.
15.3:20
【解析】
【分析】
设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数
解析:3:20
【解析】
【分析】
设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为
(x+y),川香已种植面积1
3
x、贝母已种植面积
1
4
x、黄连已种植面积
5
12
x,依题意列出
方程组,用y的代数式分别表示x、y,然后进行计算即可.
【详解】
解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为
(x+y),川香已种植面积1
3
x、贝母已种植面积
1
4
x、黄连已种植面积
5
12
x
依题意可得,
5919
()
121640
191
:3:4 3164
x y x y
x y y z x z
⎧
+=+
⎪⎪
⎨⎡⎤
⎛⎫⎛⎫
⎪+--+=
⎪ ⎪
⎢⎥
⎪⎝⎭⎝⎭
⎣⎦
⎩
①
②
由①得
3
2
x y =③
将③代入②得
3
8 z y =
∴贝母的面积与该村种植这三种中药材的总面积之比=
3
3
8
320
2
y
z
x y y y
==
++
故答案为3:20.
【点睛】
本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键16.311
【分析】
根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.
【详解】
解:设乙的单价为x元/本,则甲为(7+x)元/本
解析:311
【分析】
根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.
【详解】
解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,
∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,
依题意得:
①-②得:7a-7b=2177,
∴a-b=311,
即甲种书籍比乙种书籍多买了311本.
【点睛】
本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 17.7或3
【解析】
【分析】
解此题可设b=-a,求出a,b的值,然后代入代数式求解即可.
【详解】
由题意得,
解得:或,
当a=2,b=-2时,=7;
当a=-2,b=2时,=3,
故答案为:7或
解析:7或3
【解析】
【分析】
解此题可设b=-a,求出a,b的值,然后代入代数式求解即可.
【详解】
由题意得
4 a b
a b
+=
⎧
⎨-=
⎩
,
解得:
2
2
a
b
=
⎧
⎨
=-
⎩
或
2
2
a
b
=-
⎧
⎨
=
⎩
,
当a=2,b=-2时,2
a a
b 1 a ab 1-+++=7; 当a=-2,b=2时,
2a ab 1a ab 1
-+++=3, 故答案为:7或3.
【点睛】 本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 18.5
【解析】
【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组
解析:5
【解析】
【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.
【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得
201020101510y x y x +=⨯⎧⎨+=⨯⎩
, 解得:5100x y =⎧⎨=⎩
, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,
100÷(25-5)=5(小时),
故答案为:5.
【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.
19.3750
【解析】
设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了x km ,交换位置后走了ykm .分别以
解析:3750
【解析】
设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000
k ,安
装在后轮的轮胎每行驶1km 的磨损量为3000
k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有
+=50003000+=50003000
kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=
2
1150003000
+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.
20.100或85.
【分析】
设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.
【详解】
解:设所购商品的标价是x 元,
解析:100或85.
【分析】
设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.
【详解】
解:设所购商品的标价是x 元,则
①所购商品的标价小于90元,
x ﹣20+x =150,
解得x =85;
②所购商品的标价大于90元,
x ﹣20+x ﹣30=150,
解得x =100.
故所购商品的标价是100或85元.
故答案为100或85.
【点睛】
本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.
三、解答题
21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.
【分析】
(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;
(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.
【详解】
解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元, 35502331x y x y +=⎧⎨+=⎩,解得,57
x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;
(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)
只,费用为w 元, 5720021400w a a a +-+=()=-,
3200a a ≤-(),
150a ∴≤,
∴当150a =时,w 取得最小值,此时110020050w a =,﹣=
答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.
【点睛】
本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
22.1
【分析】
利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.
【详解】
设通道的宽是xm ,AM =8ym.
因为AM ∶AN =8∶9,所以AN =9ym.
所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩
答:通道的宽是1m.
故答案为1.
【点睛】
本题考查了二元一次方程组的应用.
23.(155)a b +;23a b =⎧⎨=⎩
;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.
(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;
(2)依题意列方程组1564815105270
a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;
(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.
【详解】
解:(1)小王家今年3月份用水20吨,要交消费为155a b +,
故答案为:(155)a b +;
(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩
, 解得:23a b =⎧⎨=⎩
; (3)在第(2)题的条件下,当正好25吨时,
可得费用15210360⨯+⨯=(元),
由交水费76.5元可知,小王家用水量超过25吨,
即:超过25吨的用水量(76.560)5 3.3=-÷=吨,
合计本月用水量 3.32528.3=+=吨
(4)设a 上调了x 元,b 上调了y 元,
根据题意得:1569.6x y +=,
52 3.2x y ∴+=,
,x y 为整数角线(没超过1元),
∴当0.6x =时,0.1y =元,
当0.4x =时,0.6y =元,
∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.
【点睛】
本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.
24.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒
【分析】
根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数;
根据平行线判定定理,判定//AB CD ;
由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.
解:(1)①+②,得5350α∠=︒,
70α∴∠=︒,代入①得110β∠=︒
α∴∠和β∠的度数分别为70︒和110︒.
(2)180αβ∠+∠=︒//AB EF ∴
//CD EF ,//AB CD ∴
(3)AE ∵是CAB ∠的平分线
2140CAB α∴∠=∠=︒
//AB CD ,180C CAB ∴∠+∠=︒
40C ∴∠=︒
【点睛】
本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.
25.应购买小笔记本50本,大笔记本8本,钢笔4支
【解析】
【分析】
根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.
【详解】
解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,
则有5x+7y+10z=346,y=2z .
易知0<x ≤69,0<y ≤49,0<z ≤34, ∴5x+14z+10z=346,5x+24z=346,即346245
z x -=
. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14
∴z 只能取14,9和4. ①当z 为14时,346242,228.445z x y z x y z -=
===++= 。
②当z 为9时,3462426,218.535
z x y z x y z -====++= .。