马氏体相变的名词解释

合集下载

第四章 马氏体相变

第四章 马氏体相变

第四章 马氏体相变随着科学技术的发展和人们对材料性能的要求越来越高,材料相变的研究也成为了一个热门的领域。

其中,固态相变是最为基础和广泛的相变形式之一。

在这其中,马氏体相变是一个相对特殊和有意义的相变过程。

一、马氏体相变的定义和分类马氏体相变,是指在含碳钢中,当钢经过一定的热处理过程后,在室温下形成一种具有变形性能的组织结构。

其核心原理是在高温下形成一种奥氏体,然后通过快速冷却过程,在室温下形成一种具有弹性、变形及塑性的马氏体组织结构。

根据马氏体相变的不同起始组织结构,其可以分为两种类型:一类是由完全奥氏体组成的马氏体相变,另一类是由贝氏体(以及在贝氏体上产生马氏体)组成的马氏体相变。

1.完全奥氏体马氏体相变当钢经过高温处理后,在其细小的晶粒中,完全转化为奥氏体组织。

通过钢的快速冷却 (通常在水、油、盐水等介质中进行),奥氏体中的部分碳原子被固溶,在马氏体的组织中重新排列,最终形成一种具有高强度和塑性的马氏体组织结构。

这种马氏体相变过程,称为完全奥氏体马氏体相变。

2.贝氏体马氏体相变贝氏体正常情况下是由冷却慢、回火温度低的钢中形成的。

它是由一种由铁与铁素体间化合物构成的细小晶粒组成的组织,这种组织强度比较低,韧性高,且具有较高的弹性变形和形变能力。

当这种钢经过高温处理后,由于组织发生了相变,大量贝氏体消失,而代替它的则是奥氏体组织。

这样在快速冷却的过程中,就会在奥氏体中形成一定数量的针状马氏体组织结构。

二、马氏体相变的影响因素马氏体相变的过程涉及到多个变量和影响因素,其中最重要的一些因素包括:1.冷却速度作为一种固态相变过程,马氏体相变的核心就是快速冷却过程。

通常来说,冷却速度越快,产生的马氏体组织也就越细小,强度也就越高。

2.合金元素含量合金元素在钢制造中有着重要的作用。

它们可以调节钢的合金成分和钢的性能,使钢的性能得到提升。

其中,加入Cr、Ni、Mn等元素可以有效地提高马氏体相变的开始和结束温度,这有利于得到良好的马氏体组织结构。

马氏体相变

马氏体相变
生产实际常见,这类马氏体降温形成,马氏体形成速度
极快,特点:马氏体降温瞬间形核,瞬间长大,可以认为 马氏体转变速度取决于形核率而与长大速度无关。 马氏体转变量取决于冷却所达到的温度,而与时间无关。
2、等温形成马氏体的动力学
特点:马氏体等温形核,瞬间长大,形核需要孕育期,形核率 随过冷度增大而先增后减,转变量随等温时间延长而增加。等 温转变动力学图呈C字形。
各种马氏体的晶体结构、惯习面、亚结构、位向关系汇总表
2、影响马氏体形态及亚结构的因素
化学成分 马氏体形成温度 奥氏体的层错能 奥氏体与马氏体的强度 主要是化学成分和马氏体形成温度
化学成分:片状马氏体的组织形态随合金成分的变化而改变。
对于碳钢: 1)C%<0.3%时, 板条马氏体; 2)0.3%~1.0%时,板条和透镜片状混合的马氏体; 3)C% >1.0%时, 全部为透镜片状马氏体。并且 随着C%增加,残余奥氏体的含量逐渐增加。 合金元素: 1)缩小γ相区,促进板条马氏体。 2)扩大γ相区,促进透镜片状马氏体。
特征5:转变的非恒温性和不完全性
1. 奥氏体以大于某一临界冷却速度的速度冷却到某一温度(马氏 体转变开始温度Ms),不需孕育,转变立即发生,并且以极大 速度进行,但很快停止,不能进行终了。为使转变继续进行, 必须继续降低温度,所以马氏体转变是在不断降温的条件下才 能进行。当温度降到某一温度之下时,马氏体转变已不能进行, 该温度称为马氏体转变终了点即Mf 。 2. 马氏体转变量是温度的函数,与等温时间无关。马氏体的降温 转变称为马氏体转变的非恒温性。由于多数钢的 Mf 在室温以下, 因此钢快冷到室温时仍有部分未转变奥氏体存在,称为残余奥氏 体,记为Ar。有残余奥氏体存在的现象,称为马氏体转变不完全 性。要使残余奥氏体继续转变为马氏体,可采用冷处理。

不锈钢的马氏体相变

不锈钢的马氏体相变

不锈钢的马氏体相变不锈钢是一种在各种环境条件下都具有高度耐腐蚀性的合金。

其名称源于其成分中含有的高比例铬元素,这有助于防止材料在暴露于氧气和其他腐蚀性物质时发生氧化。

不锈钢根据其微观结构,可以分为不同的类型,其中最常见的是奥氏体不锈钢和马氏体不锈钢。

马氏体相变是金属材料的一种重要现象,尤其是不锈钢。

在本文中,我们将深入探讨不锈钢中的马氏体相变,包括其定义、影响因素以及与不锈钢性能的关系。

一、马氏体相变的定义马氏体相变是一种固态相变过程,发生在铁基合金中,特别是在不锈钢中。

当温度降低时,奥氏体不锈钢会通过马氏体相变转变成一种硬且脆的同素异形体,称为马氏体。

这种转变是热力学上的自发过程,通常伴随着体积的膨胀和磁性的改变。

二、马氏体相变的影响因素1. 温度:马氏体相变通常在特定的温度以下发生。

对于大多数不锈钢,这个温度大约在200°C至300°C之间。

2. 合金成分:不同类型的不锈钢具有不同的马氏体相变温度。

这主要取决于其合金成分,特别是碳和其他合金元素的比例。

3. 应力和应变:应力和应变状态也会影响马氏体相变。

例如,淬火可以提高材料的硬度,这是由于马氏体相变和随后的组织结构变化。

三、马氏体相变与不锈钢性能的关系马氏体相变对不锈钢的性能有重要影响,主要包括以下几个方面:1. 机械性能:马氏体相变会导致不锈钢的硬度增加,从而提高其耐磨性和耐腐蚀性。

然而,这也可能导致材料变脆,特别是在较低温度下进行淬火处理时。

2. 耐腐蚀性:马氏体相变对不锈钢的耐腐蚀性有双重影响。

一方面,由于硬度增加,材料更难以被腐蚀;另一方面,淬火处理可能会在材料表面形成微裂纹,从而降低耐腐蚀性。

3. 磁性和热性能:马氏体相变还影响不锈钢的磁性和热性能。

例如,某些类型的马氏体不锈钢具有高磁导率,这在某些应用中是有利的。

此外,马氏体相变也影响不锈钢的热导率和热膨胀系数。

四、不锈钢中马氏体的应用场景由于马氏体相变对不锈钢的性能有显著影响,这种相变在许多应用场景中都得到了利用。

马氏体相变的基本特征

马氏体相变的基本特征

马氏体相变的基本特征一、马氏体相变的概念及基本过程马氏体相变是指在一定条件下,由奥氏体向马氏体的转变。

奥氏体是指碳钢中的一种组织结构,具有良好的塑性和韧性,但强度和硬度较低;而马氏体则是碳钢中另一种组织结构,具有较高的强度和硬度,但韧性较差。

因此,在特定情况下将奥氏体转变为马氏体可以提高材料的强度和硬度。

马氏体相变的基本过程包括两个阶段:淬火和回火。

淬火是指将钢件加热至适宜温度后迅速冷却至室温,使其形成完全马氏体组织;回火是指将淬火后的钢件加热至适宜温度后进行恒温保持一段时间,然后缓慢冷却至室温,使其形成具有良好韧性和适当硬度的马氏体-贝氏体组织。

二、影响马氏体相变的因素1. 淬火介质淬火介质的选择对马氏体相变的影响非常大。

常用的淬火介质包括水、油和空气等。

水冷却速度最快,可以使钢件形成完全马氏体组织,但易产生变形和裂纹;油冷却速度较慢,可以降低变形和裂纹的风险,但易产生不完全马氏体组织;空气冷却速度最慢,可以避免变形和裂纹,但难以形成马氏体组织。

2. 淬火温度淬火温度是指将钢件加热至何种温度后进行淬火。

淬火温度越高,钢件中残留奥氏体的含量越高,从而影响马氏体相变的程度。

一般来说,淬火温度越低,马氏体相变越充分。

3. 回火温度回火温度是指将淬火后的钢件加热至何种温度进行回火处理。

回火温度对马氏体-贝氏体组织的形成有重要影响。

过高或过低的回火温度都会导致组织不均匀或性能下降。

4. 淬火时间淬火时间是指将钢件放入淬火介质中的时间。

淬火时间越长,相变程度越充分,但也容易产生变形和裂纹。

三、马氏体相变的应用马氏体相变广泛应用于制造高强度、高硬度的零部件。

例如汽车发动机凸轮轴、齿轮、摇臂等零部件,以及航空航天领域中的发动机叶片、转子等部件均采用了马氏体相变技术。

此外,马氏体相变还可以用于制造刀具、弹簧等产品。

总之,马氏体相变是一种重要的金属加工技术,在提高材料强度和硬度方面具有重要作用。

了解其基本特征和影响因素有助于更好地掌握该技术,并在实践中取得更好的效果。

第四章 马氏体相变

第四章 马氏体相变

26
第二节 马氏体转变的主要特征
zhiyugao@


③不变平面应变:在不变平面上所产生的均匀应变。


氏 体
均匀应变——发生马氏体相变时,虽发生了变形,


但母相中的任一直线仍为直线,任一平面仍为平面,这
种变形即为均匀应变。
27
第二节 马氏体转变的主要特征
zhiyugao@

四 章
室温下马氏体的点阵常数与含碳量的关系由X-ray

氏 体
测得: c = a0 + αρ


a = a0 - βρ
c/a = 1 + γρ (正方度)
式中,α=0.116±0.002;β=0.013±0.002;
γ=0.046±0.001;ρ马氏体的含碳量(wt.%);
a0——α-Fe的点阵常数2.861Ǻ。
zhiyugao@


二、切变共格性和表面浮凸现象


氏 体
表面浮凸:马氏体形成时,试样表面发生倾动,一


边凹陷,一边凸起,并牵动界面附近未转变的奥氏体突
出表面。可见马氏体形成是以切变方式实现的,切变过
程中实现晶格重构,由面心变成体心立方,相界面上原
子即属于马氏体又属于奥氏体,称为“切变共格” 。

区 域 (B) , 称 为 同 位 向 束 , 同 位
向束之间呈大角晶界;一个板条
群也可以只由一种同位向束所组
成(C)。
38
zhiyugao@
第三节 马氏体的组织形态及影响因素
有时仅显现出板条群的边界,而使

四 章

【固态相变原理】第七章 马氏体相变

【固态相变原理】第七章 马氏体相变

马氏体相变的阻力
主要是新相形成时的界面能Sσ及应变能Vε。此外, (1)需要克服切变阻力而使母相点阵发生改组的能量; (2) 在马氏体晶体中造成大量位错或孪晶等晶体缺陷,导致能量升高; (3)在周围奥氏体中还将产生塑性变形,也需要消耗能量。
因此,Ms点的物理意义是: 奥氏体和马氏体两相自由能差达到相变所需最小驱动力值时的温度。
显然,若To点一定,Ms点越低,则相变所需的驱动力就越大。反之, Ms点高时,相变所需的驱动力则减小。所以,马氏体相变驱动力 △Gγ→α′与(To—Ms)成比例,即
式中,△S为γ→α′相变时的熵变。 As点的定义与Ms点类似,为马氏体和奥氏体两相自由能差达到逆相 变所需最小驱动力值时的温度,并且逆相变驱动力△Gα′→γ的大小与 (As—To)成比例。
3)奥氏体化条件的影响
加热温度升高和保温时间延长,有利于碳和合金元素进 一步溶入奥氏体中,而使Ms点下降,但同时又会引起奥氏 体晶粒的长大,并使其晶体缺陷减少,马氏体形成时的切变 阻力减小,从而使Ms点升高。
奥氏体成分一定时,晶粒细化则奥氏体强度提高,马氏体 相变切变阻力增大,Ms点下降。
4)淬火冷却速度的影响
凡剧烈降低T0温度及强化奥氏体的元素(如C)均剧烈地降低Ms点。 Mn、Cr、Ni等既降低T0温度又稍增加奥氏体强度,所以也降低Ms点。
A1、Co、Si、Mo、W、V、Ti等均提高T0温度,但也程度不同地增 加奥氏体强度。所以,若前者作用较大时,则使Ms点升高,如A1、Co; 若后者作用较大时,则使Ms点降低,如Mo、W、V、Ti;当两者作用 大致相当时,则对Ms点影响不大,如Si。
1.2.1马氏体相变热力学条件 马氏体相变驱动力是马氏体(α′)与奥氏体(γ)的化学自由能差Gγ→α′= Gα′-Gγ。

第5章 马氏体相变讲解

第5章 马氏体相变讲解
第5章 马氏体相变
? 主要内容:马氏体相变的主要特征; 马氏体的组织结构及其力学性能; 马氏体相变的热力学、动力学;
? 重点内容:影பைடு நூலகம் Ms点的因素、马氏体相变动力学、 马氏体的组织结构、力学性能
前言
? 马氏体( M, M artensite )相变特点: 相变过程中,晶体点阵的重组是通过基体原子的集 体有规律 近程 迁移—— 切变, 由一种晶体结构 转 变为另一种晶体结构,而 没有 原子长距离的迁移, 且新相与母相保持 共格关系。
? 形成条件:淬火。
? 淬火:将钢加热到 Ac3 或Ac1以上,保温后以大于 临界 冷却速度 的速度冷却,以获得马氏体或下贝氏体的热 处理工艺。
? 马氏体转变的临界冷却速度:抑制所有非马氏体转变 的最小冷却速度。
? 马氏体的力学性能:高硬度、高强度。
?C<0.3% 时为板条状马氏体; ?C在0.3%~1.0% 时为板条状马氏体和片状马氏体的 混合组织。
? 钢中M相变:钢经奥氏体化后 快速冷却,抑制其扩 散型分解,在较低温度下发生的 无扩散型相变。
? 在纯金属( Zr,Li,Co ),合金( Fe-Ni,Ni-Ti,Cu-Zn ),陶瓷 (ZrO 2)中也有M转变。
? 钢中马氏体: C原子在? -Fe中形成的过饱和固溶体。
? 马氏体定义:凡相变的基本特性属于马氏体型的转变 产物都称为马氏体。
金属及合金的高温相均可发生 M相变。
三、有一定的位向关系和惯习面
? 马氏体相变时,新相和母相界面始终保持着切变 共格,相变后两相之间的 位向关系仍然保持;
? K—S关系: 1.4%C 钢中马氏体和奥氏体之间的 位向关系, {111}?//{110}? ' , 〈110〉?//〈111〉? '

原理马氏体相变

原理马氏体相变

西山关系 (111) γ‖{110} M′ (211)γ‖(110)M′
形成温度
Ms>350℃
Ms≈200~100℃
Ms<100℃
C%
<0.3 0.3~1时为混合型
1~1.4
1.4~2
第四章 马氏体相变
组织形态
亚结构 残奥 形成过程
条宽为0.1~0.3μm惯
习面指数相同的马氏体 呈凸透镜片状,中间稍厚,
第四章 马氏体相变
二、马氏体的晶体结构
钢中马氏体的本质: 马氏体是碳溶于α-Fe中的过饱和间隙式固溶体,记为M或α'。 其中的碳择优分布在c轴方向上的八面体间隙位置。这使得c轴伸长, a轴缩短,晶体结构为体心正方。其轴比c/a称为正方度,马氏体含 碳量愈高,正方度愈大。 马氏体的晶体结构类型(两种):
并向片状马氏体组织过渡。 与奥氏体晶粒的关系:奥氏体晶粒越大,板条束越大,而一个原奥氏体晶粒 内板条束个数基本不变,奥氏体晶粒大小对板条宽度几乎没影响。 与冷却速度的关系:冷却速度越大,板条束和块宽同时减小,组织变细,因 此提高冷却速度有利于细化马氏体晶粒。
第四章 马氏体相变
亚结构:高密度位错,局部也有少量的孪晶。 位向关系:在一个板条束内,马氏体惯习面接近{111}γ;马氏体和 奥氏体符合介于K-S 关系和西山(N)关系之间的G-T关系最多;符合 K-S关系和西山(N)关系的较少,在一个板条束内,存在几种位向关 系的原因尚不清楚。 形成板条马氏体的钢和合金:低、中碳钢中(WC<0.3%) 板条马氏体的形成温度:MS>350℃;
第四章 马氏体相变
板条的立体形态可以是扁条状,也可以是薄片状 。
马氏体板条的两种立体形态 a)扁条状 b)薄板状

金属材料热处理原理 第五章 马氏体转变

金属材料热处理原理 第五章 马氏体转变

二、马氏体转变的主要特点 1. 切变共格和表面浮凸现象
钢因马氏体转变而产生的表面浮凸
马氏体形成时引起的表面倾动
马氏体是以切变方式形成的,马氏体与奥氏体 之间界面上的原子既属于马氏体,又属于奥氏体, 是共有的;并且整个相界面是互相牵制的,这种界 面称之为“切变共格”界面。
马氏体和奥氏体切变共格交界面示意图
4. 马氏体转变是在一个温度范围内完成的
马氏体转变量与温度的关系
Ms—马氏体转变开始温度;Mf—马氏体转变终了点; A、B—残留奥氏体。
5. 马氏体转变的可逆性
在某些铁合金中,奥氏体冷却转 变为马氏体,重新加热时,已形成的 马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。一般将 马氏体直接向奥氏体转变称为逆转变。 逆转变开始点用As表示,逆转变终了 点用Af表示。通常As温度比Ms温度高。
2. 马氏体转变的无扩散性
马氏体转变的无扩散性有以下实验证据:
(1) 碳钢中马氏体转变前后碳的浓度没有 变化,奥氏体和马氏体的成分一致,仅发生晶 格改组:
γ-Fe(C) → α-Fe(C)
面心立方 体心正方
(2) 马氏体转变可以在相当低的温度范围 内进行,并且转变速度极快。
3. 具有一定的位向关系和惯习面
西山关系示意图
③ G-T关系
{111}γ∥{110}α′ 差1°;<110>γ∥<111>α′ 差2°。
(2) 惯习面
马氏体转变时,新相总是在母相的某个晶面族上 形成,这种晶面称为惯习面。在相变过程中从宏观上 看,惯习面是不发生转动和不畸变的平面,用它在母 相中的晶面指数来表示。
钢中马氏体的惯习面随碳含量及形成温度不同而 异,常见的有三种:(1) 含碳量小于0.6%时,为{111}γ; (2) 含碳量在0.6%~1.4%之间时,为{225}γ;(3) 含碳 量高于1.4%时,为{259}γ。随马氏体形成温度下降, 惯习面有向高指数变化的趋势。

马氏体相变

马氏体相变

无扩散相变 γ→α’的T0温度
中南大学材料科学与工程学院
40
影响钢的Ms 点的因素
(1)奥氏体的化学成分
A3
无扩散 转变
① 碳含量
C% ↑ → Ms ↓,Mf ↓
Ms 与碳含量关系
中南大学材料科学与工程学院
41
② 合金元素
除 Co、Al外,其它合金元素均降低Ms 点。
解释:
碳或者合金元素降低A3点,降低奥氏体的自由能并提高马氏 体(过饱和铁素体)的自由能,也降低了T0 温度,从而降低 Ms 点。
一定量的塑性变形将对马氏体转变产生抑制作用。
碳或者合金元素固溶强化了奥氏体,σs ↑,使切变所需能量增
高,Ms ↓。
中南大学材料科学与工程学院
42
G
A
临界驱动力
Δ GA→M Δ GA→M
M
Ms
T0
Ms
T0
温度
奥氏体与马氏体的自由能-温度曲线示意图
中南大学材料科学与工程学院
43
(2)奥氏体的晶粒大小
奥氏体晶粒细化 → Ms ↓ 晶粒细化 → σs ↑→ 切变阻力↑ → Ms ↓
(4-2)
中南大学材料科学与工程学院
5
新生马氏体的异常正方度
定义: c/a 值低于或高于(4-2)式的正方度。
原因:
主要由于碳原子在 x、y、z 三个方向的分布发生了 改变。
中南大学材料科学与工程学院
6
说 明:
人们最早把钢中奥氏体转变为马氏体的相变称为马氏体相变。 但随后发现:在纯金属(如Zr、Li、Co等)、有色合金(如 Cu-Al、Cu-Zn、Ni-Ti、Au-Cd等),甚至无机非金属材料中
中南大学材料科学与工程学院

钛合金中的马氏体相变 ppt课件

钛合金中的马氏体相变 ppt课件
钛合金中的马氏体相变
• 二、其他金属中的马氏体相变

20世纪以来,对钢中 马氏体相
变的特征累积了较多的知识,又相继发现
在某些纯金属和合金中也具有马氏体相变,
如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、
Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-
Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni
钛合金中的马氏体相变
• 3.2 钛合金马氏体相变的原理
高纯钛在缓冷退火后,获得多 面的α组织,如果自高温快速冷却,将发 生马氏体转变,晶界变得不完整且呈锯齿 状。钛合金自高温快速冷却时,视合金成 分的不同, β相可转变为马氏体(α‘或 者α“)、ω相或者过冷β相,在快速冷 却过程中,由于从β相转变为α相的过程 来不及进行, β相将转变为成分与母相相 同、晶体结构不同的过饱和固溶体,即马 氏体。
钛合金中的马氏体相变
2012730047
钛合金中的马氏体相变
一、马氏体 - 马氏体概念
马氏体最初是在钢(中、 高碳钢)中发现的:将钢加热 到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能 使钢变硬、增强的一种淬火组织。
最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪 90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片 状(plate)或者板条状(lath),片状马氏体在金相观察中(二维) 通常表现为针状(needle-shaped),这也是为什么在一些地方 通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中 为细长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏 体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后, 马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方 结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高 的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆 性也比较高。

马氏体相变的基本特征

马氏体相变的基本特征

马氏体相变的基本特征引言马氏体相变是指固体材料经过快速冷却或机械应力作用后,在普通的冷处理条件下发生的晶体结构相变现象。

马氏体相变具有广泛的应用背景,在材料科学和工程领域具有重要的意义。

本文将从马氏体相变的定义、形成机理、基本特征以及应用方面进行探讨。

马氏体相变的定义马氏体相变是指固体材料在冷却过程中经历组织相变,从高温相变为低温相的过程。

这种相变过程是一种固态相变,属于无序到有序的结构转变,通常发生在低温下。

马氏体相变的特点是快速、均匀和可逆的。

马氏体相变的形成机理马氏体相变的形成机理主要涉及晶格畸变、原子扩散和位错运动等过程。

通常情况下,当固体材料经历冷却过程时,晶格会发生畸变,从而形成新的有序结构。

这种畸变能够通过原子的扩散来进行传播,并且位错运动也会促进马氏体相变的形成。

马氏体相变的基本特征马氏体相变具有以下几个基本特征:1.快速性:马氏体相变是一个快速的相变过程,通常在毫秒至微秒的时间尺度内发生。

这种相变速度快的特点使得马氏体相变在某些应用中具有重要意义,比如形状记忆合金。

2.可逆性:马氏体相变是可逆的,即当加热到一定温度时,马氏体又会重新转变为高温相。

这种可逆性使得马氏体材料可以多次进行相变过程,具有重复使用的特点。

3.形状记忆效应:马氏体相变材料具有形状记忆效应,即在经历应力作用后,材料可以保持其原来的形状。

这种形状记忆效应使得马氏体相变材料在机械领域有广泛的应用,比如医疗器械和航空航天。

4.结构转变:马氏体相变是由无序的高温相向有序的低温相转变的过程。

在相变中,晶格结构会发生改变,从而影响材料的力学性能和磁性能等。

马氏体相变的应用马氏体相变具有广泛的应用背景,主要包括以下方面:1.形状记忆合金:马氏体相变材料在形状记忆合金中有广泛的应用。

形状记忆合金可以通过调控温度或应力来改变其形状,并且具有良好的可逆性和稳定性。

这种特性使得形状记忆合金在医疗器械、汽车工业和航空航天等领域有广泛的应用。

第4章 马氏体转变

第4章 马氏体转变

惯习面:马面示意图
M板条或 片总是平 行于母相A 某个晶面
(5)马氏体相变的非恒温性和不完全性
M转变非恒温性的特点
1)无孕育期,在一定温度下转变不能进行 到底。 2)有转变开始和转变终了温度。M转变在 不断降温下进行,转变量是温度的函数 3)有些Ms在0℃以下的合金,可能爆发形 成 4)有些可能等温形成,但不能转变完全。
二、影响M形态和亚结构的因素
一)化学成分 C:为主要因素 C%,由M板条M片、M薄板 C<0.3% 板条状 C>1.0% 透镜片状M 0.3-1.0% 板条和片混合结构
合金元素影响(Me):
(1)缩小相区的 Me(Mo、W、Si、Al、 Nb、V等) 板条M (2)扩大相区的Me(Ni、Mn、Cu、N) 促使板条M转化为片状 能显著降低层错能的Me ’-M
(4)片状马氏体尺寸决定因素:
① 奥氏体晶粒越粗大,则马氏体片越大; ② 奥氏体晶粒越细小,则马氏体片越小。 ③当最大尺寸的马氏体片小到光学显微镜 无法分辨时,便称为隐晶马氏体。 例:高碳钢尤其是高碳合金钢,由于正常 淬火时有大量未溶碳化物,阻碍了奥氏体晶 粒的长大,晶粒细小,淬火得到的马氏体一 般都是隐晶马氏体。
(5)透镜片状马氏体的亚结构:
① 主要是孪晶。 ② 孪晶间距约为5~10nm,因此片状马氏体又称为孪 晶马氏体。 ③ 孪晶仅存在于马氏体片的中部,在片的边缘则为 复杂的位错网络。形成温度愈低,孪晶区所占比例就愈大。 ④ 片状马氏体的惯习面及位向关系与形成温度有关: 形成温度高时,惯习面为{225},位向关系为K-S关系;
形成温度低时,惯习面为{259},位向关系为西山关系。
⑤ 在马氏体针的中间有一直线,称为中脊。在 电子显微镜下可以看清楚,这个中脊面是密度很 高的微细孪晶区。

第十二章马氏体相变

第十二章马氏体相变

形变诱发马氏体转变热力学条件示意图
12.1.8 过冷奥氏体的机械稳定化
➢ 现象:Md 点是形变诱发马氏体的
最高温度,高于此温度的塑性变形 将不会产生形变诱发马氏体。
Md
➢ 原因:在Md点以上温度对过冷奥
氏体进行塑性变形,会产生过冷奥 氏体机械稳定化。
➢ 产生机理:由于塑性变形引入缺
陷(或使缺陷增加),破坏了母相与 新相(或其核坯)之间的共格关系, 使马氏体转变时原子运动发生困难。
12.1.1 马氏体转变的无扩散性的原因
• C原子在-Fe中形成的过饱和固溶体,体心正方结构,正方度随碳含 量增加而线性增大。
• Fe-C合金中,A和M中碳原子相对铁原子的间隙位置没变。 • Fe-C合金中,在-20~-195ºC之间,每片M的形成时间约为:
0.5~510-7s。 • 转变结果:降低了系统能量,形成低温亚稳定相。 • 形成条件:冷却速度大到能避免扩散型相变,所有金属及合金的高温
发马氏体相变,代替温度对马氏体转变的作用。即应力的升降可以引起 热弹性马氏体的消长,称为伪弹性。
形状记忆效应 是由马氏体转变的热弹性及伪弹性行为引起的。
1、位向关系 相变时,整体相互移动一段距离,相邻原子的相对位置无变化,作 小于一个原子间距位置的位移,因此奥氏体与马氏体保持一定的严格 的晶体学位向关系。 K-S关系:{110}M //{111}A;<111>M//<110>A 西山(N)关系:{110}M//{111}A;<110>M//<112>A G-T关系 K-V-N关系 西山关系与K-S关系相比,晶面关系相同,晶向关系相差5°16’
• 片状马氏体的亚结构为细小 孪晶,一般集中在中脊面附 近,片的边缘为位错。随形 成温度下降,孪晶区扩大。

马氏体

马氏体

一.马氏体的定义马氏体是经无(需)扩散的,原子集体协同位移的晶格改组过程,得到具有严格晶体学关系和惯习面的,相变常产物中伴生极高密度位错,或层错或精细孪晶等晶体缺陷的整体组合。

马氏体相变:原子经无需扩散的集体协同位移,进行晶格改组,得到的相变产物具有严格晶体学位向关系和惯习面,极高密度位错,或层错或精细孪晶等亚结构的整合组织,这种形核----长大的一级相变,称为马氏体相变。

二.马氏体相变的基本特征1.马氏体相变的无扩散性在较低的温度下,碳原子和合金元素的原子均已扩散困难。

这时,系统自组织功能使其进行无需扩散的马氏体相变。

马氏体相变与扩散性形变不同之处在于晶格改组过程中,所有原子集体协同位移,相对位移量小于一个原子间距。

相变后成分不变,即无扩散,它3仅仅是成分改组。

2.位相关系和惯习面马氏体相变的晶体学特点是新相和母相之间存在一定的位向关系。

马氏体相变时,原子不需要扩散,只作有规则的很小距离的移动,新相和母相界面始终保持着共格和半共格连接,因此相变完成之后,两相之间的位相关系仍保持着。

惯习面:马氏体转变时,新相和母相保持一定位向关系,马氏体在母相的一定晶面上形成,此晶面称为惯习面。

通常以母相的晶面指数表示。

钢中马氏体的惯习面随着碳含量和形成温度不同而异。

有色金属中马氏体的惯习面为高指数面。

3.马氏体的精细亚结构马氏体是单向组织,在组织内部出现的精细结构称为亚结构。

低碳马氏体内出现极高密度的位错(可达1012/cm)。

今年来发现板条状的马氏体中存在层错亚结构。

在高碳钢马氏体中主要以大量精细孪晶(孪晶片间距可达30nm)作为亚结构,也存在高密度位错;有的马氏体中亚结构主要是层错。

有色金属马氏体的亚结构是高密度的层错、位错和精细孪晶。

4.相变的可逆性,即新旧相界面可逆向移动有色金属和合金中的马氏体相变多具有可逆性,包括部分铁基合金。

这些合金在冷却时,母相开始形成马氏体的温度称为马氏体点(Ms),转变终了温度标为Mf;之后加热,在As温度逆转变形成高温相,逆相变完成的温度标以Af。

4.1马氏体相变特征及定义

4.1马氏体相变特征及定义
定义1:马氏体是碳在α—Fe中的过饱和固溶体。 (产生于20世纪20年代)。 由于在钢和合金中,马氏体有时不含碳,有时不 仅是体心立方晶格,还有密排六方、有序正交、 有序面心立方、有序正方等晶格。因此,该定义 早已过时。 定义2:在冷却过程中所发生的马氏体转变的产物统 称为马氏体。(20世纪50年代提出) 这个定义似乎包揽万象,该定义很不成功。80年 代修改为: 定义3:母相无扩散的,以惯习面为不变平面的切变 共格的相变产物,统称为马氏体。
5).相变的可逆性,即新旧相界面可逆 向移动
有色金属和合金中的马氏体相变多具有可逆性,包 括部分铁基合金。这些合金在冷却时,母相开始形 成马氏体的温度称为马氏体点(Ms),转变终了的 温度标以Mf ;之后加热,在As温度逆转变形成高温 相,逆相变完成的温度标以Af 。
Cu-Al-Ni合金的热弹性马氏体的可逆转变
正确的定义:
马氏体是原子经无需扩散的集体协同 位移的晶格改组过程,得到的具有严格晶 体学关系和惯习面的,形成相中伴生极高 密度位错、或层错或精细孪晶等晶体缺陷 的整合组织。
4.1.5. 马氏体相变的定义
• 1948年,Barrett称马氏体相变是无扩散相变。 • 1954年,Hull称马氏体相变为“点阵变化时,原子作规则 运动,相变区域形状改变,原子不需要扩散的相变”。 • 1965年,Christian指出“马氏体相变是由于存在一个容 易长大机制而发生的;即不需要原子扩散,使新相很快产 生,并且使自由焓下降” 。 • 总之,1965年以前,只强调无扩散、原子协作移动和形状 改变(表面浮凸)。
2).有一定位向关系和惯习面
• 新相和母相界面始终保持着共格或半共 格。因此,相变完成后,两相之间的位 向关系仍然保持着。 • 位向关系有:如 K-S 关系、 G-T 关系、西 山关系等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马氏体相变的名词解释
马氏体相变是固态材料在经历加热后,发生固态相变形成马氏体的一种自发性相变过程。

这个过程是由于固态材料中的结构发生了变化,从而导致其宏观性质发生显著改变。

马氏体相变是一种重要的材料科学研究领域,具有广泛的应用价值,特别是在材料加工、制造以及机械、电子等领域。

马氏体是一种具有特殊晶体结构的金属或合金相。

通过马氏体相变,材料的原子排列发生变化,从立方晶系转变为正交晶系,这种转变导致了材料在微观尺度上的形变。

马氏体相变在材料中的应用包括增加材料的硬度、降低材料的延展性、改变材料的导电性等。

马氏体相变过程可以通过控制材料的组成、冷却速率以及外加应变等手段来实现。

根据不同的材料组成和处理方式,马氏体相变可以分为多种类型,如亚稳的马氏体相变、稳定的马氏体相变等。

亚稳的马氏体相变具有可逆性,即可以通过加热使马氏体再次转变为原有的相,而稳定的马氏体相变则是不可逆的,材料无法通过加热来回复到原有的相。

马氏体相变的研究在金属、合金和陶瓷等材料中广泛进行。

研究者们通过实验和理论模拟等方法,探索材料的晶体结构和其相变机制。

他们研究材料的组成、热处理条件以及外部应力对马氏体相变的影响,并尝试开发新的材料设计和加工方法来改变马氏体相变的性质。

在材料科学领域,马氏体相变被广泛应用于制造高强度材料、形状记忆合金和超弹性材料等。

高强度材料通过马氏体相变提高了材料的硬度和强度,在制造领域具有重要的应用价值。

形状记忆合金则是一种具有记忆效应的特殊合金材料,可以通过马氏体相变来实现形状的记忆和恢复。

超弹性材料具有很高的弹性形变能力,可以通过马氏体相变来实现材料的超大形变。

总结来说,马氏体相变是固态材料在加热过程中发生的一种自发性相变,其通过改变材料的晶体结构和原子排列来实现材料性能的改变。

马氏体相变对于材料科学的发展具有重要的意义,它在材料制造、加工以及电子等领域的应用也呈现出广阔的前景。

研究者们将继续在这一领域进行深入研究,以推动材料科学的发展和创新。

相关文档
最新文档