高中数学选修2-1《空间向量与立体几何》知识点讲义
高中数学人教A版选修2-1第三章空间向量与立体几何阅读与思考向量概念的推广与应用教学课件共12张PPT含学案
k
此时向量p的坐标恰是点P在空间直角 i O j
y
坐标系Oxyz中的坐标 x,y,z.
x
P′
由空间向量基本定理可知,空间任意一个向量
都可以用三个不共面的向量表示出来.
同学们,相信通过这些难 点突破的讲解,大家可以类比 得更顺畅一些,祝学习顺利!
我们课上见咯!
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾 得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲 远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若 陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝 在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的 己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要 美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境 任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态 心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才 随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可 困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限 也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多 幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴 最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为 不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求, 可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华 心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面 人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定 一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩 为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道 就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷 长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不 面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为 价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫 的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。 有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要 面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放 个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的痛苦 不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他们给了 无私的人。
(人教版)高中数学选修2-1课件:第3章空间向量与立体几何3.1.1
①(A→B+B→C)+C→C1=A→C+C→C1=A→C1; ②(A→A1+A→1D1)+D→1C1=A→D1+D→1C1=A→C1; ③(A→B+B→B1)+B→1C1=A→B1+B→1C1=A→C1; ④(A→A1+A→1B1)+B→1C1=A→B1+B→1C1=A→C1. 所以 4 个式子的运算结果都是A→C1. 答案: 4
• (3)注意零向量的书写,必须是0这种情势. • (4)两个向量不能比较大小.
空间向量的加减法与运算律
空间向 量的加 减法
类似平面向量,定义空间向量的加、减法运算 (如图):
O→B =O→A +A→B =_a_+__b___; C→A =O→A -O→C =_a_-__b___
加法运 (1)交换律:a+b=b+a;
◎在长方体 ABCD-A1B1C1D1 中,化简D→A-D→B+B→1C-
B→1B+A→1B1-A→1B. 【错解】 D→A-D→B+B→1C-B→1B+A→1B1-A→1B
=A→B+C→B+B→1B=D→C+D→A+B→1B=D→B+D→1D=D→1B.
【错因】 对向量减法的三角形法则理解、记忆错误,
中,老师从学校大门口回到住地方产生的总位 移就是三个位移的合成(如右图所示),它们是
不在同一平面内的位移,如何刻画这样的位移 呢?
• [问题1] • [提示1] • [问题2] 吗?
• [提示2]
老师的位移是空间向量吗? 是. 空间向量的加法与平面向量类似
类似.
空间向量
定义
长度 几何表 示法
在空间,把具有大___小__和_方__向__的量叫做空间向量 向量的_大__小__叫做向量的长度或_模__
6分
(3)在线段 CC1 上取中点 M,则有C→M=12C→C1, 则有:A→B+A→D+12C→C1=A→B+B→C+C→M=A→M. 9 分 (4)由(2)知13(A→B+A→D+A→A1)=13A→C1,在线段 AC1 上取点 G,使得 AG=13AC1,即:13(A→B+A→D+A→A1)=A→G. 12 分
高中人教A版数学选修2-1课件第三章 空间向量与立体几何PPTppt版本
a b ( x 1 x 2 ,y 1 y 2 ,z 1 z 2 )
a (x 1 ,y 1 ,z 1 )
a b x 1 x 2 y 1 y 2 z 1 z 2
x
x1 x2 2
y1 y2 2
z1 z2 2
x
x1
x2 3
x3
y
y1
y2 3
y3
z
z1
z2 3
z3
8、直线与直线所成角公式
cos | ABCD|
| AB||CD|
9、直线与平面所成角公式
sin |PMn|
C1
A1
A
x
D B1 EC G
B
y
再见
| PM|| n|
( PM l M n 为 的法向量)
10、平面与平面所成角公式
cos n1n2
| n1 || n2 | ( n 1 n 2 为二面角两个半平面的法向量)
11、点到平面的距离公式
d | PM n | |n|
(PM为平面 的斜线, n 为平面 的法向量)
4、两个向量平行的条件
a || b x1 x2, y1 y2, z1 z2( R)
或 a || b x1 y1 z1 x2 y2 z2
5、两个向量垂直的条件
a b x 1 x 2 y 1 y 2 z 1 z 2 0
6、中点坐标公式 7、重心坐标公式
选修2-1 空间向量与立体几何
高中数学第二章空间向量与立体几何2.2空间向量的运算课件4北师大版选修2_1
C→B.
2.已知空间四边形 ABCD,点 M、N 分别是边 AB、CD
的中点,化简A→C+A→D-A→B.
解析: 如图所示, 因为点 M、N 分别是边 AB、CD 的中点,
所以A→C+A→D-A→B=2A→N-2A→M
=2M→N.
(1)首尾相接的若干向量之和,等于由起始向量的始 点指向末尾向量的终点的向量.因此,求空间若干 向量之和时,可通过平移将它们转化为首尾相接的 向量.
(2)若首尾相接的若干向量构成一个封闭图形,则这 些向量的和为0.
(3)两个向量相加的三角形法则、平行四边形法则在 空间中仍成立.
3.熟练应用三角形法则和平行四边形法则
则A→P=A→B+B→P=A→B+12BD→′ =A→B+12(B→A+B→C+BB→′) =A→B+12(-A→B+A→D+AA→′) =12(A→B+A→D+AA→′).
同理可证:A→M=12(A→B+A→D+A→A′), A→N=12(A→B+A→D+AA→′).
由此可知 O,P,M,N 四点重合. 故平行六面体的对角线相交于一点,且在交点处互相平 分.
[题后感悟] 利用向量解决立体几何中的问题的一般思路:
1.空间向量与平面向量的关系 空间任意两个向量都可以平移到同一个平面内,成为同 一平面内的两个向量.如图所示,已知空间向量 a,b,我们
可以在任意平面 α 内,以任意点 O 为起点,作向量O→A=a, O→B=b.
2.空间向量加法运算的理解
(1)利用三角形法则进行加法运算时,注意“首尾相连”和向 量的方向是从第一个向量的起点指向第二个向量的终点.进 行减法运算时,注意“共起点”,差向量的方向是从减向量 的终点指向被减向量的终点.
人教A版数学选修21-空间向量与立体几何-【完整版】
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
类型3 空间向量加减运算的应用(误区警示)
[典例3]
在长方体ABCD-A1B1C1D1中,化简
→ DA
-
→ DB
+B→1C-B→1B+A→1B1-A→1B.
证明:如图所示,平行六面体 ABCD-A′B′C′D′,设点O是AC′的中点,
则A→O=12A→C′=12(A→B+A→D+A→A′). 设P、M、N分别是BD′、CA′、DB′的中点. 则A→P=A→B+B→P=A→B+12B→D′=A→B+12·(B→A+B→C+
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
(3)用已知向量表示指定向量的方法. 用已知向量来表示指定向量时,常结合具体图形.通 过向量的平移等手段将指定向量放在与已知向量有关的三 角形或四边形中,通过向量的运算性质将指定向量表示出 来,然后转化为已知向量的线性式.
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
[变式训练] (1)下列命题中假命题的个数是( )
①向量A→B与B→A的长度相等;
②空间向量就是空间中的一条有向线段;
③不相等的两个空间向量的模必不相等.
A.1
B.2
C.3
D.0
(2)如图,在长方体ABCD-A1B1C1D1中, AB=4,AD=2,AA1=1,以该长方体的八 个顶点中的两点为起点和终点的所有向量
(人教版)高中数学选修2-1课件:第3章 空间向量与立体几何3.2.2
→
求A→E,B→C的坐标
→
cos
θ=
→→ AE·BC →→
|AE||BC|
→ 求θ
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
如图所示,建立空间直角坐标系,则 B(2,0,0),
C(2,2 2,0),E(1, 2,1),A→E=(1, 2,1),
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.用向量法求二面角的步骤 (1)寻求平面 α,β 的法向量 u,v. (2)利用公式 cos〈u,v〉=|uu|·|vv|,求出法向量 u,v 的夹 角 φ.
数学 选修2-1
第三章 空间向量与立体几何
1.已知二面角 α-l-β 等于 θ,异面直线 a,b 满足 a
⊂α,b⊂β,且 a⊥l,b⊥l,则 a,b 所成的角等于( )
A.θ
B.π-θ
C.π2-θ 解析: 答案:
D.θ 或 π-θ 应考虑 0≤θ≤π2与π2<θ≤π 两种情况. D
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)平面 α 的法向量 n 与 AB 所成的锐角 θ1 的余角 θ 就是 直线 AB 与平面 α 所成的角.
(4)斜线和它在平面内的射影所成的角(即斜线与平面所 成的角)是斜线和这个平面内所有直线所成角中最小的角.
数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.1
§3.1 空间向量及其运算 3.1.1 空间向量及其线性运算学习目标 1.了解空间向量的概念,掌握空间向量的几何表示与字母表示.2.掌握空间向量的线性运算(加法、减法和数乘)及其运算律.知识点一 空间向量的概念思考 类比平面向量的概念,给出空间向量的概念. 答案 在空间,把具有大小和方向的量叫做空间向量.梳理 (1)在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. (2)几类特殊的空间向量知识点二 空间向量及其线性运算 1.空间向量的线性运算已知空间向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,AB →=c ,与平面向量的运算一样,空间向量的加法、减法与数乘运算的意义为:OB →=OA →+AB →=a +c ; BA →=OA →-OB →=a -b =-c .若P 在直线OA 上,则OP →=λa (λ∈R ).2.空间向量的加法和数乘运算满足如下运算律: (1)a +b =b +a ;(2)(a +b )+c =a +(b +c ); (3)λ(a +b )=λa +λb (λ∈R ). 知识点三 共线向量(或平行向量)1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.若向量a 与b 平行,记作a ∥b ,规定零向量与任意向量共线. 2.共线向量定理:对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .1.在空间中,单位向量唯一.(×)2.在空间中,任意一个向量都可以进行平移.(√) 3.在空间中,互为相反向量的两个向量必共线.(√)4.空间两非零向量相加时,一定可用平行四边形法则运算.(×)类型一 空间向量的概念及应用例1 如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中:(1)试写出与AB →相等的所有向量; (2)试写出AA 1—→的相反向量;(3)若AB =AD =2,AA 1=1,求向量AC 1—→的模.解 (1)与向量AB →相等的所有向量(除它自身之外)有A 1B 1—→,DC →及D 1C 1—→,共3个. (2)向量AA 1—→的相反向量有A 1A —→,B 1B —→,C 1C —→,D 1D —→,共4个. (3)|AC 1—→|=|AB →|2+|AD →|2+|AA 1—→|2=22+22+12=9=3. 引申探究如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中:(1)单位向量共有多少个? (2)试写出模为5的所有向量.解 (1)由于长方体的高为1,所以长方体的四条高所对应的向量AA ′—→,A ′A —→,BB ′—→,B ′B —→,CC ′—→,C ′C ——→,DD ′—→,D ′D ——→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.(2)由于长方体的左右两侧面的对角线的长均为5,故模为5的向量有AD ′—→,D ′A ——→,A ′D ——→,DA ′—→,BC ′—→,C ′B ——→,B ′C ——→,CB ′—→.反思与感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反. 跟踪训练1 给出以下结论:①两个空间向量相等,则它们的起点和终点分别相同; ②若空间向量a ,b 满足|a |=|b |,则a =b ; ③在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中不正确的命题的序号为________. 答案 ①②解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;若空间向量a ,b 满足|a |=|b |,则不一定能判断出a =b ,故②不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1—→成立,故③正确;④显然正确.类型二 空间向量的线性运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′——→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AD ′—→.(2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′——→=AB ′—→+B ′C ′——→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.引申探究利用本例题图,化简AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→. 解 结合加法运算,得AA ′—→+A ′B ′——→=AB ′—→,AB ′—→+B ′C ′——→=AC ′—→,AC ′—→+C ′A —→=0. 故AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→=0.反思与感悟 1.化简向量表达式时,要结合空间图形,分析各向量在图形中的表示,然后利用运算法则,把空间向量转化为平面向量解决,并化简到最简为止.2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量;若首尾相接的若干个向量构成一个封闭图形,则这些向量的和为0.跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′—→+AD ′—→=2AC ′—→.证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′—→=AB →+AA ′—→,AD ′—→=AD →+AA ′—→, ∴AC →+AB ′—→+AD ′—→=(AB →+AD →)+(AB →+AA ′—→)+(AD →+AA ′—→) =2(AB →+AD →+AA ′—→). 又∵AA ′—→=CC ′—→,AD →=BC →,∴AB →+AD →+AA ′—→=AB →+BC →+CC ′—→=AC →+CC ′—→=AC ′—→. ∴AC →+AB ′—→+AD ′—→=2AC ′—→. 类型三 向量共线定理的理解与应用例3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC —→.求证:E ,F ,B 三点共线. 证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1—→)=25(AB →+AD →-AA 1—→)=25a +25b -25c . 所以EF →=A 1F —→-A 1E —→=25a +25b -25c -23b =25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,又因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.反思与感悟 1.判定共线:判定两向量a ,b (b ≠0)是否共线,即判断是否存在实数λ,使a =λb .2.求解参数:已知两非零向量共线,可求其中参数的值,即利用若a ∥b ,则a =λb (λ∈R ). 3.判定或证明三点(如P ,A ,B )是否共线 (1)是否存在实数λ,使P A →=λPB →.(2)对空间任意一点O ,是否有OP →=OA →+tAB →.(3)对空间任意一点O ,是否有OP →=xOA →+yOB →(x +y =1).跟踪训练3 如图,在四面体ABCD 中,点E ,F 分别是棱AD ,BC 的中点,用AB →,CD →表示向量EF →.解 EF →=AF →-AE → =12(AB →+AC →)-12AD → =12AB →-12(AD →-AC →)=12AB →-12CD →.1.下列说法中正确的是________.(填序号)①若|a |=|b |,则a ,b 的长度相等,方向相同或相反; ②若向量a 是向量b 的相反向量,则|a |=|b |; ③空间向量的减法满足结合律;④在四边形ABCD 中,一定是AB →+AD →=AC →. 答案 ②解析 若|a |=|b |,则a ,b 的长度相等,方向不确定,故①不正确;相反向量是指长度相同,方向相反的向量,故②正确;空间向量的减法不满足结合律,故③不正确;在▱ABCD 中,才有AB →+AD →=AC →,故④不正确.2.在平行六面体ABCD -A ′B ′C ′D ′的各条棱所在的向量中,与向量A ′B ′→相等的向量有________个. 答案 33.在正方体ABCDA 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→;③(AB →+BB 1—→)+B 1C 1—→;④(AA 1—→+A 1B 1—→)+B 1C 1—→.其中运算的结果为AC 1—→的有________个. 答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1—→=AC →+CC 1—→=AC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→=AD 1—→+D 1C 1—→=AC 1—→; ③(AB →+BB 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→; ④(AA 1—→+A 1B 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→. 所以4个式子的运算结果都是AC 1—→.4.化简2AB →+2BC →+3CD →+3DA →+AC →=________. 答案 0解析 2AB →+2BC →+3CD →+3DA →+AC →=2AB →+2BC →+2CD →+2DA →+CD →+DA →+AC →=0. 5.若非零空间向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k =________. 考点 空间向量的数乘运算 题点 空间共线向量定理及应用 答案 ±1解析 由k e 1+e 2与e 1+k e 2共线, 得k e 1+e 2=λ(e 1+k e 2),即⎩⎪⎨⎪⎧k =λ,1=λk ,故k =±1.空间向量加法、减法运算的两个技巧:(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、填空题1.下列命题中,假命题是________.(填序号) ①任意两个向量都是共面向量;②空间向量的加法运算满足交换律及结合律; ③只有零向量的模等于0; ④共线的单位向量都相等. 答案 ④解析 容易判断④是假命题,共线的单位向量是相等向量或相反向量.2.已知空间四边形ABCD 中,AB →=a ,BC →=b ,AD →=c ,则CD →=________.(用a ,b ,c 表示) 答案 c -a -b 解析 如图,∵AB →+BC →+CD →+DA →=0, 即a +b +CD →-c =0, ∴CD →=c -a -b .3.在长方体ABCD -A 1B 1C 1D 1中,AB →-CD →+BC →-DA →=________. 答案 2AC →解析 AB →-CD →+BC →-DA →=(AB →+BC →)-(CD →+DA →) =AC →-CA →=2AC →.4.对于空间中的非零向量AB →,BC →,AC →,有下列各式:①AB +BC →=AC →;②AB →-AC →=BC →;③|A B →|+|B C →|=|A C →|;④|A B →|-|A C →|=|B C →|.其中一定不成立的是____________.(填序号) 答案 ②解析 根据空间向量的加减法运算,对于①:A B →+B C →=A C →恒成立;对于③:当A B →,B C →,A C →方向相同时,有|A B →|+|B C →|=|A C →|;对于④:当B C →,A B →,A C →在一条直线上且B C →与A B →,A C →方向相反时,有|A B →|-|A C →|=|B C →|. 只有②一定不成立.5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________. 答案 0解析 延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=DF →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=AF →-AF →=0.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB →+AD →+AA 1→=________,DD 1→-AB →+BC →=________.答案 AC 1—→ BD 1—→解析 AB →+AD →+AA 1—→=AB →+BC →+CC 1—→=AC 1—→, DD 1—→-AB →+BC →=DD 1—→-(AB →-AD →) =DD 1—→-DB →=BD 1—→.7.在直三棱柱ABCA 1B 1C 1中,若C A →=a ,C B →=b ,C C →1=c ,则A 1B —→=________.答案 -a +b -c 解析 如图,A 1B —→=A 1A —→+AB →=C 1C —→+(CB →-CA →) =-CC 1—→+CB →-CA →=-c +b -a .8.在正方体ABCD -A 1B 1C 1D 1中,A 1E —→=14A 1C 1—→,AE →=x AA 1—→+y (AB →+AD →),则x =________,y =________. 答案 1 14解析 ∵AE →=AA 1—→+A 1E —→=AA 1—→+14A 1C 1—→=AA 1—→+14AC →=AA 1—→+14(AB →+AD →),∴x =1,y =14.9.已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-n AA 1—→,则m ,n 的值分别是________. 答案 12,-12解析 由于AF →=AD →+DF →=AD →+12(DC →+DD 1—→)=AD →+12AB →+12AA 1—→,所以m =12,n =-12.10.在空间四边形ABCD 中,若E ,F ,G ,H 分别为AB ,BC ,CD ,DA 边上的中点,则下列各式中成立的是________.(填序号) ①EB →+BF →+EH →+GH →=0; ②EB →+FC →+EH →+GE →=0; ③EF →+FG →+EH →+GH →=0; ④EF →-FB →+CG →+GH →=0. 答案 ②解析 易知四边形EFGH 为平行四边形, 所以EB →+FC →+EH →+GE →=EB →+BF →+GE →+EH → =EF →+GH →=0.11.如图,已知在空间四边形ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF →=________.(用向量a ,b ,c 表示)答案 3a +3b -5c解析 设G 为BC 的中点,连结EG ,FG ,则EF →=EG →+GF →=12AB →+12CD → =12(a -2c )+12(5a +6b -8c ) =3a +3b -5c二、解答题12.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′—→;(3)AB →+CB →+AA ′—→;(4)AC ′—→+D ′B —→-DC →.解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′—→=AC →+AA ′—→=AC ′—→.(3)AB →+CB →+AA ′—→=AB →+DA →+BB ′—→=DA →+AB →+BB ′—→=DB ′—→.(4)AC ′—→+D ′B —→-DC →=(AB →+BC →+CC ′—→)+(DA →+DC →+C ′C —→)-DC →=DC →.13.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解 ∵AE →=AB →+BC →+CE →=OB →-OA →+OC →-OB →-12OC → =-OA →+12OC →=-OA →+12(OD →+DC →) =-OA →+12(OD →+AB →) =-OA →+12OD →+12(OB →-OA →) =-32OA →+12OD →+12OB →, ∴x =12,y =-32. 三、探究与拓展14.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.答案 -8解析 ∵BD →=BC →+CD →=(-e 1-3e 2)+(2e 1-e 2)=e 1-4e 2,又∵A ,B ,D 三点共线,∴AB →=λBD →,即2e 1+k e 2=λ(e 1-4e 2),∴⎩⎪⎨⎪⎧2=λ,k =-4λ,∴k =-8.15.如图,设点A 是△BCD 所在平面外的一点,点G 是△BCD 的重心.求证:AG →=13(AB →+AC →+AD →).证明 连结BG ,延长后交CD 于点E ,由点G 为△BCD 的重心,知BG →=23BE →. ∵E 为CD 的中点,∴BE →=12BC →+12BD →. ∴AG →=AB →+BG →=AB →+23BE → =AB →+13(BC →+BD →) =AB →+13[(AC →-AB →)+(AD →-AB →)] =13(AB →+AC →+AD →).。
高二数学(人教A版)选修2-1课件第三章 空间向量与立体几何
(5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.
6.运用空间向量求空间角 (1)求两异面直线所成角 a· b 利用公式 cos〈a,b〉= , |a|· |b| 但务必注意两异面直线所成角 θ
(3)求二面角 用向量法求二面角也有两种方法: 一种方法是利用平面角 的定义, 在两个面内先求出与棱垂直的两条直线对应的方向向 量, 然后求出这两个方向向量的夹角, 由此可求出二面角的大 小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互补.
7.运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、 点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度, 因此也就是 这两点对应向量的模.
二、利用空间向量求空间角 (1)求两异面直线所成的角 设 a,b 分别是异面直线 l1,l2 上的方向向量,θ 为 l1,l2 |a· b| 所成的角,则 cosθ=|cos〈a,b〉|=|a||b|. (2)求直线与平面所成的角 设 l 为平面 α 的斜线,a 为直线的方向向量,n 为平面 α 的法向量,θ 为 l 与 α 所成的角,则 sinθ=|cos〈a,n〉|= |a· n| . |a||n|
成才之路· 数学
人教A版 ·选修2-1
路漫漫其修远兮 吾将上下而求索
第三章
空间向量与立体几何
第三章
章末归纳总结
知识梳理
1.空间向量的概念及其运算与平面向量类似,向量加、 减法的平行四边形法则, 三角形法则以及相关的运算律仍然成 立.空间向量的数量积运算、共线向量定理、共面向量定理都 是平面向量在空间中的推广, 空间向量基本定理则是向量由二 维到三维的推广.
数学精致讲义选修2-1北师大版第二章空间向量与立体几何§33.1~3.2含答案
§3 向量的坐标表示和空间向量基本定理(一) 3.1 空间向量的标准正交分解与坐标表示3.2 空间向量基本定理学习目标 1.了解空间向量基本定理.2.了解基底、标准正交基的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.知识点一 空间向量的坐标表示 空间向量的正交分解及其坐标表示知识点二 空间向量基本定理思考 平面向量基本定理的内容是什么?答案 如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的e 1,e 2叫作表示这一平面内所有向量的一组基底.梳理 (1)空间向量基本定理(2)基底条件:三个向量a ,b ,c 不共面. 结论:{a ,b ,c }叫作空间的一个基底.基向量:基底中的向量a ,b ,c 都叫作基向量.1.空间的任何一个向量都可用三个给定向量表示.(×)2.若{a ,b ,c }为空间的一个基底,则a ,b ,c 全不是零向量.(√)3.如果向量a ,b 与任何向量都不能构成空间的一个基底,则一定有a 与b 共线.(√) 4.任何三个不共线的向量都可构成空间的一个基底.(×)类型一 基底的判断例1 下列能使向量MA →,MB →,MC →成为空间的一个基底的关系式是( ) A.OM →=13OA →+13OB →+13OC →B.MA →=MB →+MC →C.OM →=OA →+OB →+OC →D.MA →=2MB →-MC(2)设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一个基底,给出下列向量:①{a ,b ,x };②{b ,c ,z };③{x ,y ,a +b +c }.其中可以作为空间的基底的有( ) A .1个B .2个C .3个D .0个 考点 空间向量基底的概念 题点 空间向量基底的判断 答案 (1)C (2)B解析 (1)对于选项A ,由OM →=xOA →+yOB →+zOC →(x +y +z =1)⇔M ,A ,B ,C 四点共面知,MA →,MB →,MC →共面;对于选项B ,D ,可知MA →,MB →,MC →共面,故选C. (2)②③均可以作为空间的基底,故选B. 反思与感悟 基底判断的基本思路及方法(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.(2)方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a =λb +μc ,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.跟踪训练1 (1)已知a ,b ,c 是不共面的三个非零向量,则可以与向量p =a +b ,q =a -b 构成基底的向量是( ) A .2a B .2b C .2a +3b D .2a +5c答案 D(2)以下四个命题中正确的是( ) A .基底{a ,b ,c }中可以有零向量B .空间任何三个不共面的向量都可构成空间向量的一个基底C .△ABC 为直角三角形的充要条件是AB →·AC →=0 D .空间向量的基底只能有一组 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 B解析 使用排除法.因为零向量与任意两个非零向量都共面,故A 不正确;△ABC 为直角三角形并不一定是AB →·AC →=0,可能是BC →·BA →=0,也可能是CA →·CB →=0,故C 不正确;空间基底可以有无数多组,故D 不正确.类型二 空间向量基本定理的应用例2 如图所示,空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点.试用向量a ,b ,c 表示向量OG →和GH →.考点 空间向量基底的概念 题点 空间向量基本定理 解 因为OG →=OA →+AG →, 而AG →=23AD →,AD →=OD →-OA →,又D 为BC 的中点,所以OD →=12(OB →+OC →),所以OG →=OA →+23AD →=OA →+23(OD →-OA →)=OA →+23×12(OB →+OC →)-23OA →=13(OA →+OB →+OC →)=13(a +b +c ). 又因为GH →=OH →-OG →, OH →=23OD →=23×12(OB →+OC →)=13(b +c ), 所以GH →=13(b +c )-13(a +b +c )=-13a .所以OG →=13(a +b +c ),GH →=-13a .反思与感悟 用基底表示向量时,若基底确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及向量数乘的运算律;若没给定基底,首先选择基底,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角是否已知或易求. 跟踪训练2 在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B —→,EF →;(2)若D 1F —→=x a +y b +z c ,求实数x ,y ,z 的值. 考点 空间向量基底的概念 题点 空间向量基本定理解 (1)如图,连接AC ,EF ,D 1F ,BD 1,D 1B —→=D 1D —→+DB →=-AA 1—→+AB →-AD →=a -b -c , EF →=EA →+AF →=12D 1A —→+12AC →=-12(AA 1—→+AD →)+12(AB →+AD →)=12(a -c ).(2)D 1F —→=12(D 1D —→+D 1B —→)=12(-AA 1—→+D 1B —→) =12(-c +a -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.类型三 空间向量的坐标表示例3 (1)设{e 1,e 2,e 3}是空间的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________________. 考点 空间向量的正交分解 题点 向量的坐标答案 (4,-8,3),(-2,-3,7)解析 由于{e 1,e 2,e 3}是空间的一个单位正交基底,所以a =(4,-8,3),b =(-2,-3,7). (2)已知a =(3,4,5),e 1=(2,-1,1),e 2=(1,1,-1),e 3=(0,3,3),求a 沿e 1,e 2,e 3的正交分解.考点 空间向量的正交分解 题点 向量的坐标解 因为a =(3,4,5),e 1=(2,-1,1), e 2=(1,1,-1),e 3=(0,3,3), 设a =αe 1+βe 2+λe 3,即(3,4,5)=(2α+β,-α+β+3λ,α-β+3λ),所以⎩⎪⎨⎪⎧2α+β=3,-α+β+3λ=4,α-β+3λ=5,解得⎩⎪⎨⎪⎧α=76,β=23,λ=32,所以a 沿e 1,e 2,e 3的正交分解为a =76e 1+23e 2+32e 3.反思与感悟 用坐标表示空间向量的步骤跟踪训练3 (1)在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 的中点,MN →在基底{a ,b ,c }下的坐标为________.考点 空间向量的正交分解 题点 向量的坐标 答案 ⎝⎛⎭⎫-23,12,12 解析 ∵OM =2MA ,点M 在OA 上, ∴OM =23OA ,∴MN →=MO →+ON →=-OM →+12(OB →+OC →)=-23a +12b +12c .∴MN →在基底{a ,b ,c }下的坐标为⎝⎛⎭⎫-23,12,12. (2)已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且P A =AD =1.在如图所示的空间直角坐标系中,求向量MN →的坐标.考点 空间向量的正交分解 题点 向量的坐标解 因为P A =AD =AB =1, 所以可设AB →=e 1,AD →=e 2,AP →=e 3. 因为MN →=MA →+AP →+PN → =MA →+AP →+12PC →=MA →+AP →+12(P A →+AD →+DC →)=-12AB →+AP →+12(-AP →+AD →+AB →)=12AP →+12AD →=12e 3+12e 2, 所以MN →=⎝⎛⎭⎫0,12,12.1.已知i ,j ,k 分别是空间直角坐标系Oxyz 中x 轴,y 轴,z 轴的正方向上的单位向量,且AB →=-i +j -k ,则点B 的坐标是( ) A .(-1,1,-1) B .(-i ,j ,-k ) C .(1,-1,-1) D .不确定考点 空间向量的正交分解 题点 向量的坐标 答案 D解析 由AB →=-i +j -k 只能确定向量AB →=(-1,1,-1),而向量AB →的起点A 的坐标未知,故终点B 的坐标不确定.2.在下列两个命题中,真命题是( )①若三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.A .仅①B .仅②C .①②D .都不是 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 A解析 ①为真命题;②中,由题意得a ,b ,c 共面,故②为假命题,故选A.3.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是( ) A .(12,14,10) B .(10,12,14) C .(14,12,10)D .(4,3,2)考点 空间向量的正交分解 题点 向量的坐标 答案 A解析 设点A 在基底{a ,b ,c }下对应的向量为p ,则p =8a +6b +4c =8i +8j +6j +6k +4k +4i =12i +14j +10k ,故点A 在基底{i ,j ,k }下的坐标为(12,14,10).4.若a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3,d =e 1+2e 2+3e 3,d =αa +βb +λc ,则α,β,λ的值分别为________. 考点 空间向量的正交分解题点 空间向量在单位正交基底下的坐标答案 52,-1,-12解析 ∵d =α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+λ(e 1-e 2+e 3) =(α+β+λ)e 1+(α+β-λ)e 2+(α-β+λ)e 3 =e 1+2e 2+3e 3, ∴⎩⎪⎨⎪⎧α+β+λ=1,α+β-λ=2,α-β+λ=3,∴⎩⎪⎨⎪⎧α=52,β=-1,λ=-12.5.如图,已知P A ⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AB →=i ,AD →=j ,AP →=k ,试用基底{i ,j ,k }表示向量PG →,BG →.考点 空间向量的正交分解 题点 向量在单位正交基底下的坐标解 延长PG 交CD 于点N ,则N 为CD 的中点,PG →=23PN →=23⎣⎡⎦⎤12(PC →+PD →) =13(P A →+AB →+AD →+AD →-AP →) =13AB →+23AD →-23AP →=13i +23j -23k . BG →=BC →+CN →+NG →=BC →+CN →+13NP →=AD →-12DC →-13PN →=AD →-12AB →-⎝⎛⎭⎫16AB →+13AD →-13AP → =23AD →-23AB →+13AP → =-23i +23j +13k .1.基底中不能有零向量.因零向量与任意一个非零向量都为共线向量,与任意两个非零向量都共面,所以三个向量为基底隐含着三个向量一定为非零向量.2.空间几何体中,要得到有关点的坐标时,先建立适当的坐标系,一般选择两两垂直的三条线段所在直线为坐标轴,然后选择基向量,根据已知条件和图形关系将所求向量用基向量表示,即得所求向量的坐标.3.用基底表示空间向量,一般要用向量的加法、减法、数乘的运算法则,及加法的平行四边形法则,加法、减法的三角形法则.逐步向基向量过渡,直到全部用基向量表示.一、选择题1.下列说法中不正确的是( )A .只要空间的三个向量的模为1,那么它们就能构成空间的一个单位正交基底B .竖坐标为0的向量平行于x 轴与y 轴所确定的平面C .纵坐标为0的向量都共面D .横坐标为0的向量都与x 轴上的基向量垂直 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 A解析 单位正交基底除要求模为1外,还要求三个向量两两垂直. 2.在空间直角坐标系Oxyz 中,下列说法中正确的是( ) A .向量AB →的坐标与点B 的坐标相同 B .向量AB →的坐标与点A 的坐标相同 C .向量AB →的坐标与向量OB →的坐标相同 D .向量AB →的坐标与OB →-OA →的坐标相同 考点 空间向量的正交分解 题点 向量的坐标 答案 D3.已知点O ,A ,B ,C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a ,b 不能构成空间基底的向量是( ) A.OA →B.OB →C.OC →D.OA →或OB →考点 空间向量基底的概念 题点 空间向量基底的概念 答案 C解析 ∵OC →=12a -12b 且a ,b 不共线,∴a ,b ,OC →共面,∴OC →与a ,b 不能构成一组空间基底.4.已知A (3,4,5),B (0,2,1),O (0,0,0),若OC →=25AB →,则C 的坐标是( )A.⎝⎛⎭⎫-65,-45,-85 B.⎝⎛⎭⎫65,-45,-85 C.⎝⎛⎭⎫-65,-45,85 D.⎝⎛⎭⎫65,45,85考点 空间向量的正交分解 题点 向量的坐标 答案 A解析 设点C 坐标为(x ,y ,z ),则OC →=(x ,y ,z ). 又AB →=(-3,-2,-4),OC →=25AB →,∴x =-65,y =-45,z =-85.5.{a ,b ,c }为空间的一个基底,且存在实数x ,y ,z 使得x a +y b +z c =0,则x ,y ,z 的值分别为( ) A .0,0,1 B .0,0,0 C .1,0,1D .0,1,0 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 B解析 若x ,y ,z 中存在一个不为0的数,不妨设x ≠0,则a =-y x b -zx c ,∴a ,b ,c 共面.这与{a ,b ,c }是基底矛盾,故x =y =z =0.6.设a ,b ,c 是三个不共面向量,现从①a -b ,②a +b -c 中选出一个使其与a ,b 构成空间的一个基底,则可以选择的是( ) A .仅① B .仅② C .①②D .不确定 考点 空间向量基底的概念题点 空间向量基底的概念 答案 B解析 对于①∵a -b 与a ,b 共面, ∴a -b 与a ,b 不能构成空间的一个基底.对于②∵a +b -c 与a ,b 不共面,∴a +b -c 与a ,b 构成空间的一个基底.7.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( ) A.⎝⎛⎭⎫14,14,14 B.⎝⎛⎭⎫34,34,34 C.⎝⎛⎭⎫13,13,13D.⎝⎛⎭⎫23,23,23考点 空间向量的正交分解 题点 向量的坐标 答案 A解析 如图所示,连接AG 1交BC 于点E ,则点E 为BC 的中点,AE →=12(AB →+AC →)=12(OB →-2OA →+OC →), AG 1—→=23AE →=13(OB →-2OA →+OC →), ∵OG →=3GG 1—→=3(OG 1—→-OG →), ∴OG →=34OG 1—→=34(OA →+AG 1—→)=34⎝⎛⎭⎫OA →+13OB →-23OA →+13OC → =14OA →+14OB →+14OC →,故选A.二、填空题8.如图所示,在长方体ABCD -A 1B 1C 1D 1中建立空间直角坐标系.已知AB =AD =2,BB 1=1,则AD 1→的坐标为________,AC 1→的坐标为________.考点 空间向量的正交分解 题点 向量的坐标 答案 (0,2,1) (2,2,1)解析 根据已建立的空间直角坐标系,知A (0,0,0),C 1(2,2,1),D 1(0,2,1),则AD 1—→的坐标为(0,2,1),AC 1→的坐标为(2,2,1).9.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示) 考点 空间向量基底的概念 题点 空间向量基本定理 答案 12a +14b +14c解析 OE →=OA →+12AD →=OA →+12×12(AB →+AC →)=OA →+14(OB →-OA →+OC →-OA →)=12OA →+14OB →+14OC →=12a +14b +14c . 10.若四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为____________. 考点 空间向量的正交分解 题点 向量的坐标 答案 (5,13,-3)解析 由四边形ABCD 是平行四边形知AD →=BC →,设D (x ,y ,z ),则AD →=(x -4,y -1,z -3),BC →=(1,12,-6), 所以⎩⎪⎨⎪⎧x -4=1,y -1=12,z -3=-6,解得⎩⎪⎨⎪⎧x =5,y =13,z =-3,即点D 坐标为(5,13,-3). 三、解答题11.如图所示,在正方体OABC -O ′A ′B ′C ′中,OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →. 考点 空间向量基底的概念 题点 空间向量基本定理 解 (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→ =OC →+OO ′→-OA →=b +c -a . (2)GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→)=12(OO ′-OC )=12(c -b ). 12.已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E ,F 分别为BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出DB 1→,DE →,DF →的坐标.考点 空间向量的正交分解 题点 空间向量的坐标解 设x ,y ,z 轴的单位向量分别为e 1,e 2,e 3, 其方向与各轴的正方向相同,则DB 1→=DA →+AB →+BB 1→=2e 1+2e 2+2e 3,∴DB 1→=(2,2,2).∵DE →=DA →+AB →+BE →=2e 1+2e 2+e 3, ∴DE →=(2,2,1).∵DF →=e 2,∴DF →=(0,1,0).13.在平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1. (1)证明:A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z 的值. 考点 空间向量基底的概念 题点 空间向量的基本定理 (1)证明 因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→=⎝⎛⎭⎫AB →+13AA 1→+⎝⎛⎭⎫AD →+23AA 1→=(AB →+BE →)+(AD →+DF →)=AE →+AF →, 所以A ,E ,C 1,F 四点共面.(2)解 因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.四、探究与拓展14.已知在四面体ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,AC ,BD 的中点分别为E ,F ,则EF →=________.考点 空间向量基底的概念 题点 空间向量基本定理 答案 3a +3b -5c解析 如图所示,取BC 的中点G ,连接EG ,FG ,则EF →=GF →-GE →=12CD →-12BA →=12CD →+12AB →=12(5a +6b -8c )+12(a -2c )=3a +3b -5c . 15.在棱长为1的正方体ABCD -A ′B ′C ′D ′中,E ,F ,G 分别为棱DD ′,D ′C ′,BC 的中点,以{AB →,AD →,AA ′→}为基底,求下列向量的坐标.(1)AE →,AG →,AF →; (2)EF →,EG →,DG →.考点 空间向量的正交分解 题点 空间向量的坐标解 (1)AE →=AD →+DE →=AD →+12DD ′→=AD →+12AA ′→=⎝⎛⎭⎫0,1,12,AG →=AB →+BG →=AB →+12AD →=⎝⎛⎭⎫1,12,0,AF →=AA ′→+A ′D ′→+D ′F →=AA ′→+AD →+12AB →=⎝⎛⎭⎫12,1,1. (2)EF →=AF →-AE →=⎝⎛⎭⎫AA ′→+AD →+12AB →-⎝⎛⎭⎫AD →+12AA ′→=12AA ′→+12AB →=⎝⎛⎭⎫12,0,12, EG →=AG →-AE →=⎝⎛⎭⎫AB →+12AD →-⎝⎛⎭⎫AD →+12AA ′→ =AB →-12AD →-12AA ′→=⎝⎛⎭⎫1,-12,-12, DG →=AG →-AD →=AB →+12AD →-AD →=AB →-12AD →=⎝⎛⎭⎫1,-12,0.。
(人教版)高中数学选修2-1课件:第3章 空间向量与立体几何3.1.2
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.如图,两个全等的正方形ABCD和ABEF所在平面交于 AB,AM=FN.求证:MN∥ 平面BCE.
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-1
到实数λ,使a=λb成立,或充分利用空间向量的运算法则,结
合具体图形,通过化简、计算得出a=λb,从而得到a∥b.
(2)a∥b表示a与b所在的直线平行或重合两种情况.
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-1
第三章 空间向量与立体几何
合作探究 课堂互动
高效测评 知能提升
(1)关于向量共面的几点认识
①共面向量不一定在同一平面内,但可以平移到同一平
面内;
②空间任意的两个向量都是共面的;
③共面向量定理及其推论可以用于解决空间中四点共面
的问题.
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
【精品】高二数学选修2-1空间向量与立体几何知识点及例题精讲
2018-2019学年高二数学选修2-1空间向量与立体几何知识点及例题精讲一、知识点总结1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b=+=+;BA OA OB a b=-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作ba //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x y x 其中 (4)与a共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p,存在一个唯一的有序实数组,,x y z ,使p x a y b z =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
【尚择优选】最新高中数学选修2-1《空间向量与立体几何》知识点讲义.doc
第三章空间向量与立体几何一、坐标运算()()111222,,,,,a x y z b x y z ==()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则 二、共线向量定理(),0,=.a b b a b a b λλ≠←−−→∃充要对于使 三、共面向量定理,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点()()()11,1.P A B C AP x AB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性、、、四点共面,,,,令()()()1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理{},,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.七、立体几何中的向量方法121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为 11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥八、角、距离()1θ异面直线的夹角,cos cos ,AB CDAB CD AB CDθ⋅==⋅则 ()2,θ线与面的夹角sin cos a na nθα⋅==⋅则()3,θ二面角 1212cos cos n n n n θα⋅==⋅则 θ说明:只能由已知图观察锐钝. ()4,d 点到平面的距离cos PA n d PA n θ⋅=⋅=则cos cos d PA n PA n PA nd PA nθθ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。
(人教)高中数学选修2-1课件:第3章空间向量与立体几何3.1.3
•3.1空间向量及其运算•3.1.3空间向量的数量积运算自主学习新知突破目标导航•1.掌握空间向量的数量积的概念、有关简单性质以及数量积运算的运算律.•2.能运用向量的数量积,判断向量的共线与垂直,并用于证明两直线平行与垂直.入门答疑•为了帮助地震灾区重建家园,某施工队需要移动一个大型均匀的正三角形面的钢筋混凝土构件,已知它的质量为5 000 kg,在它的顶点处分别受大小相同的力件,F2,耳并且每两个力之间的夹角都是60°.(其中g=10N/kg)•[问题1]向量“和一巧夹角为多少?•[提示1]120°.•[问题2]每个力最小为多少时,才能提起这+41汩宦丄土皿片o块混凝土构件?[提示2]每个力大小为IFol,合力为IFI, .•.IFI2=(F1+F2+F3)-(F1+F2+F3)=(F1+F2+F3)2=6IF O I2・•・ \F\=y[6\F0\走进教材空间向量的夹角互相垂直日丄b•如果〈°,方〉=,那么向量a, b ___________ 记作❹思维启迪〕对空间向量夹角的认识⑴通常规定OW〈a, b) W TT,这样两个向量的夹角是唯一确定的,且〈a, b) = {b, a}.(2)作向量。
与〃的夹角时,必须使力,亦为同起点的向量,例如:在正四面体ABCD中,<AB, AC) =60°,而〈赢BC) =120°.空间向量的数量积❶思维启迪〕•对空间向量的数量积的理解-(1)数量积是数量(数值),可以为正,可以为负,也可以为零;•(2>力二Ooa丄〃(a , 〃为非零向量);•(3)向量a , 〃的夹角(a f b)与点的坐标(a z 6不同;•(4)a力的几何意义:a与方的数量积等于a的长度⑷与〃在a的方向上的投影血cos 0的乘积・自主练习1.下列各命题中,不正确的命题的个数为(②加(加)•方=(mX)a・b(m,久W R);③a・(b+c) = e+c)・a;®(Tb—lra.A・4 B・3C・2D・1•解析:•答案:命题①②③正确/④不正确•2・在如图所示的正方体中,下列各对向量的夹角为135°的是()A.历与dZB.石与cFC.布与4彷D.旋与B G解析:<AB, A f C f ) = {AB, AC) =45°,〉=180°- <AB, AC) =135°,〈赢4'力〉=〈赢AD) =90°,〈赢B f~A f〉= 180°・答案:B7T 7T3.设a丄b,〈a, c} =y {b, c) =g,且lal=l, I方1=2, lcl = 3,则向量a+b+c的模是 __________________ .解析:因为la+b+cF = (a+b+c)2= \a\2-\-\b\2~\~\c\2-\-2(a-b~\~a-c-\~b-c)( 1 、问)= l+4+9 + 2^0+lX3X-+2X3X^j= 17 + 6^3, 所以la+b+cl =寸17+6寸§.答案:寸17+6帝• 4・如图所示,平行六面^ABCD-A i B i C i D i 中,AB=l, AD=2, AA] = 3, ABAD—90° ,/BAA]=z£>AAi=60° ,求AC】的长.解析:因^AC X=AB+M)+AA X,所以AC\=(^+AD+AA^=葫+必+荷+2(ikib+葫萬+巫彼). 因为ZBAD=90°, ZBAAi = ZDAAi = 60。
高二数学人教版A版选修2-1课件:第三章 空间向量与立体几何 3.1.3
解析答
― → ― → ― → (2)| OA + OB + OC |.
解 = =
― → ― → ― → | OA + OB + OC | →+― →+― →2 ― OA OB OC →2 ― →2 ― →2 ― →― → ― →― → ― →― → OA + OB + OC +2 OA · OB + OB · OC + OA · OC
= 12+12+12+21×1×cos 60° ×3= 6.
解析答
类型二
例2
利用数量积求夹角
BB1⊥平面ABC,且△ABC是∠B=90°的等腰直角三角形,▱ABB1A1、▱BB1C1C的对角线都分
别相互垂直且相等,若AB=a,求异面直线BA1与AC所成的角.
反思与
解析答
跟踪训练2
且l⊥OA.
其中正确的有(
A.①② C.③④
)
D B.②③ D.②④
解析 结合向量的数量积运算律,只有②④正确.
解析答
1
2 3 4 5
― → ― → ― → 2.已知正方体 ABCD-A′B′C′D′的棱长为 a,设 AB =a,AD =b, AA′ ― ― → ― ― ― → =c,则〈A′B, B′D ′〉等于( A.30° C.90° B.60°
当堂训练
问题导学 知识点一 空间向量数量积的概念
思考
如图所示,在空间四边形 OABC 中,OA=8,
AB=6,AC=4,BC=5,∠OAC=45° ,∠OAB=60° , ― → ― → 类比平面向量有关运算,如何求向量 OA 与 BC 的数量 积?并总结求两个向量数量积的方法.
梳理
(1)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b.
高二数学选修2-1课件第三章 空间向量与立体几何 第7课时 空间向量在立体几何中的综合应用
3
4.在正方体 ABCD-A1B1C1D1 中,E,F 分别是棱 AB,BC 的中点,试在棱 BB1 上找一点 M,使得 D1M⊥平面 EFB1.
【解析】如图,以 D 为坐标原点,建立空间直角坐标系,若 D1M ⊥平面 EFB1,
则只需向量������1������是平面 EFB1 的法向量即可.设正方体棱长为 2,则 E(2,1,0),F(1,2,0),B1(2,2,2),D1(0,0,2),设 M(2,2,z),则 ������1������=(2,2,z-2),������������1=(0,1,2),������������=(-1,1,0).
(2)平面法向量的求法:设平面的法向量 n=(x,y,z),利用 n 与 平面内的两个不共线向量 a,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解(通常在令 x、y、z 中非零的数为 1, 得到一组解),即为平面的一个法向量.
预学 2:空间中平行与垂直关系的判断
设直线 l1、l2 的方向向量分别为 a、b,平面α、β的法向量 分别为 m、n,则
探究 1:向量在柱体模型中的应用
【例 1】如图,在长方体 ABCD-A1B1C1D1 中,AA1=AD=1,E 为 CD 的 中点.
(1)求证:B1E⊥AD1. (2)在棱 AA1 上是否存在一点 P,使得 DP∥平面 B1AE?若存在, 求出 AP 的长;若不存在,说明理由.
【方法指导】(1)对于长方体来说最简便的方法就是建立空 间直角坐标系利用向量解答;(2)通过求解平面的法向量,利用公 式解答.
想一想:已知正方形 ABCD 的边长为 4,CG⊥平面 ABCD,CG=2,E,F 分别是 AB,AD 的中点,则点 C 到平面 GEF 的距离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 空间向量与立体几何
一、坐标运算
()()
111222,,,,,a x y z b x y z ==r r ()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅r r r r r r r 则
二、共线向量定理
(),0,=.a b b a b a b λλ≠←−−→∃r r r r r r r r P 充要对于使
三、共面向量定理
,,.a b p a b x y p xa yb ←−−
→∃=+r r u r r r u r r r 充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←−−−→+=u u u r u u u r u u u r 充要条件四、对空间任意一点,若则三点共线
,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=u u u r u u u r u u u r u u u r 充要五、对空间异于、、、四点的任意一点,若若、、、四点
()()()11,1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=Q u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 证明:①必要性
、、、四点共面,,,,令()()()
1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴Q u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ②充分性,,、、、四点共面.
六、空间向量基本定理
{},,a b c p x y z p xa yb zc a b c a b c ∃r r r u r u r r r r r r r r r r 若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.
七、立体几何中的向量方法
121212,,.n n l l v v αβu r u u r u r u u r 设平面和的法向量为和直线和的方向向量为 11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥u r u r P u r u r P u r u u r P P u r u u r u r u u r P P u r u u r ①或②若③④⑤⑥
八、角、距离
()1θ异面直线的夹角,
cos cos ,AB CD AB CD AB CD θ⋅==⋅u u u r u u u r u u u r u u u r u u u r u u u r 则
()2,θ线与面的夹角
sin cos a n a n θα⋅==⋅r r r r 则
()3,θ二面角
1212cos cos n n n n θα⋅==⋅u r u u r u r u u r 则
θ说明:只能由已知图观察锐钝.
()4,d 点到平面的距离
cos PA n d PA n θ⋅=⋅=u u u r r u u u r r 则
cos cos d PA n PA n PA n d PA n θ
θ⋅=⋅⋅⋅∴=⋅=u u u r r u u u r r Q u u u r r u u u r r 说明:由图可知为在方向上的投影的绝对值,。