碱裂解法提取质粒-配方,最好的说明
碱裂解法质粒小量提取_文档
一碱裂解法质粒小量提取试验原理:碱裂解法是较常用的提取的方法。
其优点是收获率高,适于多数的菌株,所得产物经纯化后可满足多数的DNA重组操作。
十二烷基磺进行质粒的小量制备。
十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性。
用SDS处理细菌后,会导致细菌细胞破裂,释放出质粒DNA 和染色体DNA,两种DNA在强碱环境都会变性。
由于质粒和主染色体的拓扑结构不同,变性时前者虽然两条链分离,却仍然缠绕在一起不分开;但后者完全变性分甚至出现断裂,因此,当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值恢复较低的近中性水平时,质粒的两条小分子单链可迅速复性恢复双链结构,但是主染色体DNA则难以复性。
在离心时,大部分主染色体与细胞碎片,杂质等缠绕一起被沉淀,而可溶性的质粒DNA留在上清夜中。
再由异丙醇沉淀、乙醇洗涤,可得到纯化的质粒DNA。
碱裂解法提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析等。
仪器与主要试剂主要试剂:溶液I:50 mmol/L葡萄糖10 mmol/L EDTA25 mmol/L Tris-HCl (pH 8.0)溶液II:200 mmol/L NaOH 1% SDS溶液III:3 mol/L NaAc (pH4.8)溶液酚氯仿异丙醇(25:24:1)95%乙醇%70乙醇TE缓冲液:10 mmol/L Tris-HCl ,pH 7.5 1 mmol/L EDTARNaseA方法:1.将大肠杆菌菌落挑取一环接种在含有2毫升加入抗菌素的LB液体培养基的10毫升试管里,37℃振培过夜,16~18小时2.转移以上菌液1.5毫升于EP管中,8000rpm离心30秒3.小心去除上清,并用吸水纸吸干残余液体,再将沉淀物在振荡器上振匀4.加入溶液I 100μl,盖紧EP管盖,翻转数次,冰上放置10分钟5.加入溶液II 200μl,温和翻转EP管5次(可观察到溶液逐步由混浊变为透明),冰上放置5分钟6.加入溶液III 150μl,将EP管盖紧后累累来回翻转23次,混匀后冰上放置20分钟7.12000rpm离心15分钟8.将上清转移到另一个EP管中(吸取时不可吸入底部的沉淀)。
质粒提取总结
碱裂解法抽提质粒原理溶液I,50 mM葡萄糖 /25 mM Tris-Cl / 10 mM EDTA,pH ;(溶菌酶:使细胞壁裂解;RNase:将裂解完的RNA去除,防止RNA污染)溶液II, N NaOH / 1% SDS;溶液III,3M醋酸钾 / 2 M醋酸。
溶液I的作用:①任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。
②50mM葡萄糖:加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
所以说溶液I中葡萄糖是可缺的。
③EDTA:EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性和抑制微生物生长。
在溶液I中加入高达10 mM的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢只要用等体积的水,或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
溶液II:这是用新鲜的 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH稀释制备的NaOH,是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
用了不新鲜的 N NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒。
如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。
碱裂解法提取质粒
碱裂解法质粒提取的原理碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。
下面是该法的提取原理:碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。
溶液I的作用任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
所以说溶液I中葡萄糖是可缺的。
那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
溶液II的作用这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
碱裂解发制备质粒DNA原理
碱裂解发制备质粒DNA原理碱裂解法是一种常用的制备质粒DNA的方法,其原理是通过使用碱性溶液将细菌细胞膜和核酸中的蛋白质进行裂解,从而分离出质粒DNA。
下面将详细介绍碱裂解法的原理和步骤。
碱裂解法的原理是利用强碱溶液(如NaOH或KOH)对细菌细胞进行裂解,同时可去除细胞膜及其上的蛋白质,使质粒DNA从细胞内部释放出来。
此外,碱性环境可以使DNA表现为单链结构,这使得DNA与其他形式的核酸(如RNA和DNA-蛋白复合物)有所区别,有助于后续的提取和纯化。
制备质粒DNA的碱裂解法的步骤如下:1.菌液培养:选取含有质粒的细菌菌株,在适宜的培养基中培养至合适的生长期。
2.收获细菌细胞:采用离心等方法将细菌细胞从菌液中收集。
通常使用蒸馏水进行细菌菌液的稀释,以确保细菌能够在蒸馏水中悬浮均匀。
3.清洗细菌细胞:使用理化方法(如洗涤剂、EDTA、乙醇等)将细菌细胞洗净。
这一步骤的目的是去除掉附着在细菌细胞表面的杂质,减少对后续步骤的影响。
4.裂解细菌细胞:将清洗后的细菌细胞悬浮在碱性溶液(如0.2MNaOH)中,使其完全裂解。
碱性溶液的作用是破坏菌细胞膜结构,去除蛋白质,并使DNA变为单链结构。
5. 中和反应:在细菌细胞裂解后,添加中和剂(如2 M Tris-HCl, pH 7.4),将溶液的pH值迅速调整到酸性,以中和碱性溶液中的氢氧根离子。
6.沉淀DNA:通过离心将细菌细胞碎片和其他残余物沉淀下来,将上清液(含有质粒DNA)收集。
7.聚集DNA:通过旋转浓缩、加入盐类或乙醇等方法,将质粒DNA聚集成颗粒状沉淀。
8. 洗涤和纯化:使用缓冲液(如低浓度Tris-HCl或盐溶液)洗涤和纯化质粒DNA,去除残余的盐和杂质。
9.确定DNA浓度和纯度:通过分光光度法或凝胶电泳等方法,测定质粒DNA的浓度和纯度,以确定提取的质粒DNA是否适合下游实验。
总之,碱裂解法通过利用强碱溶液裂解细菌细胞,去除蛋白质,使质粒DNA释放出来,并通过离心、沉淀、洗涤和纯化等步骤,得到高纯度的质粒DNA。
基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)
(2) 挑选单菌落,在无菌条件下放入5 ml LB液体培养基中 (100 g /ml氨苄青霉素),200-300 rpm,37℃过夜培养。 (3) 取1.5 ml菌液(其余菌液加入25%的灭菌甘油,放入对 应编号的1.5 ml离心管中,-70℃ 下作菌种保存),5000 g离心5 min。 (4) 弃上清夜,加入100 l预冷的溶液I,悬浮沉淀,室温 放 置5 min。 (5) 加入200 l 新鲜的溶液II,边加边震荡,但不能剧烈, 冰上放置5 min。 (6) 加入75 l溶液III,震荡混匀,冰上放置5 min。 (7) 12000 g 离心5 min。 (8) 取上清液,加入两倍体积的预冷无水乙醇,12000 g离 心10 min。 (9) 用1 ml 70%的乙醇洗涤沉淀,空气中放置3-5 min。 (10) 用30-50 l TE溶解,用紫外分光光度计进行DNA含量 测定,EB琼脂糖(1.4%)凝胶电泳分析。
实验六 质粒DNA的提取(碱裂解法)及酶分析
(1) 溶液配制: 溶液 I 50 mmol/L 葡萄糖 25 mmol/L Tris-Cl (pH 8.0) 10 mmol/L EDTA (pH 8.0) 溶液 II 0.2 mol/L NaOH 0.5% SDS 溶液 III 3 mol/L KAc (用冰醋酸调 pH值至5.0)
质粒DNA的酶切分析参照相关酶的说明书 操作步骤进行
质粒DNA的提取碱裂解法
质粒DNA的提取(碱裂解法)实验原理:碱裂解法提取质粒利用的是共价闭合环状质粒DNA与线状的染色体DNA片段在拓扑学上的差异来分离它们。
在pH 值介于12.0-12.5这个狭窄的范围内,线状的DNA双螺旋结构解开变性,在这样的条件下,共价闭环质粒DNA的氢键虽然断裂,但两条互补链彼此依然相互盘绕而紧密地结合在一起。
当加入pH4.8的醋酸钾高盐缓冲液使pH降低后,共价闭合环状的质粒DNA的两条互补链迅速而准确地复性,而线状的染色体DNA的两条互补链彼此已完全分开,不能迅速而准确地复性,它们缠绕形成网状结构。
通过离心,染色体DNA 与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,而质粒DNA却留在上清液中。
提取步骤:1.吸取1.5mL菌液于1.5mL离心管中,4℃下12000rpm离心2min,吸干上清液,使细菌沉淀尽可能干燥2.加入100μLSolutionⅠ,枪头充分打匀,使细胞重新悬浮。
此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率3.加入200μL新配制的SolutionⅡ,轻柔颠倒混匀(千万不要振荡),冰上放置至清亮(小于5min)。
这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
4.加入150μL solutionⅢ,颠倒混匀(温和振荡10秒),使溶液Ⅲ在粘稠的细菌裂解物中分散均匀冰浴10min,使杂质充分沉淀5.4℃下12000rpm离心15min,小心将上清转至新的1.5mL离心管中6.加入6μL 10μgl/μL的RaseA,混匀,37℃温浴30min。
7.等体积TriS饱和酚:氯仿:异戊醇(25:24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中8.等体积氯仿:异戊醇(24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中9.加入2.5倍体积的冰冻无水乙醇,冰浴0.5-1h,沉淀双链 DNA。
大肠杆菌质粒提取 碱裂解法
大肠杆菌质粒提取碱裂解法大肠杆菌质粒提取是分子生物学实验中常用的技术之一,它能够从大肠杆菌中提取到质粒DNA,为后续的克隆、测序、转染等实验提供材料基础。
下面将介绍一种常用的大肠杆菌质粒提取方法——碱裂解法。
碱裂解法是一种常用的大肠杆菌质粒提取方法,它能够高效地将细菌细胞壁溶解,并释放出其中的质粒DNA。
下面将详细介绍碱裂解法的步骤。
1.准备实验所需试剂和设备。
包括缓冲液(Tris-EDTA缓冲液)、碱裂解液(含有SDS和NaOH)、中和液(含有醋酸)、平衡液(含有大量的乙酸和等体积的酸化乙醇)等。
此外,还需要离心机、恒温槽、加热器等设备。
2.培养大肠杆菌。
首先,在LB寒天平板上点取克隆菌落,放到含有LB培养基的离心管中,经过过夜培养,培养到适合的生长状态。
3.收获大肠杆菌菌落。
用吸管将培养液吸入离心管中,然后进行高速离心,使大肠杆菌菌落沉淀在离心管底部。
4.溶菌。
将上述步骤中得到的菌落沉淀用缓冲液洗涤,去掉多余培养基;然后加入碱裂解液,充分混匀,孵育在恒温槽中。
5.中和。
将中和液加入上述混匀的细菌液中,充分混匀,使pH值迅速下降,将碱性液体中的DNA中和。
6.离心。
将上述混合液进行高速离心,使细胞碎片和DNA沉淀到离心管底部。
7.除去上清。
将上述沉淀中的上清液去掉,注意不要损伤沉淀。
8.沉淀洗涤。
用平衡液洗涤沉淀,去除杂质和残留的碱性液体。
9.沉淀溶解。
用适量的TE溶解沉淀,使DNA溶解在缓冲液中,用于后续实验。
以上就是碱裂解法的基本步骤。
此外,需要注意的是,大肠杆菌质粒提取过程中需要严格控制实验条件,如温度、时间和离心力度等,以保证提取的质粒DNA质量和纯度。
实验中还需要避免DNA的酶降解,应尽量避免长时间的酶处理等。
总结起来,碱裂解法是一种简单有效的大肠杆菌质粒提取方法,它能够高效地提取到质粒DNA,为后续的实验提供了重要的基础材料。
不过在实验操作过程中需要严格控制条件,以保证提取到的质粒DNA 质量和纯度,从而保证后续实验的可靠性。
碱裂解法提取质粒DNA
葡萄糖增稠,使悬浮后的大肠杆菌不会快速沉积到管子的底部;EDTA 抑制DNase的活性
这一步溶液中还可以加入RNase,不受EDTA影响,并且可以在后续步骤中被除去
溶液Ⅱ 0.2M NaOH / 1% SDS
�
破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
加入溶液Ⅱ之后必须温柔混合,不然基因组DNA会物理断裂;
停留的时间不能过长,因为强碱性条件下基因组DNA会慢慢化学断裂
溶液Ⅲ 3M 醋酸钾 / 2M 醋酸
这一步的K置换了SDS(十二烷基磺酸钠)中的Na,得到PDS(十二烷基磺酸钾)沉淀;
SDS易与蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀
自然就将绝大部分蛋白质也沉淀了,同时基因组DNA也被PDDNA时,多数情况下能看到三条带,按电泳速度由快到慢排序,
分别是 超螺旋带、开环带 和 复制中间体带(即没有复制完全的两个质粒连在了一起)。
碱裂解法从大肠杆菌制备质粒详细原理
碱裂解法从大肠杆菌制备质粒碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。
每个曾经用碱法抽提过质粒朋友,希望你看本文后能有所收获。
为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。
让我们先来看看溶液I的作用。
任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
所以说溶液I中葡萄糖是可缺的。
那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10 mM 的ED TA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH 稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
质粒dna的碱法大量制备,实验报告
质粒dna的碱法大量制备,实验报告大量制备质粒DNA方法SDS碱裂解法制备质粒DNA:大量制备用碱和SDS处理可以从大规模(500ml)的细菌培养物中分离质粒DNA,所获得的质粒则可通过柱层析或CsCl-溴化乙锭梯度离心进一步纯化:材料:缓冲液和溶液:碱裂解液I:50mmol/L 葡萄糖25mmol/L Tris-HCl (pH8.0)10mmol/L EDTA (pH8.0)(溶液I一次可配制100ml,在15psi[1.05kg/cm2]压力下蒸汽灭菌15min,保存于4摄氏度。
)碱裂解液II:0.2 N NaOH (从10N贮存液中现用稀释)1% (m/V)SDS(溶液II要现用现配,室温下使用)碱裂解液III:5mol/L 乙酸钾60ml冰乙酸11.5ml双蒸水(去离子水)28.5ml 所配成的溶液中钾的浓度为3mol/L,乙酸根的浓度为5mol/L。
保存于4摄氏度,用时置于冰浴中。
)另需:乙醇异丙醇STETE(pH8.0)溶菌酶(10mg/ml)现在开始实验:细胞的制备:1. 挑取转化细菌的单菌落,接种到30ml含适当抗生素的培养基中。
注:a. 试管的体积应该至少比细菌培养物的体积大4倍。
b. 试管不宜盖的太紧c. 应在剧烈振摇下温育2. 在适当的温度和摇速下培养菌液直至对数生长期晚期(OD600约为0.6)。
3. 在含500mlLB、YT或Terrific培养液(预热到37摄氏度)及适当抗生素的烧瓶(2L)中接种25ml对数生长期晚期的菌液,将此培养液在37摄氏度剧烈振摇(300r/min)培养约2.5小时。
注:最后菌液的OD600值应为0.4。
由于不同菌株的生长速度不同,可稍微延长或缩短培养时间,使最终的OD值为0.4。
4. 若质粒为低或中拷贝数的松弛型质粒,在培养液中添加2.5ml 浓度为34mg/ml的氯霉素,使其终浓度为170微克/ml。
注:对于高拷贝数的质粒不需要添加氯霉素。
碱裂解法提取质粒DNA
碱裂解法提取质粒DNA溶液 I : 50 mM Glu / 25 mM Tris-CI / 10 mM EDTA (pH 8.0);重悬菌体,供应缓冲环境。
(pH 很重要)。
葡萄糖:最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部,增加粘稠度,削减 摇摆时对DNA 的机械剪切力。
如缺了葡萄糖对质粒的抽提本身而言,几乎没有任何影响。
所以 说溶液I 中葡萄糖是可缺的。
EDTA :它是Ca2+和Mg2+等二价金属离子的螯合剂,在分子生物学试剂中的主要作用是抑制 DNase 的活性和抑制微生物生长。
在溶液1中加入高达10 mM 的EDTA,就是要把E.coli 细胞中 的全部二价金属离子都螯合掉。
若不加EDTA,只要是在短时间里完成质粒抽提,也不怕DNA 会快速被降解,由于最终溶解质粒的TE 缓冲液中有EDTA 。
假如哪天你手上正好缺了溶液I,只要用等体积的水,或LB 培育基来悬浮菌体就可以了。
留 意菌体肯定要悬浮匀称,不能有结块。
NaOH :用新奇的NaOH,是为了保证NaOH 没有汲取空气中的CO2而减弱了碱性。
裂解细 胞的主要是碱,而不是SDS,所以才叫碱法抽提。
NaOH 是最佳的溶解细胞的试剂,不管是大肠 杆菌还是哺乳动物细胞,遇到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer (双 层膜)结构向micelle (微囊)结构的相变化所导致。
用了不新奇的NaOH,即便有SDS 也无法有 效溶解大肠杆菌,自然就难高效率抽提得到质粒。
只用SDS 也能抽提得到少量质粒,由于SDS 也是弱碱。
加SDS 是为下一步操作做铺垫。
留意:一,时间不能过长,在这样的碱性条件下基因组DNA 片断会渐渐断裂;二,必需温 顺混合,不然基因组DNA 也会断裂。
溶液III : 3M KAc∕2M HAc o 加入后就会有大量的沉淀消失,与SDS 的加入有关系。
假如在溶液II 中不加SDS 时也会有很少量的沉淀,明显是盐析和酸变性沉淀出来的蛋白质。
实验一-碱裂解法提取质粒DNA
实验一-碱裂解法提取质粒DNA
碱裂解法是一种常用的质粒DNA提取方法。
下面是进行碱裂
解法提取质粒DNA的实验步骤:
1. 培养细胞:选择所需的质粒含有目标基因的细菌,如大肠杆菌等,并在适当的培养基中培养细菌,使其达到对数生长期。
2. 收集细菌:将培养好的细菌菌液转移到离心管中,并进行离心,以沉淀细菌。
3. 溶解细菌:加入一定浓度的碱液(例如0.2N NaOH)使细
菌溶解。
通常使用细菌菌液总量的1/5体积的碱液,并轻轻摇
晃混合。
4. 添加中和液:将等体积的中和液(例如3M乙酸酸化乙酸钠
溶液)加入到溶解好的细菌溶液中,并迅速而轻轻地混合。
5. 离心:将混合液进行离心,以除去沉淀的细菌残渣和碱液。
6. 提取DNA:将上一步离心得到的上清液转移至新的离心管中,加入等体积的冷乙醇,并轻轻摇晃,使DNA沉淀。
7. 沉淀DNA:进行高速离心,使DNA沉淀。
8. 弃去上清液:弃去上清液,保留沉淀的DNA。
9. 洗涤DNA:使用70%乙醇洗涤沉淀的DNA,以去除残留的盐类和碱液。
10. 干燥DNA:使用洗涤干净的乙醇或空气干燥DNA沉淀。
11. 溶解DNA:用适当的缓冲液(如TE缓冲液)溶解DNA。
12. 储存DNA:将溶解好的DNA储存于适当的温度和条件下,用于后续实验。
质粒dna的提取方法
质粒dna的提取方法质粒DNA提取是分子生物学实验中非常常见的操作,用于从细菌中提取质粒DNA进行后续的实验分析。
下面我将介绍一种常用的质粒DNA提取方法——碱裂解法(alkaline lysis method),该方法简单、快速、成本低且适用于大规模提取。
实验原理:碱裂解法是利用碱性溶液来破坏细菌细胞壁和细胞膜,释放出其中的质粒DNA。
在碱性条件下,细菌细胞壁和细胞膜会被溶解,质粒DNA则在此过程中被保护在碱性溶液中。
接着,通过中和和沉淀步骤,可从碱性溶液中纯化出质粒DNA。
实验步骤:1. 首先,从含有目标质粒的细菌培养物中制备菌液。
将培养物转移到离心管中,以12000 rpm离心10分钟。
2. 弃去上清液,将菌体沉淀重悬于缓冲液中。
缓冲液的配制:用10 mM Tris-HCl缓冲溶液溶解10 mM EDTA(pH 8.0),并加入0.1 mg/mL的蛋白酶K。
3. 加入缓冲液至菌体重悬菌液中,混匀。
4. 加入等量的0.2 M NaOH-1% SDS(含SDS版本)或0.2 M NaOH-0.5% SDS (不含SDS版本),轻轻翻转混匀。
5. 在室温下孵育5-10分钟,将混合物中的碱裂解酶活化。
6. 加入等体积的3 M醋酸钠(pH 5.5)以中和混合物。
7. 在室温下孵育5-10分钟,使沉淀物凝结。
8. 离心上述混合物,12000 rpm,10分钟。
9. 弃去上清液,加入适量的75%乙醇洗涤沉淀。
10. 再次离心,弃去上清液。
11. 干燥质粒DNA沉淀,通常可以在室温下自然干燥,不要使用高温或吹风机等加热工具。
12. 使用适量的Tris-EDTA缓冲液(pH 8.0)溶解质粒DNA沉淀,以得到浓度适宜的质粒DNA溶液。
实验注意事项:1. 在实验操作过程中,尽量避免使用手部直接接触NaOH和SDS,以免引起刺激。
2. 防止质粒DNA受到外源DNA(例如基因组DNA)的污染,可在处理前使用DNase酶或RNase酶处理样品。
提取质粒--碱裂解法打印版
碱裂解法碱裂解液1组分浓度:25mM Tris-HCl(pH8.0),10mM EDTA,50mM glucose配制量:1L配制方法:1、量取下列溶液,置于1L烧杯中1M Tris-HCl(pH8.0) 25ml0.5M EDTA(pH8.0) 20ml20% glucose(1.11M) 45mlaH2O 910ml2、高温高压灭菌后,4℃保存3、使用前每50ml的碱裂解液1中加入2mlRNase A(20 ug/ml)1M Tris-HCl(pH8.0)配制量:1L配制方法:1、称量121.1g Tris 置于1L烧杯中2、加入约800ml的去离子水,充分搅拌溶解3、加入浓盐酸调节所需pH值pH 8.0 约 42ml4、定容至1L5、灭菌,室温保存注意:应使溶液冷却了再调pH值0.5M EDTA(pH8.0)配制量:1L配制方法:1、称取186.1gNa2EDTA.2H2O于1L烧杯中2、加入约800ml的去离子水,充分搅拌3、用NaOH调节pH至8.0(约20gNaOH)注意:pH至碱裂解液2组分浓度:200 mMNaOH,1%(w/v)SDS配制量:500 ml配制方法:1、量取下列溶液,置于500ml烧杯中50ml10% SDS 50ml2N NaOH 50ml2、加灭菌水定容至500ml,充分混匀3、室温保存,此溶液保存时间最好不要超过1个月注意:SDS易产生气泡,不要剧烈搅拌碱裂解液3组分浓度:3M KOAc,5M CH3COOH配制量:500ml配制方法:1、称量下列试剂,置于500ml烧杯中KOAc 147gCH3COOH 57.5 ml2、加入300ml去离子水后搅拌溶解3、加去离子水将溶液定容至500ml4、高温高压灭菌后,4℃保存Ⅰ1M Tris-HCl(pH 8.0)配制量:1L配制方法:1、称量121.1gTris置于1L烧杯中2、加入约800ml的去离子水,充分搅拌溶解3、加入浓盐酸调节所需的pH值Ph 8.0 约42ml4、定容至1L5、灭菌,室温保存应使溶液冷却了再调PH值0.5M EDTA(PH 8.0)配制量:1L配制方法:1、称取186.1gNa2EDTA.2H2O于1L烧杯中2、加入约800ml的去离子水,充分搅拌3、用NaOH调节pH至8.0(约20g NaOH)PH至8.0时,EDTA才能完全溶解4、加入去离子水,定容至1L5、适量分成小份,高温灭菌6、室温保存20%(w/v)glucose配制量:100ml方法:1、称取20g glucose置于100—200ml烧杯中,加入约80ml去离子水,搅拌溶解2、加去离子水定容至100ml3、灭菌,4℃保存Ⅱ2N NaOH配量:100ml方法:1、量取80ml去离子水于100-200ml塑料烧杯中2、称取8gNaOH小心加入烧杯中,边加边搅拌3、待NaOH完全溶解后,用去离子水将溶液定至100ml4、室温保存10% SDS(PH7.2)配制100ml方法:1、称取10gSDS于100-200ml烧杯中,加入约80ml去离子水,68℃加热溶解2、滴加浓HCl调至7.23、定容100ml,室温保存提取质粒注意事项:1、将菌种接种到LB培养基上(3ml),含适当培养基2、在离心管中加入1.5ml培养液,离心2min(12000改为15000rpm)3、倒去上清,重复2次,用枪吸去上清4、将菌沉淀重悬于100ul冰预冷的溶液Ⅰ,再涡旋搅拌剧烈振荡,室温放置5min5、加入200ul溶液Ⅱ,盖紧管口快速颠倒(勿振荡)ep管5次,充分混合后,充分混合内容物后,放在冰上4min6、加入150ul冰预冷溶液Ⅲ,盖紧管口,倒置振荡10s,将溶液Ⅲ分散均匀后,置于冰上3-5min,离心5min,12000rpm,取上清7、加入等量酚:氯仿:异戊醇25:24:1,12000rpm离心2min,取上清8、加入2倍体积冰无水乙醇,1/10NaOAc,冰箱放置30min(-20℃ 2小时以上,-80℃20-30min)以沉淀DNA9、4℃,12000rpm,5min离心(改为15000,8min)10、小心吸取上清,将离心管倒放在纸巾上,以使所有液体流出,并将附于管壁上的液滴除尽11、用1ml70%乙醇在4℃离心5min(12000rpm),去上清12、干燥30min(空气中),加入20ug(2ul)10mg/mlRNA酶和50ulTE,37℃反应1-3h,-20℃保存。
sds碱裂解法制备质粒dna
sds碱裂解法制备质粒dna
SDS碱裂解法是一种常用的质粒DNA提取方法。
该方法利用定量的SDS和NaOH对细菌细胞进行裂解,使DNA迅速释放。
接着,加入适当的中和缓冲液,使DNA回复其天然形态,并去除蛋白质等污染物。
最后,通过酒精沉淀法或硅胶柱层析法纯化DNA。
以下是该方法的具体步骤:
1.生长细菌
生长适量细菌菌株并收获细菌:可以选择不同种类、不同来源、不同
体积得到不同量的细菌。
2.裂解细胞壁
将细菌沉淀后加入缓冲液和SDS混合。
SDS能够破坏细菌的细胞膜,使细胞壁裂解,从而将DNA释放出来。
3.中和
加入NaOH将溶液pH值升高至12,使DNA形状发生改变,变得易于析出。
接着,加入Tris-HCl中和缓冲液降低pH值,恢复DNA天
然形态,并使DNA强度不受影响。
4.去除杂质
通过高速离心将DNA沉淀下来,将上清液与DNA分离。
可以采用氯仿提取法以去除蛋白质和其他杂质,专用的富集试剂和离心柱可做更细致的纯化。
5.精华DNA
通过酒精沉淀法或硅胶柱层析法纯化DNA。
酒精沉淀法适用于大量DNA纯化,但对于大片段、GC富集的DNA适用。
硅胶柱层析法适用于小规模、高质量、片段少的DNA纯化,但成本稍高,操作复杂。
总之,SDS碱裂解法是一种快速,简单的质粒DNA提取方法。
由于其便捷的操作和高质量的DNA回收率,它已被广泛应用于基因工程和分子生物学等领域。
碱裂解法提取质粒DNA
溶液I,50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾 / 2 M 醋酸一、试剂准备1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。
1M Tris-HCl (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O 至500ml。
在10 lbf/in2高压灭菌15min,贮存于4℃。
2. 溶液Ⅱ:0.2N NaOH,1% SDS。
2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。
使用前临时配置。
3. 溶液Ⅲ:醋酸钾(KAc)缓冲液,pH4.8。
5M KAc 300ml,冰醋酸57.5ml,加ddH2O至500ml。
4℃保存备用。
4. TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。
1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH2O至100ml。
15 lbf/in2高压湿热灭菌20min,4℃保存备用。
5.苯酚/氯仿/异戊醇(25:24:1)。
二、操作步骤1. 挑取LB固体培养基上生长的单菌落,接种于2.0ml LB(含相应抗生素)液体培养基中,37℃、250g振荡培养过夜(约12-14hr)。
2.取1.5ml培养物入微量离心管中,室温离心12000g×30S,弃上清,将离心管倒置,使液体尽可能流尽。
3.将细菌沉淀重悬于100μl预冷的溶液Ⅰ(50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0))中,剧烈振荡,使菌体分散混匀,(且不至于沉淀)。
4. 加200μl新鲜配制的溶液Ⅱ,颠倒数次混匀(不要剧烈振荡),并将离心管放置于冰上2-3min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。
革兰氏阳性菌质粒碱裂解法提取
革兰氏阳性菌质粒碱裂解法提取具体步骤:(1)将待检测菌株接种于3 mL LB或BHI培养基(含终浓度为170µg/mL的氯霉素)中,37℃培养过夜;(2)取1.5 mL上述菌液于2 mL离心管,12,000×g,离心0.5min,尽可能吸尽上清液,若菌体过少可重复一次;(3)加入1mL STE缓冲液(pH8.0),用旋涡振荡器充分悬浮菌体,再12,000×g,离心2min,尽可能吸尽上清液,重复1~2次以洗涤菌体;(4)加入150 µL冰预冷碱裂解液Ι,用旋涡振荡器充分悬浮菌体;然后,加入40 µL溶菌酶(10mg/mL),此时不得涡旋!上下颠倒离心管、混合均匀,然后37℃放置30~45min;(5)沿管壁加入300 µL现配碱裂解液Π,轻轻颠倒离心管4~ 5 次,混合均匀、不得涡旋,置于冰上5 min;(6)迅速加入200 µL冰预冷碱裂解液Ш, 轻轻颠倒离心管4~ 5 次, 混合均匀、不得涡旋,置于冰上3~5min;之后,12000×g,4℃离心8min(也可室温离心5 min);(7)用移液器将上清液转移至新的1.5 mL离心管中,加入1倍体积酚/氯仿(1:1)抽提,12,000×g离心5 min,重复操作一次;(8)移取上清液移至新的1.5 mL离心管中,加入1倍体积冰预冷无水乙醇和0.1倍体积3M 醋酸钠,室温沉淀10min(或4℃沉淀过夜),12,000×g离心5 min,尽量去掉酒精;(9)用0.5 mL冰预冷70%酒精洗DNA沉淀一次,12,000×g,4℃离心2 min,小心地吸去上清液,室温风干10 ~15 min;(10)加50µLTE缓冲液(含终浓度为50µg/mL的RNaseA酶,pH8.0)溶解DNA沉淀,-20℃保存。
试剂配制:(1)LB培养液:Tryptone 10 gYeast Extract 5 gNaCl 10g双蒸水定容至1000mL,高压灭菌后4℃保存。
质粒的小量提取(碱裂解法)
质粒的小量提取(碱裂解法)材料与设备E.coli 菌株;冷冻离心机,高压灭菌锅,恒温培养箱,超净工作台试剂:试剂与配制1)质粒DNA碱裂解法试剂:溶液I:葡萄糖50 mmol/LEDTANa2 10 mmol/LTris-HCl (pH8.0)25 mmol/L溶液II:(临用时新配制)(是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
)NaOH 0.4 mol/LSDS(w/v)2%0.4mol/L NaOH 和2% SDS(w/v)对半混匀即可。
溶液III: 5 mol/L 醋酸钾60 mL冰醋酸11.5 mLDDW 28.5 mL溶液I、III都须高压灭菌。
2) 氯仿:异戊醇=24:13) 无水乙醇;70%乙醇;异丙醇4) TE(pH8.0):10 mmol/L Tris-HCl, 1 mmol/L EDTA操作步骤:(1)取菌液1.5mL, 4000 rpm离心5min,弃上清。
(2)加入预冷的100μl 溶液I。
震荡混匀。
室温放置5min。
(3)加入200μl溶液II,盖紧管口,轻轻快速颠倒离心管3-5次(不要剧烈震荡), 冰浴放置5min。
(4)加入预冷的150μl 溶液III。
温和震荡混匀,冰浴5min。
(5)12000rpm离心5min。
(6)取400ul上清至另一干净的EP离心管中,加入400μl 氯仿:异戊醇,混匀。
12000rpm 离心5min。
(7)轻轻取350ul上清至另一干净的EP离心管中,加入700μl无水乙醇充分混匀后,室温静置沉淀5~10min。
(8)12000rpm离心5min,弃上清。
(9)用500μl 70%的乙醇漂洗沉淀1次,5000rpm离心5min。
(10)沉淀物自然干燥后加入30μl 含RNAase的TE(pH8.0),以溶解质粒DNA。
(11)电泳检测实验结果。
碱裂解法提取质粒DNA
碱裂解法
1、取1.5ml培养液倒入1.5ml离心管中,4℃下12000g离心30秒。
2、弃上清,将管倒置于卫生纸上数分钟,使液体流尽。
3、菌体沉淀重悬浮于100μl溶液Ⅰ中(需剧烈振荡),室温下放置5-10分钟。
4、加入新配制的溶液Ⅱ200μl,盖紧管口,快速温和颠倒离心管数次,以混匀内容物(千万不要振荡),冰浴5分钟。
5、加入150μl预冷的溶液Ⅲ,盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀,冰浴中5-10分钟,4℃下12000g离心5-10分钟。
6、上清液移入干净离心管中,加入等体积的酚/氯仿(1:1),振荡混匀,4℃下12000g离心5分钟。
7、将水相移入干净离心管中,加入2倍体积的无水乙醇,振荡混匀后置于-20℃冰箱中20分钟,然后4℃下12000g离心10分钟。
8、弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入1ml70%乙醇洗沉淀一次,4℃下12000g离心5-10分钟。
9、吸除上清液,将管倒置于卫生纸上使液体流尽,真空干燥10分钟或室温干燥。
10、将沉淀溶于20μl STE缓冲液(pH8.0,含20μg/mlRNaseA)中,储于-20℃冰箱中。
[注意]1.提取过程应尽量保持低温。
2.提取质粒DNA过程中除去蛋白很重要,采用酚/氯仿去除蛋白效果较单独用酚或氯仿好,要将蛋白尽量除干净需多次抽提。
3.沉淀DNA通常使用冰乙醇,在低温条件下放置时间稍长可使DNA沉淀完全。
沉淀DNA也可用异丙醇(一般使用等体积),且沉淀完全,速度快,但常把盐沉淀下来,所以多数还是用乙醇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碱裂解法提取质粒一、基本概念1.质粒:质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细胞器和细菌细胞中染色体以外的脱氧核糖核酸(DNA)分子。
现在习惯上用来专指细菌、酵母菌和放线菌等生物中染色体以外的DNA分子。
在基因工程中质粒常被用做基因的载体。
许多细菌除了染色体外,还有大量很小的环状DNA分子,这就是质粒(plasmid)。
质粒上常有抗生素的抗性基因,例如,四环素抗性基因或卡那霉素抗性基因等。
有些质粒称为附加体(episome),这类质粒能够整合进细菌的染色体,也能从整合位置上切离下来成为游离于染色体外的DNA分子。
目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA分子(简称cccDNA)。
细菌质粒的相对分子质量一般较小,约为细菌染色体的0.5%~3%。
根据相对分子质量的大小,大致上可以把质粒分成大小两类:较大一类的相对分子质量是40×106以上,较小一类的相对分子质量是10×106以下(少数质粒的相对分子质量介于两者之间)。
每个细胞中的质粒数主要决定于质粒本身的复制特性。
按照复制性质,可以把质粒分为两类:一类是严紧型质粒,当细胞染色体复制一次时,质粒也复制一次,每个细胞内只有1~2个质粒;另一类是松弛型质粒,当染色体复制停止后仍然能继续复制,每一个细胞内一般有20个左右质粒。
一般分子量较大的质粒属严紧型。
分子量较小的质粒属松弛型。
质粒的复制有时和它们的宿主细胞有关,某些质粒在大肠杆菌内的复制属严紧型,而在变形杆菌内则属松弛型。
在基因工程中,常用人工构建的质粒作为载体。
人工构建的质粒可以集多种有用的特征于一体,如含多种单一酶切位点、抗生素耐药性等。
常用的人工质粒运载体有pBR322、pSC101。
pBR322含有抗四环素基因(Tcr)和抗氨苄青霉素基因(Apr),并含有5种内切酶的单一切点。
如果将DNA片段插入EcoRI切点,不会影响两个抗生素基因的表达。
但是如果将DNA片段插入到HindIII、BamHI或SalI 切点,就会使抗四环素基因失活。
这时,含有DNA插入片段的pBR322将使宿主细菌抗氨苄青霉素,但对四环素敏感。
没有DNA插入片段的pBR322会使宿主细菌既抗氨苄青霉素又抗四环素,而没有pBR322质粒的细菌将对氨苄青霉素和四环素都敏感。
pSC101与pBR322相似,只是没有抗氨苄青霉素基因和PstI切点。
质粒运载体的最大插入片段约为10kb(kb表示为千碱基对)。
pGEX-4T1是pGEX载体系列的一种,载体图如图2所示,这类载体是溶蛋白表达、纯化和检测为一体的整合系统。
具有以下优点:有一个可以用化学物质(IPTG)诱导的高效表达的tac启动子;一个lacIq基因以便通用于所有E.coli 宿主中;一个AmpiR基因以便于阳性克隆的筛选。
pGEX-4T1载体示意图2.感受态细胞:重组DNA分子体外构建完成后,必须导入特定的宿主(受体)细胞,使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。
在原核生物中,转化是一个较普遍的现象,在细胞间转化是否发生,一方面取决于供体菌与受体菌两者在进化过程中的亲缘关系,另一方面还与受体菌是否处于一种感受状态有着很大的关系。
所谓的感受态,即指受体(或者宿主)最易接受外源DNA片段并实现其转化的一种生理状态,它是由受体菌的遗传性状所决定的,同时也受菌龄、外界环境因子的影响。
cAMP可以使感受态水平提高一万倍,而Ca2+也可大大促进转化的作用。
细胞的感受态一般出现在对数生长期,新鲜幼嫩的细胞是制备感受态细胞和进行成功转化的关键。
制备出的感受态细胞暂时不用时,可加入占总体积15%的无菌甘油或-70℃保存(有效期6个月)。
3.转化:是将异源DNA分子引入一细胞株系,使受体细胞获得新的遗传性状的一种手段,是基因工程等研究领域的基本实验技术。
进入细胞的DNA分子通过复制表达,才能实现遗传信息的转移,使受体细胞出现新的遗传性状。
转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变株。
转化的方法:化学的方法(热击法);使用化学试剂(如CaCl)制备的感受态细胞,通过热击处理将载体DNA分子导入受体细胞;电转化法:使用低盐缓冲液或水洗制备的感受态细胞,通过高压脉冲的作用将载体DNA分子导入受体细胞。
二、碱裂解法质粒提取的原理碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。
下面是该法的提取原理:碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;(N相当于g/L,是当量浓度)溶液III,3 M 醋酸钾 / 2 M 醋酸。
溶液I的作用任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入EDTA 是要把大肠杆菌细胞中的所有二价金属离子都螯合掉,菌体一定要悬浮均匀,不能有结块。
溶液II的作用这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH 稀释制备0.4N的NaOH,是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒。
如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。
很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。
有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。
这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
基因组DNA的断裂会带来麻烦。
溶液III的作用溶液III加入后就会有大量的沉淀,与SDS的加入有关系。
十二烷基硫酸钠(sodium dodecylsulfate)SDS遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。
溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。
大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。
这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS 并不与DNA分子结合。
2 M的醋酸是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。
基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。
所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。
很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。
NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。
溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。
酚/氯仿纯化不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。
这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。
酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。
至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。
回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。
这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。
高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。
如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。
得到的质粒样品一般用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。
质粒检测琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。
碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。
其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。
如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb的大肠杆菌基因组DNA的片断。
非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。