25个高数定理证明
高等数学公式、定理 最全版
![高等数学公式、定理 最全版](https://img.taocdn.com/s3/m/f1b1e35d0b4e767f5bcfce4d.png)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根高等数学定理大全第一章 函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
高数二定理、公式
![高数二定理、公式](https://img.taocdn.com/s3/m/e61e41532b160b4e767fcf65.png)
1、数列极限的存在准则定理1.3(两面夹准则)若数列{x n},{y n},{z n}满足以下条件:(1),(2),则定理1.4 若数列{x n}单调有界,则它必有极限。
2、数列极限的四则运算定理。
(1)(2),(3)当时,3、当x→x0时,函数f(x)的极限等于A的必要充分条件是这就是说:如果当x→x0时,函数f(x)的极限等于A,则必定有左、右极限都等于A。
反之,如果左、右极限都等于A,则必有。
4、函数极限的定理定理1.7(惟一性定理)如果存在,则极限值必定惟一。
定理1.8(两面夹定理)设函数在点的某个邻域内(可除外)满足条件:(1),(2),则有。
推论:(1)(2),(3)5、无穷小量的基本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。
性质3有限个无穷小量的乘积是无穷小量。
性质4无穷小量除以极限不为零的变量所得的商是无穷小量。
6、等价无穷小量代换定理:如果当时,均为无穷小量,又有且存在,则。
7、重要极限Ⅰ8、重要极限Ⅱ是指下面的公式:9、(2)(3)(4)10、函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。
定理1.12(四则运算)设函数f(x),g(x)在x0处均连续,则(1)f(x)±g(x)在x0处连续,(2)f(x)·g(x)在x0处连续(3)若g(x0)≠0,则在x0处连续。
定理1.13(复合函数的连续性)设函数u=g(x)在x= x0处连续,y=f(u)在u0=g(x0)处连续,则复合函数y=f[g(x)]在x= x0处连续。
定理1.14(反函数的连续性)设函数y=f(x)在某区间上连续,且严格单调增加(或严格单调减少),则它的反函数x=f-1(y)也在对应区间上连续,且严格单调增加(或严格单调减少)闭区间上连续函数的性质在闭区间[a,b]上连续的函数f(x),有以下几个基本性质,这些性质以后都要用到。
高数中的重要定理与公式及其证明
![高数中的重要定理与公式及其证明](https://img.taocdn.com/s3/m/562ee1a4bcd126fff6050b22.png)
高数中的重要定理与公式及其证明(一)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。
如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。
但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。
而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。
因此,在这方面可以有所取舍。
现将高数中需要掌握证明过程的公式定理总结如下。
这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。
1)常用的极限0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都是两个重要极限1lim(1)xx x e →+=与0sin lim1x xx→=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧。
证明:0ln(1)lim 1x x x →+=:由极限10lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x→+=。
01lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。
由于极限过程是0x →,此时也有0t →,因此有0lim11t t te →=-。
极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01lim1x x e x→-=。
01lim ln x x a a x →-=:利用对数恒等式得ln 0011lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011limln lim ln ln x a x a x x e e a a x x a →→--==。
高数高斯公式
![高数高斯公式](https://img.taocdn.com/s3/m/41baeb7d66ec102de2bd960590c69ec3d4bbdb7e.png)
R z
)dv
Pdydz
Qdzdx
Rdxdy
2、高斯公式的实质
(1)应用的条件
(2)物理意义 divAdv AdS
21
习题10 6
P174
高斯 ( Gauss ) 公 式25
1(2)(3)(4),2(3),3(2)
22
1
3
x2 y2 dxdy
Dxy
2
d
R
r rdr
2 R3
0
0
3
1
1
1
高斯
1 4 R3 2 R3 4 R3
( Gauss ) 公 式10
23
3
3
9
例 3 计算曲面积分
高斯
( x2 cos y2 cos z2 cos )ds,其中Σ为
( Gauss ) 公 式11
解 P ( y z)x, Q 0, x R x y,
1
3
z
o1
y
5
P y z, Q 0, R 0,
x
y
z
z
高斯 ( Gauss ) 公
式7
1
3
原式 ( y z)dxdydz
(利用柱面坐标得)
(r sin z)rdrddz
o1
y
x
2
1
3
0 d 0 rdr 0 (r sin z)dz
A( x, y, z) P( x, y, z)i Q( x, y, z) j R( x, y, z)k
沿场中某一有向曲面Σ的第二类曲面积分为
AdS Pdydz Qdzdx Rdxdy
如E为称电为场向强量 度,场单A位(时x,间y,通z)过向正的侧电穿通过量曲面I Σ的E通dS量.
常用高数定理
![常用高数定理](https://img.taocdn.com/s3/m/0acda5a40029bd64783e2c20.png)
高中常用高数定理1.拉格朗日中值定理:如果函数f(x)在[a,b]上连续可导,则至少存在一点c,使得f'(c)=[f(b)-f(a)]/(b-a)(a<c<b)初等作法:形如丨f(x2)-f(x1)丨≤k丨x2-x1丨(或者≥),求k取值范围。
解:丨f(x2)-f(x1)丨≤k丨x2-x1丨<=>丨〔f(x2)-f(x1)〕/(x2-x1)丨≤k当x2→x1时,丨〔f(x2)-f(x1)〕/(x2-x1)丨=f'(x1)≤k<=>丨f'(x)丨≤k i丨f(x2)-f(x1)丨≤k丨x2-x1丨(不妨设x2≥x1)<=>当f(x2)≥f(x1)时,f(x2)-kx2≤f(x1)-kx1当f(x1)≥f(x2)时,f(x2)+kx2≥f(x1)+kx1令h1(x)=f(x)-kx h2(x)=f(x)+kx由i知h1'(x)=f'(x)-k≤0 h2'(x)=〔丨f'(x)丨^2-k^2〕/h1'(x)≥0=>当f(x2)≥f(x1)时,f(x2)-kx2≤f(x1)-kx1当f(x1)≥f(x2)时,f(x2)+kx2≥f(x1)+k x1=>k≥丨f'(x)丨max例题:06年四川高考理数21已知函数f(x)=x^2+2/x+alnx,f(x)的导数为f'(x),对任意两个不相等的正数x1、x2证明:当a<4时,丨f'(x1)-f'(x2)丨>丨x1-x2丨解:丨f'(x1)-f'(x2)丨>丨x2-x1丨<=>丨〔f(x2)-f(x1)〕/(x2-x1)丨>1当x2→x1时,丨〔f’(x2)-f’(x1)〕/(x2-x1)丨=丨f'(x1)丨>1<=>丨f''(x1)丨>1 i =>a<4/x+x^2<4丨f'(x2)-f'(x1)丨>丨x2-x1丨(不妨设x2≥x1)<=>当f'(x2)≥f'(x1)时,f'(x2)-x2>f'(x1)-x1 ii当f'(x1)≥f'(x2)时,f'(x2)+kx2<f'(x1)+kx1 iii令h1(x)=f'(x)-x h2(x)=f'(x)+x由i知h1'(x)=f'(x)-1>0 h2'(x)=〔丨f'(x)丨^2-1〕/h1'(x)-1<0=>ii、iii成立=>丨f'(x2)-f'(x1)丨>丨x2-x1丨(当a<4时)2:单调有界原理若数列{an}递增(递减)有上界(下界),则数列{an}收敛,即单调有界数列必有极限。
25个高数定理证明
![25个高数定理证明](https://img.taocdn.com/s3/m/1c84874cbed5b9f3f90f1cef.png)
a
0
=
2
a 0
f ( x)dx,若f ( x)是偶函数
0 , 若f ( x)是偶函数
17 .设f(x)是以T为周期的连续函数,
证明对a,
a+T
f(x)dx =
T
f(x)dx =
a
0
T
2 -T
f(x)dx
2
18.设D是由y=f ( x)( f 0), x a, b和x a, x b, y 0
14.设yoz坐标面内的曲线L的方程为 F(y, z)=0,求其绕z轴旋转一周所得到 的旋转曲面的方程为F( x2+y2 , z)=0
15.设单连通区域D内P,Q 连续, y x
且满足 P Q,证明曲线积分 y x
L Pdx Qdy在D内与路径无关
16.设f ( x)在a, a上连续,
证明 a f ( x)dx a f ( x) f ( x) dx
3、 利用最大值,最小值证明不等式.
如,当x 0, )时,e x (1 x) 1
4、 常值不等式的证明转化成函数的单调性, 或函数不等式. 如,比较e , e的大小
二、等式的证明思路
1、如果结论是不带导数的等式,一般用零点定理考虑 如,F(x0)=0
2、已知结论中含导数: (A)是一个点的导数,如f( )=0,用罗尔定理考虑 (B)是二个点的导数,如f( )+g( )=0,用两次拉 格朗日中值定理或一 次 拉 格 朗 日 中 值 定 理, 一次柯西中值定理
3、 如果结论是函数值与某点的二阶导数的等式,
要用泰勒公式考虑.
如,结论是f
(b)
2
f
a
2
b
(b a)2 f (a)
高等数学重要基本定理的证明
![高等数学重要基本定理的证明](https://img.taocdn.com/s3/m/5f947b2eed630b1c59eeb586.png)
十、拐点的充分判别法及必要条件
十一、洛必达法则
十二、定积分的比较与定积分中值定理
十三、变限积分函数的连续性与可导性
十四、牛顿.莱布尼兹公式
十五、曲线积分与路径无关问题
高等数学重要基本定理的证明
一、连续函数的零点定理与介值定理
二、函数的可微性,可导性及连续性的关系
三、微分中值定理
四、导函数的性质——可导函数的间断点一定是第二类间断点
五ห้องสมุดไป่ตู้导函数的性质——导函数一定取中间值
六、函数单调性的充要判别法
七、函数极值点的充分判别法
八、一阶可导函数凹凸性的充要判别法
高等数学常用公式与定理总结
![高等数学常用公式与定理总结](https://img.taocdn.com/s3/m/609bed70777f5acfa1c7aa00b52acfc789eb9f9d.png)
高等数学常用公式与定理总结作为一门基础学科,高等数学在各个领域中发挥着重要的作用。
学习高等数学,掌握一些常用的公式与定理是非常必要的。
本文将对高等数学常用的公式与定理进行总结,以供读者参考和下载使用。
一、常用公式总结1. 三角函数公式- 正弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:a/sinA = b/sinB = c/sinC- 余弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)2. 导数与微分公式- 导数的链式法则:若y = f(u)和u = g(x)都可导,则复合函数y = f(g(x))的导数为:dy/dx = f'(g(x)) * g'(x)- 微分的乘法法则:若z = u * v,则dz = u * dv + v * du- 微分的复合法则:若z = f(u)且u = g(x)都可导,则复合函数z = f(g(x))的微分为:dz = f'(g(x)) * g'(x) * dx3. 级数公式- 幂级数:若幂级数∑(n=0,∞)an(x-a)^n的收敛半径为R,则在收敛区间内函数f(x)的表达式为:f(x) = ∑(n=0,∞)an(x-a)^n- 等比数列的和:如果|q| < 1,则等比数列∑(n=0,∞)aq^n的和为:S = a / (1 - q)二、常用定理总结1. 一元函数极值定理设函数f(x)在[a, b]上连续,在(a, b)内可导,且在(a, b)内具有极值,那么它的极值点必定在(a, b)内的某个驻点或者两个端点上。
2. 泰勒公式设函数f(x)在点a附近有直到n阶的连续导数,那么函数在点a处的泰勒展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)3. 全微分定理设函数z = f(x, y)在点(x0, y0)的某一邻域内偏导数存在且连续,那么在点(x0, y0)处可微分,且有:δz = ∂f/∂x * δx + ∂f/∂y * δy三、总结与下载通过本文的总结,我们对高等数学的常用公式与定理进行了梳理。
高数中需要掌握证明过程的定理(二)
![高数中需要掌握证明过程的定理(二)](https://img.taocdn.com/s3/m/6f69ab11fc4ffe473368ab15.png)
高数中的重要定理与公式及其证明(二)在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。
现将后半部分补上。
希望对大家有所帮助。
1)泰勒公式(皮亚诺余项)设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立()()()()200'''()000000()()()()...()2!!nn n x x x x f x f x x x f x f x f x o x x n --⎡⎤=+-++++-⎣⎦ 【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。
对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x ax x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。
在复习的前期,如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。
但由于证明过程中所用到的方法还是很常用的。
因此把它写在这里。
证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦ 则我们要证明()0()nR x o x x ⎡⎤=-⎣⎦。
由高阶无穷小量的定义可知,需要证明()0()lim0nx x R x x x →=-。
这个极限式的分子分母都趋于零,并且都是可导的,因此用洛必达法则得()()()()()1''''()00000100()()()...()1!()limlim n n nn x x x x x x f x f x x x f x f x n R x x x n x x --→→⎡⎤--+-++⎢⎥-⎢⎥⎣⎦=--再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。
高二数学学科中的常用定理及证明
![高二数学学科中的常用定理及证明](https://img.taocdn.com/s3/m/e173626d3069a45177232f60ddccda38376be122.png)
高二数学学科中的常用定理及证明数学是一门理性思维与逻辑推理相结合的学科,其中各种定理起着重要的作用。
在高二数学学科中,有许多常用定理被广泛运用于解决数学问题。
本文将重点介绍高二数学学科中的常用定理及其证明。
一、边角关系定理边角关系定理是数学中最基础且广泛应用的定理之一。
该定理说明在任意三角形中,两条边的和大于第三边,任意两角的和小于180度。
这一定理不仅能够解决三角形的构造问题,还可以帮助我们判断三角形的形状及性质。
定理:在三角形ABC中,AB + BC > AC,AC + BC > AB,AB +AC > BC;∠A + ∠B < 180°,∠A + ∠C < 180°,∠B + ∠C < 180°。
证明:不妨设AB ≤ BC ≤ AC。
1. 若AB + BC = AC,则我们可以得到一个等腰三角形ABC,其中∠A = ∠C,∠B < 180°。
2. 若AB + BC > AC,则我们可以得到一个普通三角形ABC,其中∠A + ∠B < 180°,∠A + ∠C < 180°,∠B + ∠C < 180°。
3. 若AB + BC < AC,则无法构成一个三角形。
由此可见,边角关系定理在解决三角形问题中起着重要的作用。
二、勾股定理勾股定理是高二数学中最为经典的定理之一,它描述了一个直角三角形的边长关系。
勾股定理广泛应用于解决测量、定位和解析几何等问题中。
定理:在直角三角形ABC中,设边长分别为a、b、c(其中c为斜边),则有a^2 + b^2 = c^2。
证明:设∠C为直角。
根据三角形的相似性,我们可以得到下面的两个类似三角形:△ABC ~ △ADC△ABC ~ △BDC由此可得:AB/AD = BC/DC (由第一个类似三角形)AB/BD = BC/AC (由第二个类似三角形)联立以上两个等式,得到:(AB/AD) × (AB/BD) = (BC/DC) × (BC/AC)即:(AB/AD) × (BD/AB) = (BC/DC) × (AC/BC)化简后可得:AB × BD = AC × DC根据矩形面积公式可得:AB × BD + AD × DC = AD × DC + AC × BC即:AB × BC + AC × DC = AD × DC + AC × BC而AD × DC + AC × BC = AC × AC所以,AB × BC + AC × AC = AC × AC即:AB × BC = AC × AC - AC × AC = AC × AC即:AB × BC = AC × AC两边开根号并化简,可得:AB × BC = AC^2因此,我们得到了勾股定理。
考研数学高数定理证明的知识点
![考研数学高数定理证明的知识点](https://img.taocdn.com/s3/m/bae506a918e8b8f67c1cfad6195f312b3169ebf7.png)
考研数学高数定理证明的知识点数学高等数学(高数)是考研数学中的一个重要部分,其中涉及了许多重要的定理及其证明。
以下是一些常见的高数定理及其证明的知识点:1.邻域性原理:如果一个函数在一些点的一些邻域内恒大于(或小于)另一个函数,而两个函数在该点处相等,则这两个函数在该邻域内恒大于(或小于)。
证明:假设函数f(x)和g(x)在点x0处连续且f(x)>g(x),且f(x0)=g(x0)。
因为f(x)和g(x)在x0处连续,所以存在一个邻域N(x0)使得f(x)>g(x)在该邻域内成立。
因此,f(x)>g(x)在N(x0)内恒成立。
2.极限的一致性:如果两个函数在一个有限闭区间内的一致性极限或一致性趋于无穷大的极限都存在,则它们的差的(绝对值的)极限是0。
证明:假设函数f(x)和g(x)在闭区间[a,b]内一致趋于函数h(x)和0,即对任意的ε>0,存在N,当n>N时,有,f(x)-h(x),<ε以及,g(x)-0,<ε成立。
由于,h(x),≤,f(x)-h(x),+,g(x)-0,所以当n>N时,有,h(x),≤2ε成立。
因此,极限,h(x),=0。
3.导数的基本性质:导数具有线性性、乘积法则、商法则和链式法则等基本性质。
证明:以线性性为例,假设函数f(x)和g(x)在点x0处可导。
根据导数的定义,有lim_(x→x0) (f(x)-f(x0))/(x-x0)=lim_(x→x0) (g(x)-g(x0))/(x-x0)=f'(x0)和g'(x0)。
我们可以得到lim_(x→x0) (f(x)+g(x)-[f(x0)+g(x0)])/(x-x0)=lim_(x→x0)[(f(x)-f(x0))/(x-x0)+(g(x)-g(x0))/(x-x0)]=f'(x0)+g'(x0)。
因此,函数f(x)+g(x)在点x0处可导,且(f+g)'(x0)=f'(x0)+g'(x0)。
2024年考研数学高等数学部分重要基本定理证明
![2024年考研数学高等数学部分重要基本定理证明](https://img.taocdn.com/s3/m/37cfa88ea0c7aa00b52acfc789eb172ded6399a3.png)
数学高等数学部分重要基本定理证明(数学一)本文将对2024年考研数学高等数学部分的几个重要基本定理进行证明,包括连续函数的一致连续性、可导函数的连续性、可导函数的增量有界性以及闭区间上函数的连续性。
首先,我们来证明连续函数的一致连续性。
定义函数f(x)在区间[a,b]上连续,则对于任意ε>0,存在对应的δ>0,当,x1-x2,<δ时,有,f(x1)-f(x2),<ε成立。
要证明函数的一致连续性,即要证明对于任意ε>0,不论取如何小的δ,总存在对应的x1和x2,使得,f(x1)-f(x2),≥ε成立。
反证法:假设对于一些ε>0,不论取多小的δ,总存在对应的x1和x2,使得,f(x1)-f(x2),≥ε成立。
则对于这个ε>0,无论如何选择δ,总可以找到这样的x1和x2,使得,f(x1)-f(x2),≥ε成立。
由连续函数的定义可知,当,x1-x2,足够小时,有,f(x1)-f(x2),<ε成立。
这与我们的假设矛盾。
综上所述,连续函数的一致连续性成立。
接下来证明可导函数的连续性。
定义函数f(x)在区间[a,b]上可导,则对于任意x∈(a,b),f(x)在x处连续。
要证明函数的连续性,即对于任意ε>0,存在对应的δ>0,当,x-x0,<δ时,有,f(x)-f(x0),<ε成立。
根据可导函数的定义可知,当x足够接近x0时,有,f(x)-f(x0),<ε'成立,其中ε'是一个任意小的正实数。
取ε'=ε/2,则对于ε>0,存在对应的δ>0,当,x-x0,<δ时,有,f(x)-f(x0),<ε'=ε/2成立。
又由于f(x0)-f(x0)=0<ε/2成立,所以有,f(x)-f(x0),≤,f(x)-f(x0),+,f(x0)-f(x0),<ε/2+ε/2=ε成立。
综上所述,可导函数的连续性成立。
高等数学常见中值定理证明及应用
![高等数学常见中值定理证明及应用](https://img.taocdn.com/s3/m/a08eecf979563c1ec4da712d.png)
中值定理首先我们来看看几大定理:1、 介值定理:设函数f (x)在闭区间[a ,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f (b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a ,b )内至少有一点ξ使得f (ξ)=C(a<ξ<b )。
Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。
介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x )在[a,b]上有最大值M ,最小值m ,若m ≤C≤M,则必存在ξ∈[a ,b], 使得f (ξ)=C 。
(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值.此条推论运用较多)Ps :当题目中提到某个函数f (x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。
2、 零点定理:设函数f(x)在闭区间[a ,b]上连续,且f (a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps :注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0。
3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a ,b)内可导; (3)、在区间端点处函数值相等,即f (a )=f (b). 那么在(a ,b )内至少有一点ξ(〈a ξ<b ),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a ,b ]上连续; (2)、在开区间(a ,b)内可导;那么在(a ,b )内至少有一点ξ(〈a ξ<b),使得 f (b)—f(a )=f`(ξ).(b-a ).5、 柯西中值定理:如果函数f (x)及g (x)满足(1)、在闭区间[a ,b ]上连续; (2)、在开区间(a,b )内可导; (3)、对任一x(a 〈x<b ),g`(x)≠0, 那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。
高数重要定理(高数上下)
![高数重要定理(高数上下)](https://img.taocdn.com/s3/m/74365a08cc175527072208d3.png)
1.找 n;
2.确定 x0,将函数 f (x)在点 x0处展开成泰勒公式.一般题设中会
提示一些特殊的点作为泰勒公式的展开点 x ,通常取 x 为函数值
0
0
为零的点、导数值为零的点、区间中点、函数的极值点或题设中
给出的其他特殊的点.
3.将区间端点a和b分别代入泰勒展开式,把得到的两个展开式相
加或相减.
若C = 1,称α ( x), β ( x)是等价无穷小,记为α ( x) ∼ β ( x);
(4)无穷小量的阶:
若lim
α(x) [β ( x)]k
=C
≠ 0,称α ( x)是β ( x)
的k 阶无穷小量.
宝典公式: (1) limg(x)=0, lim gf ((xx))= A,则lim f (x)=0; (2) lim f (x)=0, lim f (x)= A≠0,则limg(x)=0;
求导法则: 1.四则运算法则; 2.复合函数求导法; 3.隐函数求导法; 4.反函数求导数; 5.参数方程求导法; 6.对数求导法; 7.高阶导数.
高阶导数
1.归纳法
求一阶 y′、二阶 y′′,归纳n阶导数 y(n). 2.公式法(莱布尼兹公式):(uv)(n) = ∑n Cnk u(k) v(n−k).
g(x) (3) 已知lim f (x)g(x)= A,lim f (x)=∞,
则limg(x)=0.
1.连续函数的和,差,积,商(分母不为零)及复合仍连续. 2.初等函数在其定义区间内处处连续. 3.闭区间上连续函数的性质
(1)最值性:若 f (x)在[a,b]上连续, 则 f (x)在[a,b]上必有最大值
x→a F ′( x)
( x→∞)
高中数学重要公式定理证明方法
![高中数学重要公式定理证明方法](https://img.taocdn.com/s3/m/4f3b3d34bfd5b9f3f90f76c66137ee06eff94e04.png)
高中数学重要公式定理证明方法高中数学定理证明应该怎么写呢?你认真写过高中数学定理证明吗?现在就跟着店铺一起来了解一下高中数学定理证明汇总吧。
高中数学定理证明模板一证明,已知a/sinA = b/sinB = c/sinC = 2R(1)a=2RsinA, b=2RsinB,c=2RsinC(a+b+c)/(sinA+sinB+sinC)=2R(sinA+sinB+sinC)/(sinA+sinB +sinC)=2R(2)(a-b-c)/(sinA-sinB-sinC)=2R(sinA-sinB-sinC)/(sinA-sinB-sinC)=2R(3)前2个代入后提取2R就出来了,后面3个是正弦定理已知的所以由(1)(2)(3)得到(a+b+c)/(sinA+sinB+sinC)=(a-b-c)/(sinA-sinB-sinC)=a/sinA = b/sinB = c/sinC = 2R高中数学定理证明模板二定理相交两圆的连心线垂直平分两圆的公共弦定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆正n边形的每个内角都等于(n-2)×180°/n定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形正n边形的面积sn=pnrn/2p表示正n边形的周长正三角形面积√3a/4a表示边长如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4弧长计算公式:l=nπr/180扇形面积公式:s扇形=nπr2/360=lr/2内公切线长=d-(r-r)外公切线长=d-(r+r)等腰三角形的两个底脚相等等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合如果一个三角形的两个角相等,那么这两个角所对的边也相等三条边都相等的三角形叫做等边三角形高中数学定理证明模板三数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
高等数学公式、定理 最全版(2020年10月整理).pdf
![高等数学公式、定理 最全版(2020年10月整理).pdf](https://img.taocdn.com/s3/m/5396b64f453610661fd9f413.png)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+−=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅−='⋅='−='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +−='+='−−='−='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+−=⋅+=⋅+−==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=−+−+=−++−=−+=++−=++=+=+−=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++−=−+−+−−=−+++++=+−===−Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα−+=−−+=+−+=−−+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx −+=−+±=++=+−==+=−=−−−−11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin −=+=−+±=+=−=+−±=+±=−±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222−+=·反三角函数性质:arcctgx arctgx x x −=−=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++−−++''−+'+==−−−=−∑中值定理与导数应用:拉格朗日中值定理。
高数定理证明
![高数定理证明](https://img.taocdn.com/s3/m/bbd46f6725c52cc58bd6bebd.png)
高数定理证明 1 极限与连续1.1 预备知识1.1.1 确界存在定理:若非空数集D ⊆R 有上(下)界,则D 必存在上(下)确界。
1.2数列极限1.2.1 唯一性:若数列{}n x 收敛,则{}n x 的极限是唯一的。
1.2.2 有界性:若数列{}n x 收敛,则{}n x 必有界。
1.2.3 保号性:若lim n n x A →∞=,则0A >,则N +∃∈Z ,使得当n N >时,有02n Ax >>。
1.2.4 归并性:数列{}n x 收敛于A 的充分必要条件是{}n x 的任一子列也收敛于A 。
1.2.5 设lim ,lim n n n n x A y B →∞→∞==,则:(1)lim()lim lim n n n n n n n x y x y A B →∞→∞→∞±=±=±;(2)lim()lim lim n n n n n n n x y x y A B →∞→∞→∞=⋅=;(3)lim limlim n nn n nn n x x A y y B →∞→∞→∞==(这里lim 0n n B y →∞=≠)。
1.2.6 夹逼准则:如果数列{}{}{},,n n n x y z 满足:N +∃∈Z ,使得当n N >时,有n n n y x z ≤≤,且lim lim n n n n y z A →∞→∞==,则lim n n x A →∞=。
1.2.7 单调有界原理:单调有界数列必有极限。
1.2.8 柯西收敛准则:数列{}n x 收敛的充分必要条件是:对0ε∀>,0N +∃∈Z ,只要0,m n N >时,就有m n x x ε-<。
或者说:对0ε∀>,0N +∃∈Z ,只要0n N >时,n p n x x ε+-<对所有的p +∈Z 成立。
1.3函数极限的性质和运算法则1.3.1 (极限唯一性)如果0lim ()x x f x →存在,则极限唯一。
考研数学:高数重要定理证明汇总
![考研数学:高数重要定理证明汇总](https://img.taocdn.com/s3/m/2ed4f0dfec3a87c24128c431.png)
考研数学:高数重要定理证明汇总高数定理证明之微分中值定理:这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。
除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。
考虑函数在一点的导数,用什么方法?自然想到导数定义。
我们可以按照导数定义写出f'(x0)的极限形式。
往下如何推理?关键要看第二个条件怎么用。
“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。
结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。
若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。
那么它引出的定理就是我们下面要讨论的罗尔定理。
若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。
该定理的条件和结论想必各位都比较熟悉。
条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。
如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
闲言少叙,言归正传。
既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。
我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。
话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。
大方向对,但过程没这么简单。
起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。
考研数学高数必考定理
![考研数学高数必考定理](https://img.taocdn.com/s3/m/8d4085f790c69ec3d4bb75ea.png)
考研数学高数必考定理考研数学高数必考定理一、导数与微分1、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。
即函数在某点连续是函数在该点可导的必要条件而不是充分条件。
2、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。
3、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。
4、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。
二、函数与极限1、函数的极限定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(题型思路与必证定理)
一、不等式的证明思路
1、如果区间上成立的不等式,一般用单调性证明. 如,当x (0, )时, (1+ 1 )x e x
2、已知条件中导数的阶数是二阶以上,又知道最 高阶导数的符号,一般要用泰勒公式考虑. 如,已知f (x)在(0, )内二阶可导, 且f (x) 0,lim f (x) =0. x0 x 证明:f (x) x
3、 如果结论是函数值与某点的二阶导数的等式,
要用泰勒公式考虑.
如,结论是f
(b)
2
f
a
2
b
(b a)2 f (a)
4
f ()
或
f (b)
f (a)
f
a
2
b
(b
a)
(b
a)3 24
f ()
三、级数收敛的证明思路
1、如果涉及的级数的部分和是两项和或差 一般要用级数的部分和S n考虑. 如,(an1 an )
(
Q(x)e
p(x)dx
dx C )
2
b a
f
2
(x)dx
b a
g
ቤተ መጻሕፍቲ ባይዱ
2
(x)dx
21.f ( x) C a, a ,则x a, a ,有
x
奇函数,
F ( x) 0 f (t )dt 偶函数,
f ( x)为偶函数 f ( x)为奇函数
22.若( f x)在a,b上连续,( g x)在a,b上可积且不变号
则(1)
a,b,使得
所围成,用微元法证明D绕y轴旋转所得的旋转体的
体积是:
b
2xf ( x)dx
a
19.证明:(1)I= 2 sinn xdx 2 cosn xdx
0
0
n!
(2)I=
n 1!!
n!
n 1!! 2
, n为奇数 , n为奇数
20. f, g连续,则
b a
f(x)g(x)dx
8.利用级数收敛的定义证明正项级数的比较法
9.叙述并证明正项级数收敛的比值法
9.绝对收敛级数本身是收敛的 10.若级数每一项取绝对值后的正项级数 用比值法判定是发散的,证明原级数发散 11.正项级数收敛的充要条件:部分和有界
12.交错级数收敛的阿贝尔定理
13.二阶欧拉微分方程化为常系数微分方程 的推导过程
a
0
=
2
a 0
f ( x)dx,若f ( x)是偶函数
0 , 若f ( x)是偶函数
17 .设f(x)是以T为周期的连续函数,
证明对a,
a+T
f(x)dx =
T
f(x)dx =
a
0
T
2 -T
f(x)dx
2
18.设D是由y=f ( x)( f 0), x a, b和x a, x b, y 0
2、如果已知级数通项的性质,如an 收敛,
有界等,要证明级数收敛,一般用比较判别法 的不等式形式.
如,nan有界 an2收敛
3、 如果已知级数的性质,如an收敛等,要证明 级数收敛,一般也用比较判别法,但是用不等 式形式居多. 如, an 收敛 an2收敛
四、需要掌握的定理证明和一些公式的推导:
14.设yoz坐标面内的曲线L的方程为 F(y, z)=0,求其绕z轴旋转一周所得到 的旋转曲面的方程为F( x2+y2 , z)=0
15.设单连通区域D内P,Q 连续, y x
且满足 P Q,证明曲线积分 y x
L Pdx Qdy在D内与路径无关
16.设f ( x)在a, a上连续,
证明 a f ( x)dx a f ( x) f ( x) dx
b
a
( f x)dx
( f )(b a )
(2)
a,b,使得
b
a
( f x)( g x)dx
( f )b ( g x)dx a
23.多元函数可微的必要条件(连续,可偏导) 24.多元函数取得极值的必要条件(偏导数为零)
25.证明微分方程y p( x) y Q( x)的通解为
y e
p(x)dx
1.介值定理的证明 2.可导与可微等价 3.斜渐近线公式的推导 4.一元函数取得极值的必要条件是什么?给出证明 5.三个中值定理的证明
6.设y ( f x)满足f( x0)=0,f ( x0) 0, 证明x0是极值点
7.设y ( f x)满足f ( x0)=0,f ( x0) 0,
证明 x0,( f x0) 是拐点
3、 利用最大值,最小值证明不等式.
如,当x 0, )时,e x (1 x) 1
4、 常值不等式的证明转化成函数的单调性, 或函数不等式. 如,比较e , e的大小
二、等式的证明思路
1、如果结论是不带导数的等式,一般用零点定理考虑 如,F(x0)=0
2、已知结论中含导数: (A)是一个点的导数,如f( )=0,用罗尔定理考虑 (B)是二个点的导数,如f( )+g( )=0,用两次拉 格朗日中值定理或一 次 拉 格 朗 日 中 值 定 理, 一次柯西中值定理