手性药物研究技术指导原则
手性药物的合成与药效研究
手性药物的合成与药效研究手性药物合成的重要性手性药物是指具有手性结构的药物,即分子镜像体。
由于手性药物分子的镜像体在生物体内与目标受体的结合方式和空间构型存在差异,使其药效和代谢方式也有较大差异。
因此,手性药物的合成对于研究药效和进行合理用药具有重要意义。
手性药物合成的方法1. 对映选择性合成法:该方法通过选择性催化、对映选择性还原、对映选择性加成等手段,使手性药物分子在合成过程中得到一定程度的立体选择性。
2. 手性诱导合成法:通过使用手性辅助剂或手性试剂,在合成过程中引入手性中间体,然后再将其消除,从而得到手性药物。
药效研究的重要性通过合成手性药物并研究其药效,可以更好地理解分子结构与生物活性之间的关系,为新药研发提供指导。
在药效研究中,需要考虑手性药物对于目标受体的亲和力、选择性以及药物代谢途径等因素。
手性药物的药理学效应手性药物的药理学效应取决于其构型和立体异构体之间的相互作用。
与立体异构体相比,对映异构体可能具有不同的活性、毒性、药代动力学和药效动力学特性。
因此,在药效研究中,需要对手性药物的不同立体异构体进行全面的评估。
手性药物的应用案例1. 手性麻醉药物:手性药物如丙咪嗪和左旋布比卡因可用于麻醉手术,其对映异构体具有不同的镇痛和镇静效果。
2. 手性抗肿瘤药物:手性药物奥沙利铂作为抗肿瘤药物广泛应用于临床,其对映异构体具有不同的细胞毒性和抑制肿瘤生长的效果。
结论手性药物的合成与药效研究在现代药物研发中扮演着重要角色。
通过合理合成手性药物并研究其药效,可以提高药物的疗效和安全性,为临床合理用药提供科学依据。
未来,随着对手性药物的深入研究,我们将能够更好地利用手性化学的优势,为人类健康事业做出更大贡献。
药物合成中的手性控制研究
药物合成中的手性控制研究近年来,药物合成领域中的手性控制逐渐成为研究的热点之一。
手性分子在化学和生物学中具有重要的意义,因为它们可以对光线、生物活性以及药物代谢等方面产生巨大的影响。
针对手性控制的研究不仅可以提高药物的合成效率,还有望发现更多高效、高选择性的药物。
本文将就药物合成中的手性控制研究进行深入探讨。
一、手性分子的背景和定义手性分子是指由原子或官能团组成的分子,其镜像不能重合的性质。
根据它们与光的反应性质,手性分子可分为两类:旋光性和非旋光性。
旋光性手性分子有光学活性,可使线偏振光的平面方向发生旋转,分为左旋体和右旋体。
非旋光性手性分子镜像关系对应的立体异构体称为对映异构体,通常分别用R和S表示。
二、手性药物的重要性手性药物的研究意义和应用潜力巨大。
首先,手性药物在体内代谢、作用等方面与对映异构体之间可能存在明显的差异。
例如,左旋肾上腺素和右旋肾上腺素对心血管系统的效应不同,这直接导致了左旋肾上腺素常用于降低血压,右旋肾上腺素用于治疗哮喘等疾病。
其次,手性药物的合成可能存在产率低、副反应多等问题,手性控制研究可以提高合成效率、降低成本。
此外,手性药物的合成不仅涉及化学领域,还需要生物学、物理学等学科的综合研究。
三、手性控制的主要手段为了实现手性控制,研究者们开发了多种手段和方法,以下是其中几种主要的手性控制手段:1. 化学合成化学合成是实现手性控制的最常见方法之一。
常用的手性合成手段包括对映选择性催化、手性诱导、手性助剂等。
通过选择适当的手性催化剂或手性诱导剂,可以有效地控制手性生成的产率和物种。
此外,手性分离也是一种常用的策略,通过物理或化学方法将对映异构体分离,实现手性纯度的提高。
2. 生物酶催化生物酶催化是一种高效、具有良好对映选择性的手性合成方法。
酶催化的手性控制具有天然的优势,因为许多酶本身就是具有手性的。
通过选择适当的酶催化剂,可以实现高效的手性合成。
3. 光化学方法光化学方法利用光的能量来实现手性控制。
手性药物研究指导原则
手性药物质量控制研究技术指导原则一、概述三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。
具有手性的化合物即称为手性化合物。
手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。
作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。
手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。
在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的基本要求。
手性药物是指分子结构中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。
不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】:1)药物的生物活性完全或主要由其中的一个对映体产生。
如S-萘普生在体外试验的镇痛作用比其R 异构体强35倍。
2)两个对映体具有完全相反的生物活性。
如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。
3)一个对映体有严重的毒副作用。
如驱虫药四咪唑的呕吐副作用是由其右旋体产生的。
4)两个对映体的生物活性不同,但合并用药有利。
如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。
进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。
5)两个对映体具有完全相同的生物活性【3】。
指导原则解读系列专题_十四_手性药物的合成工艺及结构确证_张震
中国新药杂志[作者简介] 张震,男,讲师,博士,主要从事化学药品技术评价工作。
联系电话:(010)68585566-506,E -m a i l :Z h a n g z h @c d e .o r g .c n 。
·新药申报与审评技术·★指导原则解读系列专题(十四)手性药物的合成工艺及结构确证张 震,黄晓龙,李雪梅(国家食品药品监督管理局药品审评中心,北京100038) [摘要] 《手性药物质量控制研究技术指导原则》已于2006年12月由国家食品药品监督管理局发布,但国内的研发人员在进行手性药物的研究时,药学研究方面仍然未遵循手性药物研究的一般规律,与手性药物研究的技术要求有较大差距。
现结合审评实践对本指导原则中合成工艺研究及结构确证研究部分进行解读,希望能给申报单位的研究有所帮助。
[关键词] 手性药物;合成工艺;结构确证[中图分类号]R 95 [文献标志码]C [文章编号]1003-3734(2009)20-1937-05Ma n u f a c t u r e a n ds t r u c t u r e c o n f i r m a t i o no f c h i r a l d r u gZ H A N GZ h e n ,H u a n g X i a o -l o n g ,L I X u e -m e i(C e n t e r f o r D r u g E v a l u a t i o n ,S t a t e F o o d a n d D r u g A d m i n i s t r a t i o n ,B e i j i n g 100038,C h i n a )[A b s t r a c t ] T h e g u i d a n c e f o r t h e q u a l i t y c o n t r o l o f c h i r a l d r u g s h a d b e e n r e l e a s e d b y S F D Ao n D e c .2006.B u t t h e r e s e a r c h l e v e l f o r t h e c h i r a l d r u g s o f t h e d o m e s t i c r e s e a r c h e r s r e m a i n s t o b e v e r y l o wa n d t h e r e s t i l l h a d b e e n m a n y p r o b l e m s i n t h e r e s e a r c h o f t h i s k i n d o f d r u g s .I n t h i s a r t i c l e ,t h e w r i t e r i n t e n d e d t o i l l u m i n a t e t h e e s -s e n c e o f m a n u f a c t u r e a n d s t r u c t u r e c o n f i r m a t i o n p a r t o f t h i s g u i d a n c e a n dt o g i v e s u g g e s t i o n s t o t h e d o m e s t i c r e -s e a r c h e r s .[K e y w o r d s ] c h i r a l d r u g ;m a n u f a c t u r e ;s t r u c t u r e c o n f i r m a t i o n 手性药物是指分子结构中含有手性中心(包括手性碳、手性氮、手性硫等)的药物。
手性药物技术指导建议原则
手性药物药学研究技术指导原则
➢ (二)经过不对称合成 ➢ 1、首先应尽量查阅有关旳文件资料,充分了解所用不对
称合成反应旳反应机理、反应条件、立体选择性等,以选 用合适旳反应 ➢ 2、在工艺研究中应对该步不对称反应旳工艺操作参数进 行筛选优化,对产物旳立体异构体进行严格监测,拟定反 应旳工艺条件与反应产物旳光学纯度控制指标 ➢ 3、引入手性中心后,进行后续反应时仍可能产生外消旋 化,故一样需要根据终产品质控旳难度分别采用不同旳过 程控制方式,来综合控制终产品旳光学纯度。
手性药物药学研究技术指导原则
➢四、构造确证
手性药物构造确证旳总体原则:应注意确证手性药物分 子旳绝对构型,对各手性中心旳绝对构型是R还是S均应确证 清楚。对于单一旳立体异构体,只需确证其绝对构型;而对 于立体异构体旳混合物,需要对各立体异构体旳立体构型及 相互间旳百分比进行确证
手性药物药学研究技术指导原则
手性药物药学研究技术指导原则
➢ (二)手性药物立体构型确证旳主要措施 2.圆二色谱(CD ) 该项测试旳原理主要是经过测定光学活性物质(待测物) 在圆偏振光下旳Cotton效应,根据Cotton效应旳符号取得药物 构造中发色团周围环境旳立体化学信息,并与一种绝对构型已 知旳与待测药物构造相同化合物旳Cotton效应相比较,即可能 推导出待测物旳绝对构型。
手性药物技术指导建 议原则
手性药物药学研究技术指导原则
一、概述部分(概念和主要性)
1、概念: 三维构造旳物体所具有旳与其镜像旳平面形状完全一
致,但在三维空间中不能完全重叠旳性质,正如人旳左右 手之间旳关系,称之为手性,具有手性旳化合物即称为手 性化合物
手性药物药学研究技术指导原则
2、主要性:
1、药物旳药理作用完全或主要由其中旳一种对映体产生。如S-萘普生旳镇 痛作用比其R异构体强35倍
第5章 手性药物
(二)直接结晶法拆分外消旋混合物 在一种外消旋混合物的过饱和溶液中,直接加 入某一对映体晶种,即可得到该对映体,这种 结晶方法叫做直接结晶法。 外消旋体中的一个对映体能否优先结晶析出,依 赖于熔点图和溶解性图的相关性。也就是,只 有当它具有最低的熔点和最大的溶解度时,才 是可利用的外消旋体混合物。
区分方法:加入纯的对映体, 1)熔点下降,则为外消旋混合物; 2)熔点上升,则为外消旋化合物; 3)熔点没有变化,作为外消旋固体溶液. 外消旋混合物为各自独立存在的对映体, 故可以利用对映体溶解度差异采取诱导结晶 拆分法。而外消旋化合物和外消旋固体溶液 则为完全相同的一种晶体;因此对这两类消 旋体,需要采取先形成非对映异构体,再进 行拆分。
1)对映体具有相同的活性,且作用强度相近。 如抗炎药布洛芬(异丁苯丙酸,Ibuprofen)等,这 种情况比较少见。 2)对映体具有相同的活性,但强弱程度有显著差异。 与靶标具有较高亲和力的对映体,称为活性体 (eutomer) ;而与靶标亲和力较低的对映体是非活性 体(distomer) 。 异构体活性比( eudí smic ratio, ER)
3.拆分参数 一个拆分剂的拆分能力可以用拆分参数S表示, S等于产物的化学收率K(收率50%时,K=1)和 光学纯度t(光学纯度100%时,t=1)的乘积
式中,Kp和Kn分别是p和n盐的溶解度,C0是 起始浓度。
(三)结晶法拆分非对映异构体的新技术 1.特制的拆分剂 例如手性磷酸类拆分剂
2.相互拆分 早在19世纪末,Marckwald首次提出一种拆分 剂的两个对映异构体对同一外消旋体 具有相同的作用。如果拆分剂的两个对映异构体 均可以得到,那么可以运用Mamkweld 原理,向第一次拆分后的母液中加入拆分剂的另 一个对映异构体,即可得到另一个异构体产物。
药物研究中手性分离分析方法及技巧
药物研究中手性分离分析方法及技巧手性药物是指药物分子结构中引入手性中心后,得到的一对互为实物与镜像的对映异构体。
液相色谱法成为目前手性药物分离测定的首选方法,根据实际工作中需要的手性分离问题,总结如下:1、流动相手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。
正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。
乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。
一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差别不是太大。
流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。
一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。
第四章手性药物制备技术
(三)结晶法拆分非对映异构体的新技术 1、特制的拆分剂——一个发展方向 2、相互拆分—— 拆分剂的两个对映异构体均可以得到, 那么可以运用Marckwald原理,向第一次拆分后的母液 中加入拆分剂的另一个对映异构体,即可得到另一个异 构体产物。 3、用少于1当量的拆分剂进行拆分——理论上,利用形 成非对映异构体进行外消旋体的拆分时,只有其中的一 个立体异构体的结晶从溶液中析出。因此有可能利用 1/2当量的拆分剂来完成经典拆分,这种改进称为半量 方法。
第四章手性药物制备技术
由于手性药物具有副作用少、使用剂量低和疗效以 上高等特点,颇受市场欢迎,销量迅速增长。研究 与开发手性药物是当今药物化学的发展趋势,随着 合理药物设计思想的日益深入,化合物结构趋于复 杂,手性药物出现的可能性越来越大;另一方面用 单一异构体代替临床应用的混旋体药物,实现手性 转换,也是开发新药的途径之一。
第四章手性药物制备技术
3、拆分参数 一个拆分剂的拆分能力可以用拆分参数S表示,S
等于产物的化学收率K(收率50%时,K=1) 和光学纯 度t(光学纯度100%时,t=1)的乘积。因为拆分的化 学收率最大为50%,得到拆分的手性化合物光学纯度最 大为100% ,所以S最大为1。根据式4-2,S与p和n盐的 溶解度差别有关。
第四章手性药物制备技术
当最低共熔点混合物的组成接近其中一个纯组 分时,收率可达到最大理论量 (如图4-6所示)。 从 1:1混合物得到的纯P盐的最大理论收率可由式4-1计算:
第四章手性药物制备技术
就工业化的实际情况而言,通过一次结晶处理 得到光学纯度大于95%的产物,若化学收率大于 40% ,通常被认为是经济可行的拆分方法。目前存 在的主要问题是理论上尚不能预测两个非对映异构 体盐的溶解度之差,选择拆分剂的有效方法只能是 经验指导下的实践与尝试。
药物研究中手性分离分析方法及技巧
药物研究中手性分离分析方法及技巧药物研究中手性分离分析是指将手性药物中的手性异构体(也称为对映体)分离出来,并进行定量分析。
由于手性异构体具有不对称的结构,其物理化学性质和药理活性可能差异巨大,因此手性分离分析对于药物研究具有重要意义。
以下将介绍几种常用的手性分离分析方法及技巧。
1.气相色谱法(GC法):GC法是通过在手性固定相柱上进行气相色谱分析,分离手性异构体。
该方法基于手性碳氢化合物在手性固定相上的不同吸附能力来实现手性分离。
同时,通过合适的手性底物和手性固定相的选择,还可以更好地提高手性分离的选择性和灵敏度。
2.液相色谱法(HPLC法):HPLC法是手性分离分析中最常用的方法之一、常见的手性固定相有手性液相、手性离子对和手性硅胶等。
通过在手性固定相上进行液相色谱分析,利用手性化合物在固定相上的差异相互作用,实现手性分离。
此外,还可以结合负载式手性液相色谱法、手性离子对液相色谱法等技术,提高手性分离效果。
3.毛细管电泳法(CE法):CE法是一种高效、快速的分离技术,特别适用于分析手性药物。
通过在毛细管中施加电场,利用手性化合物在毛细管中的迁移速率差异实现分离。
此外,还可以通过改变运行缓冲液的组成、pH值等条件,调节手性分离的选择性和分离效果。
除了上述主要的手性分离分析方法外,还存在一些辅助技巧和方法,可以进一步提高手性分离的效果:1.共处理:将两个手性化合物混合在一起进行共处理,通过比较混合物中手性峰的相对峰度等信息,来判断手性分离的效果。
2.离子对调整:通过调整分析液中离子对的浓度和种类,来改变手性分离的效果。
一般来说,手性离子对可以提高手性分离的分辨率和选择性。
3.pH调控:通过改变液相色谱系统中溶液的pH值,可以影响毛细管电泳法和液相色谱法中手性分离效果。
pH值的改变可以调节化合物分子的电荷状态,从而影响手性分离的选择性。
总之,手性分离分析方法及技巧在药物研究中起着重要的作用。
通过合理选择合适的手性分离方法,并结合辅助技巧和方法,可以实现对手性异构体的高效、准确的分离和定量分析,从而为药物研究提供有价值的数据。
手性药物分离的研究及其在药物生产中的应用
手性药物分离的研究及其在药物生产中的应用手性药物是指具有手性结构的药物,其分子的左右手构型对于生物活性和药效具有重要的影响。
因此手性药物的制备和纯化成为药物生产过程中的关键环节。
本文将从手性药物产生的原因、分离方法以及手性药物在药物生产中的应用三个方面进行阐述。
一、手性药物产生的原因手性药物的“左右手”构型产生的原因主要有两种,一种是由于反应方式不对称所造成的合成失手,另一种是由于环境因素的影响导致的。
比如左右对称的病毒感染人体,因为人体中的分子结构本身就有选择性,只有一种手性的病毒才能够侵入人体细胞并且繁殖。
二、手性药物的分离方法手性药物纯化的难度一直是制约药物生产的一个不可忽视的问题。
通常有以下几种方法:1. 晶体分离法:该方法是基于手性晶体形成的现象,可实现高效分离,但其操作比较繁琐,适用范围仅限于分子之间的非共价相互作用。
2. 液相分离法:包括手性色谱、手性毛细管等方法,能够应对化学结构更为复杂的药物分子,但是由于需要使用手性填料,成本高昂且寿命有限。
3. 表面活性分离法:是利用手性胶束分离的方法,其操作简单方便,对药物结构和物理属性的要求较低,但分离效率较低。
三、手性药物在药物生产中的应用手性药物分离技术的研究和发展,为药物生产带来了广阔的应用前景。
比如在药物研发阶段,纯化手性药物可允许科学家更准确地研究药物的药理学效果,从而得出更精确的药用剂量范围。
同时,在药物生产过程中,由于左右手构型差异较大,其药效也可能出现差异,因此纯化出左手构型或右手构型的药物,可以使药物治疗效果得到最大化。
举例来说,麻醉药匹莫卡因存在左右结构异构体,左构体的麻醉效果比右构体高出4倍以上,为了最大限度地提高药效,生产匹莫卡因时需要分离出左构体。
而对于其他的手性药物,如参芎净、左旋多巴等等,同样需要采用手性药物分离技术,从而提高其药效和安全性。
总之,随着手性药物分离技术的不断完善,手性药物在药物生产中的应用前景十分广阔。
手性药物质量控制研究报告技术指导原则
手性药物质量控制研究技术指导原则一、概述三维构造的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。
具有手性的化合物即称为手性化合物。
手性是自然界的一种根本属性,组成生物体的很多根本构造单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。
作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。
手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。
在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的根本要求。
手性药物是指分子构造中含有手性中心〔也叫不对称中心〕的药物,它包括单一的立体异构体、两个以上〔含两个〕立体异构体的不等量的混合物以及外消旋体。
不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】:1〕药物的生物活性完全或主要由其中的一个对映体产生。
如S -萘普生在体外试验的镇痛作用比其R异构体强35倍。
2〕两个对映体具有完全相反的生物活性。
如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的冲动剂,而其左旋体则为阿片受体的拮抗剂。
3〕一个对映体有严重的毒副作用。
如驱虫药四咪唑的呕吐副作用是由其右旋体产生的。
4〕两个对映体的生物活性不同,但合并用药有利。
如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。
进一步的研究说明,S与R异构体的比例为1:4或1:8时治疗效果最好。
5〕两个对映体具有完全一样的生物活性【3】。
手性药物药学研究技术指导原则
手性药物药学研究技术指导原则手性药物指的是具有手性的化学结构的药物,即分子中存在手性中心。
手性药物由于其分子结构的对称性差异,其对生物体的效果可能会有差异。
因此,在药学研究中对手性药物的研究技术需要遵循一些指导原则。
下面将介绍手性药物药学研究技术的指导原则。
首先,对手性药物进行制备时,应该尽量合成纯异构体或者特定的单一异构体。
由于手性药物的两个异构体可能具有不同的药效和药代动力学性质,同时可能产生不同的副作用和毒性。
因此,在药学研究中应该尽量制备纯异构体或者特定的单一异构体,以确保药物的安全性和有效性。
其次,在手性药物的分析过程中,应该对其进行手性分析。
手性分析是用来确定手性药物中两个异构体的相对含量和化学结构差异的方法。
常用的手性分析方法包括手性色谱、手性质谱、核磁共振等。
通过手性分析可以了解手性药物的药理学和药代动力学性质,为药物的优化设计提供依据。
此外,在手性药物的体内代谢研究中,应该考虑手性药物的代谢途径和代谢产物的手性。
手性药物在体内往往经历酶催化的代谢反应,例如氧化、还原、水解等。
代谢产物的手性可能不同于母药,因此需要对药物代谢产物进行手性分析,了解其影响药物活性的机制。
另外,手性药物的药效和毒性研究也需要考虑其对手性异构体的选择性。
手性药物的二异构体可能具有不同的药效和毒性。
在药效研究中,需要通过体内和体外实验确定不同手性异构体的活性差异。
在毒性研究中,需要考虑不同手性异构体的毒性差异,以及可能的药物-手性异构体间的相互作用。
最后,对于手性药物的制剂研究,需要考虑拆分和搭桥剂型的选择。
一些手性药物具有类似的药代动力学性质,但在药效上可能存在差异。
在制剂研究中,可以通过拆分和搭桥剂型来调节手性药物的药效。
拆分剂型是将手性药物分开使用,搭桥剂型是将两个手性异构体组合在一起使用。
通过选择合适的剂型,可以调节手性药物的药效,提高治疗效果。
总结起来,手性药物药学研究技术的指导原则包括尽量制备纯异构体或特定单一异构体、进行手性分析、考虑手性药物的代谢和代谢产物的手性、考虑手性异构体对药效和毒性的影响,并在制剂研究中选择合适的剂型。
手性药物的合成与药理学研究
手性药物的合成与药理学研究
手性药物是指分子具有手性结构,即分子中存在对映异构体。
由于其对映异构体的结构差异,导致其生物学活性和药理学效应也不同,因此在合成和药理学研究中需要特别注意。
手性药物的合成是一项复杂的工作,需要精确的化学合成技术和分离技术。
在合成过程中,需要特别注意对映异构体的选择性,以避免产生混合物或单一对映异构体的过量产生。
同时,还需要考虑合成成本和工艺可行性等因素。
在药理学研究中,手性药物的研究也是一项重要的工作。
由于对映异构体的结构差异,导致其生物学活性和药理学效应也不同。
因此,对映异构体的选择性和药效学研究是手性药物研究中必不可少的环节。
在药效学研究中,需要进行对映异构体的分离和纯化,并进行药效学评估和比较。
同时,还需要考虑对映异构体的代谢和毒理学研究等方面,以保证药物的安全性和有效性。
手性药物的研究是一项复杂而重要的工作,需要多学科的协作和专业技术的支持。
在未来,随着技术的不断进步和人们对健康需求的不断提高,手性药物的研究将会变得更加重要和有意义。
药物分析中的手性分析技术研究
药物分析中的手性分析技术研究手性分析技术在药物分析中的研究药物是人类对抗疾病的重要工具,但很多药物都存在手性的特性。
手性分析技术的发展对于药物的研究与合成具有重要的意义。
本文将介绍药物分析中的手性分析技术及其研究进展。
一、手性与药物手性是化学中常见的现象,指的是分子存在两个非重叠的立体异构体,分别被称为左旋体和右旋体。
由于手性分子的空间结构不对称,其在生物体内的代谢与作用机制往往存在差异。
一种手性药物的两个异构体在生物作用上可能具有完全相反的效果。
因此,对手性药物的手性分析具有重要的理论和实践意义。
二、手性分析技术的原理在药物分析中,常用的手性分析技术主要包括气相色谱法(GC)、液相色谱法(HPLC)、毛细管电泳法(CE)等。
这些技术利用手性分离柱或手性分离剂作为分离介质,通过衡量手性分子的分离度来确定样品中手性异构体的相对含量。
1. 气相色谱法(GC)气相色谱法是一种常用的手性分析技术。
该技术利用手性柱通过手性相互作用实现手性分离。
常见的手性柱包括化学手性柱和拓展手性柱。
气相色谱法具有分离度高、分析速度快、准确性高的优点,广泛应用于药物分析中。
2. 液相色谱法(HPLC)液相色谱法是另一种常用的手性分析技术。
该技术主要利用手性分离剂与手性分析物之间的相互作用实现手性分离。
液相色谱法分离度较高,适用性广泛,常用于药物的手性分析及手性异构体的定量分析。
3. 毛细管电泳法(CE)毛细管电泳法是利用毛细管中的电渗流和电泳作用实现手性分离的一种分析技术。
该技术具有分离度高、样品消耗少等特点,适用于药物样品中手性异构体的分析与检测。
三、手性分析技术的应用手性分析技术在药物研究与开发中具有广泛的应用。
通过手性分析,可以评估药物的手性纯度、分离手性异构体、研究手性异构体的代谢过程等。
1. 评估药物的手性纯度药物合成过程中,常常会产生手性异构体的混合物。
通过手性分析技术,可以确定药物样品中各个手性异构体的相对含量,评估药物的手性纯度,确保药物的质量和疗效。
手性药物质量控制研究技术指导原则
手性药物质量控制研究技术指导原则一、概述三维结构得物体所具有得与其镜像得平面形状完全一致,但在三维空间中不能完全重叠得性质,正如人得左右手之间得关系,称之为手性。
具有手性得化合物即称为手性化合物。
手性就是自然界得一种基本属性,组成生物体得很多基本结构单元都具有手性,如组成蛋白质得手性氨基酸除少数例外,大都就是L-氨基酸;组成多糖与核酸得天然单糖也大都就是D构型。
作为调节人类得相关生命活动而起到治疗作用得药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同得立体异构体所产生得生物活性就可能不同。
手性化合物除了通常所说得含手性中心得化合物外,还包括含有手性轴、手性平面、手性螺旋等因素得化合物。
在本指导原则中所指得手性药物主要就是指含手性中心得药物,其它类型得手性药物也可参考本指导原则得基本要求。
手性药物就是指分子结构中含有手性中心(也叫不对称中心)得药物,它包括单一得立体异构体、两个以上(含两个)立体异构体得不等量得混合物以及外消旋体。
不同构型得立体异构体得生物活性也可能不同,大致可分为以下几种情况【1】:1)药物得生物活性完全或主要由其中得一个对映体产生。
如S -萘普生在体外试验得镇痛作用比其R异构体强35倍。
2)两个对映体具有完全相反得生物活性。
如新型苯哌啶类镇痛药-哌西那朵得右旋异构体为阿片受体得激动剂,而其左旋体则为阿片受体得拮抗剂。
3)一个对映体有严重得毒副作用。
如驱虫药四咪唑得呕吐副作用就是由其右旋体产生得。
4)两个对映体得生物活性不同,但合并用药有利。
如降压药-萘必洛尔得右旋体为β-受体阻滞剂,而左旋体能降低外周血管得阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】得R异构体具有利尿作用,但有增加血中尿酸得副作用,而S异构体却有促进尿酸排泄得作用,可有效降低R异构体得副作用,两者合用有利。
进一步得研究表明, S与R异构体得比例为1:4或1:8时治疗效果最好。
5)两个对映体具有完全相同得生物活性【3】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2一、概述三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性,具有手性的化合物即称为手性化合物。
手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。
作为调节人类的相关生命活动而起到治疗等作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的药理效应就可能不同。
手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、螺旋手性等因素的化合物。
在本指导原则中所指的手性药物主要是指含手性中心的化合物,其它类型的手性药物研发也可参考本指导原则的基本要求。
手性药物是指分子中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。
不同构型的立体异构体的药理作用也可能不同,大致可分为以下几种情况【1】:(1)药物的药理作用完全或主要由其中的一个对映体产生。
如S-萘普生的镇痛作用比其R 异构体强35倍。
(2)两个对映体具有完全相反的药理作用。
如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。
(3)一个对映体有严重的毒副作用。
如驱虫药四咪唑的呕吐副作用即由其右旋体产生。
(4)两个对映体的药理作用不同,但合并用药有利。
如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。
进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。
(5)两个对映体具有完全相同的药理作用【3】。
如普罗帕酮的两个对映体即具有相同的抗心率失常作用。
正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差异,美国FDA在其关于开发立体异构体新药的政策【4】中要求在对手性药物进行药理毒理研究时,应分别获得该药物的立体异构体,进行必要的比较研究,以确定拟进一步开发的药物。
所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究提供足够数量与纯度的立体异构体。
本指导原则是在一般化学药物药学相关技术指导原则的基础上,充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药学研究提供一般性的指导。
本指导原则中所涉及的手性药物主要针对单一的立体异构体、两个以上(含两个)立体异构体组成的不等量混合物。
由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本指导原则时,还应具体问题具体分析,在遵循药物研发的自身规律以及手性药物一般要求的基础上,根据所研制药物的特点,进行针对性的研究。
如采用本指导原则以外的研究手段与方法,则该方法或手段的科学性和可行性必须经过必要的验证。
二、手性药物药学研究的基本思路手性药物药学研究的基本思路为:除了要遵循已有的各项药学研究技术指导原则外,还需要针对手性药物的特点进行研究。
各项研究的具体要求如下:在原料药制备工艺研究时应根据手性中心的引入方式,采取有效的过程控制手段,严格控制产品的光学纯度;在结构确证时,需根据化合物本身的结构特点,并结合其制备工艺、结构确证用对照品及文献数据等已有的研究基础,选择适宜的方式来证明该药物的立体构型;在选择制剂的剂型、处方与工艺时,应注意保证手性药物立体构型保持 4 不变,不产生外消旋化;质量研究时应结合制备工艺确定需研究控制的立体异构体杂质,并注意验证各手性分析方法的立体专属性,在制订质量标准时综合各方面的研究数据,合理有效地监控产品的光学特性与光学纯度;在稳定性研究时,应设立灵敏、立体专属性的光学纯度检测指标,以监测立体构型的稳定性。
各项药学研究之间也是紧密联系、相互印证的,需要随时参考其它研究的结果,才能使整个药学研究工作更为全面与准确。
下面分别论述各药学研究间的关系:(一)结构确证研究与原料药制备工艺间的关系对于通过化学合成制备的手性药物来说,在确证其立体构型时,应充分利用从制备工艺中所获取的信息,为结构确证提供必要线索,从而使结构确证研究更容易进行。
当原料药中的某一个手性中心是从起始原料或试剂中引入的,并且在后续的反应过程中,该手性中心并未受到影响,或对其的影响是明确而定量发生的,此时,如果该起始原料或试剂的立体结构是已知的,根据已知的原材料立体结构及相关的制备工艺,通过经典的化学相关法即可确证原料药中该手性中心的立体构型。
在鉴定立体异构体杂质的结构时,也可以结合制备工艺中各步反应的机理与可能的副反应来综合分析,确定杂质的可能结构范围后,再选择一些针对性强的结构确证方法加以验证,以减少杂质结构确证研究的工作量,降低其难度。
分析确定了在工艺中产生的立体异构体杂质的结构后,还可以帮助我们进一步了解反应的机理,优化工艺条件,尽量在反应中减少副产物的生成。
所以杂质的结构确证反过来又可以指导工艺的优化。
(二)质量研究及标准制订与其它研究间的关系1. 与制备工艺间的关系质量研究时应结合制备工艺,分析工艺中可能产生的手性杂质,确定须在质量研究中分析检测的目标杂质,然后根据这些杂质是属于非对映异构体还是对映异构体, 5 选取合适的分析方法,并且有针对性的进行这些杂质的检测方法的验证工作。
质量标准的控制必须与原材料的源头控制及生产的过程控制相结合才能切实控制上市产品的质量,尤其对于含多个手性中心的药物更是如此。
因为立体异构体的数量与手性中心的数目成指数关系,在手性中心较多(一般大于3)时,只通过终产品的质量标准来控制所有的立体异构体杂质,在技术上有一定的难度,有时甚至做不到。
这时一定要根据工艺中手性中心的引入方式,合并采用源头控制及生产的过程控制,来全面控制产品的光学纯度。
这样既能有效地控制产品的光学纯度,又能合理地降低终产品质控的难度。
其次,通过了解制备工艺,可以帮助我们全面掌握产品的质量控制情况,分析可能产生的工艺杂质,从而在标准中进行合理的控制。
对于手性药物来说,我们可以通过了解手性中心的引入方式,分析各种手性杂质产生的可能性,在进行充分质量研究——采用科学合理的分析方法获取足够的支持性数据的基础上,才能明确需在质量标准中控制的各种立体异构体杂质。
2. 与稳定性研究间的关系首先,质量研究应对稳定性研究中采用的手性分析方法进行全面的验证工作,以保证分析方法的立体专属性。
其次,根据稳定性研究中手性杂质的变化情况,判断手性药物的立体构型在各种环境因素的影响下,以及放置过程中是否稳定,是否有外消旋化现象的产生,从而确定是否需在质量标准中控制这些手性杂质。
三、原料药的制备单一的立体异构体的制备方式主要有两种:一是在动植物体内天然生成或生物转化产生的,再通过分离提取得到;二是人工合成的方式,其中也包括某一步或几步反应采用生物催化方式。
由于第一种方式的机制比较复杂,且除分离提取外,对其工艺的控制与通常情况下所采用的人工合成的方式不同,故在本节内容中主要针对 6第二种方式进行阐述,第一种方式也可参考本节的主要原则。
手性药物作为一类特殊的化学药物,对其制备工艺的研究首先需要遵循化学药物制备工艺研究的指导原则,然后才能考虑其特殊性。
在进行制备工艺研究时,手性药物的一个特殊点即在于:在研究与制备过程中需要随时关注手性中心的变化,并控制其光学纯度。
由于手性中心的引入方式不同,在工艺中控制光学纯度的方式也各有不同,所以下面将根据手性中心的引入方式分别进行阐述:(一)直接从起始原料或试剂中引入在此情况下,终产品中的手性中心是从光学纯的起始原料或试剂中引入的,在后续的制备过程中,不再涉及手性中心的构型改变。
因此,终产品的光学纯度主要取决于以下两个方面:起始原料或试剂的光学纯度;后续反应过程是否会影响到已有的手性中心,从而产生外消旋化的可能性及程度。
所以在进行工艺研究时,首先要采用立体专属性的分析方法严格控制起始原料或试剂的光学纯度,制定合理可行的手性杂质的限度。
其次要根据后续反应的机理,充分分析后续反应是否会影响已有手性中心的构型,如可能会产生影响时,应研究与优化工艺条件,尽量避免或减少外消旋化的产生。
由于在后续反应中存在外消旋化的可能性,所以,在制备工艺中仅控制起始原料或试剂的光学纯度还不够,尤其是当终产品中存在多个手性中心,且难以对终产品中的所有立体异构体杂质进行有效控制时,就需要结合工艺中的过程控制来综合控制终产品的光学纯度。
这就要求在进行工艺研究时,对引入手性中心后的每步反应的中间体中的立体异构体杂质进行检测,分析与监测外消旋化的可能性。
如没有发生外消旋化,则只需根据工艺优化与验证的结果,在制备工艺中严格控制工艺操作参数即可;如可能会发生部分外消旋化,则除了需严格控制工艺操作参数外,还需采用可靠的指标对中间体的光学纯度进行控制,即对该步反应中间体中的立体异构体杂质进行严格的控制。
总之,在此种情况下,除了需对手性中心引入的源头——起始原料或试剂进行光学纯度控制外,还需根据终产品质控的难度分别采用上述不同的过程控制方式,以切实控制终产品的光学纯度。
(二)通过不对称合成此种情况是指采用立体选择性或专属性的反应(包括酶催化反应)在分子中引入所需构型的手性中心,所以终产品的光学纯度直接取决于该步反应的立体选择性。
为保证所采用方法的立体选择性,首先应尽可能查阅相关的文献资料,充分了解所用不对称合成反应的反应机理、反应条件、立体选择性等,以选取合适的反应;其次,在工艺研究中应对该步不对称反应的工艺操作参数进行筛选优化,并对产物的立体异构体进行严格的监测,确定该步反应的工艺条件与反应产物的光学纯度控制指标。
引入手性中心后,进行后续反应时仍可能产生外消旋化,故同样需要根据终产品质控的难度分别采用不同的过程控制方式,来综合控制终产品的光学纯度。
需要注意的是,由于不对称合成中经常使用一些毒性较大的重金属催化剂,所以在后处理过程中应注意控制重金属的残留,同时,在质量研究中对重金属检测方法进行研究与验证,并在质量标准中对重金属残留量进行控制。
两个以上(含两个)立体异构体组成的不等量混合物的合成主要是通过不完全的立体选择性反应得到的,此时在进行制备工艺研究时,其主要任务是确定合适的工艺参数,保证能稳定地获得组成固定并符合要求的混合物。
(三)消旋体的拆分此种方式是指采用手性拆分试剂与外消旋的中间体或终产品反应生成非对映异构体,分离纯化得到所需的非对映异构体,再去掉手性拆分试剂,从而得到所需的手性药物。
在此工艺中影响终产品的光学纯度的因素有:手性拆分试剂的光学纯度、8 分离纯化是否完全、拆分及后续反应的外消旋化。