机器人学 第二章运动学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
进一步观察 因为
B A
,可以看出矩阵的行是单位矢量 {A}在 {B}中的描述.
R 为坐标系{A}相对于 {B}的描述
ˆT BX A A A ˆ Aˆ A ˆ B ˆT B R X B YB Z B YA B ˆT ZA B A T R B R 由转置得到 A
n o a 1
xB A y B A y B A z B A z B A xB 0
n o a
A 2)B R 把矢量在{B}中的坐标表达式变为在{A}中的坐标表达式的
变换矩阵:
A
A B P B R P
A 3)B R 是正交矩阵,即有:
A B
A T R 1 B R
这表明旋转矩阵的逆矩阵等于它的转置
ˆT AX B A A T A A ˆT ˆ Aˆ Aˆ B R B R YB X B YB Z B I 3 A ˆT ZB
A B
B 1 B T R A R A R
10
第二章 机器人运动学
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
1、位置的描述 对于直角坐标系{A},空间任一点的位置可用3*1 阶的列矢量 A P 来 表示(也称位置矢量):
px A P p y pz
除了直角坐标系外,也可采用圆柱坐标系或球坐标系来描述点的位置。
A A B P B R P
B 用旋转矩阵 A R 表示坐标系{B}相对
A 于{A}的方位。同样,用 B R 描述坐标系
{A}相对于{B}的方位。二者都是正交矩 阵,两者互逆。
B A A 1 A T R B R B R
14
第二章 机器人运动学
§2.3 映射—坐标变换
Example: Frame {B} is rotated relative to frame {A} about Z by 30 degrees. Here Z is pointing out of the page. Writing the unit vectors of {B} in terms of {A} and stacking them as the columns of the rotation matrix:
A R A P B 1 0 0 0 A
PB B P 1 1
其中,4×1的列向量表示三维空间的点,称为点的齐次坐标,仍
然记为 A p 或 B p 。上式可以写成矩阵形式:
A
p A TBp B
齐次变换矩阵也代表坐标平移与坐标旋转的复合,可将其分解成两 个矩阵相乘的形式:
ˆ ,Y ˆ ˆ X B B , ZB
A
: 表示坐标系 {B}主轴方向的单位矢量.
ˆ , AY ˆ , AZ ˆ : 相对于坐标系 {A}的描述. X B B B
的顺序
ˆ , AY ˆ , AZ ˆ 将这些单位矢量组成一个 3×3的矩阵,按照 A X B B B .
旋转矩阵:
r11 r12 A A ˆ Aˆ A ˆ r22 B R X B YB Z B r21 r31 r32
r13 r23 r33
标量
rij
可用每个矢量在其参考坐标系中单位方向上的投
影的分量来表示。
6
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
3、旋转矩阵计算
A B
R 称为旋转矩阵,上标A代表参考系{A},下标B代表被描述的
坐标系{B}。
0 1 R( x, ) 0 cos 0 sin cos R( y, ) 0 sin cos R( z, ) sin 0
A 于坐标系{A}的位置矢量 P
可由矢量相加得出:
A
P =
B
P + APB0
13
第二章 机器人运动学
§2.3 映射—坐标变换
2、旋转坐标系的映射
设坐标系{B}和{A}有共同的原点,但是两者的方位不同。
同一点P在两个坐标系{A}和{B}中的描述 A P 和 B P 具有以下变换关 A R ,称为坐标系旋转方程。 系B
A B
R 的各个分量可用一对单位矢量的点积来表示
ˆ X ˆ ˆ X ˆ X Y B A B A A ˆ ˆ ˆ Y ˆ A ˆ Aˆ A ˆ Y B R X B YB Z B X B YA B A ˆ ˆ ˆ ˆ X B Z A YB Z A ˆ X ˆ Z B A ˆ ˆ Z B YA ˆ Z ˆ Z B A
2)接着平移 [l ,l ,l ] ; 1 2 3
3)最后绕y轴旋转 b 度。
A B
R = Rot(y ,b ) 创Trans(l1 ,l2 ,l3 ) Rot(x ,a )
18
第二章 机器人运动学
§2.3 映射—坐标变换
Example: Frame {B} is rotated relative to frame {A} about Z by 30 ˆ , and translated 5 unit in Y ˆ . degrees, translated 10 units in X
0 sin cos 0 sin 1 0 0 cos
重要!
sin cos 0
0 0 1
7
第二章 机器人运动学 §2.2 空间描述和坐标变换—位置和姿态的描述
Frame {A} and frame {B} {B} is rotated relative to frame {A} about Z by
degrees
PxA A P PyA , Pz A
PxB B P PyB PzB
PxA PxB cos PyB sin Py A PxB sin PyB cos Pz A PzB
轾 nx 犏 犏 ny 犏 F= 犏 nz 犏 犏 0 臌
ox oy oz 0
ax ay az 0
Px Py Pz 1
例
z n
a 45 45 P 3 5 o
n轴与x轴平行,o轴相对于y轴45° a轴相对于z轴45°
F坐标系位于参考坐标系3,5,7位置
7
x
y
5
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
§2.3 映射—坐标变换
关于一般坐标系的映射 坐标系{B}的原点与{A}的既不重合,方位也不相同。 复合变换是由坐标旋转和坐标平移共同作用的。
A A B P B R P APBORG
16
第二章 机器人运动学
§2.3 映射—坐标变换
齐次变换 复合变换式对于点 B p 而言是非齐次的,但是可以将其表示成等 价的齐次变换形式:
为了简单,上式的前置上标被省略。 由两个单位矢量的点积可得到二者之间的余弦,因此可以理解为什
么旋转矩阵的各分量常被称作为方向余弦。components of rotation
matrices are often referred to as direction cosines
PA•PB=|PA|•|PB|•cosØ
3
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
2、方位的描述 为了规定空间某刚体B的方位,另设一直角坐标系{B}与此刚体固 接。用坐标系{B}的三个单位主矢量
zB x B ,y B ,
相对于坐标系{A}
的方向余弦组成的3*3 阶矩阵来表示刚体B相对于{A}的方位:
A B
R [ x B y B zB ]
A A A
0
R1 [ 0n, 0o, 0a]
ax ay az
r11 A B R r21 r 31
r12 r22 r32
r13 r23 r33
轾 nx o x 犏 0 R1 = 犏 ny o y 犏 犏 nz oz 犏 臌
a x a ?y a z
轾 n鬃 x o x 犏 0 R1 = 犏 n鬃 y o y 犏 犏 n鬃 z o z 犏 臌
PxA c PyA s 0 Pz A
s c 0
0 PxB 0 PyB 1 PzB
8
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
rij 可用每个矢量在其参考坐标系中单位方向上的投影的分量来表示:
1.000 A A B P B R P 1.732 0.000 The original vector P is not changed,
we compute a new description relative to another frame.
15
第二章 机器人运动学
轾 cos(n ,x ) cos(o ,x ) cos(a ,x ) 犏 犏 cos(n ,y ) cos(o ,y ) cos(a ,y ) 犏 犏 cos(n ,z ) cos(o ,z ) cos(a ,z ) 犏 臌 4
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
2、坐标系在固定参考坐标系中的表示 由表示方向的单位向量以及第四 个位置向量来表示
轾 wp x 轾 x 犏 犏 犏 犏 x y z wp y 其中: y A 犏 px = , py = , pz = P = 犏 = 犏 犏 w w w z wpz 犏 犏 犏 犏 w 犏 臌 w 臌
比例因子可为任意值,相当于缩放,当为零时,表示为一个长 度为无穷大的向量,表示方向向量,由该向量的三个分量来表示, 此时需将该向量归一化,使长度为1。
A B
R 1
11
第பைடு நூலகம்章 机器人运动学
§2.2 空间描述和坐标变换—坐标系的描述
B 用 A R 和
A
PBORG 来描述坐标系 {B} A {B} { B R , A PBORG }
12
第二章 机器人运动学
§2.3 映射—坐标变换
1、平移坐标系的映射 设坐标系{B}与{A}具有相同的方位,但是{B}的坐标原点与{A} 不重合,用位置矢量 A PB 描述它相对于{A}的位置,称为{B}相对于 {A}的平移矢量。如果点P在坐标系{B}中的位置为 B P ,则它相对
cos A B R sin 0
0.0 B P 2.0 0.0
sin cos 0
0 0.866 0.500 0.000 0.500 0.866 0.000 0 1 0.000 0.000 1.000
A B R 0 A
pB0 I 33 1 0
A
A pB0 B R 0 1 0 1
17
第二章 机器人运动学
§2.3 映射—坐标变换
连续旋转平移变换
连续相对转动,可把基本矩阵连乘起来,由于选转矩阵不可交换,
故完成转动的次序是重要的。 如果{B}坐标系相对于{A}坐标系的坐标轴转动,则对旋转矩阵左乘 相应的基本旋转矩阵,如果{B}坐标系相对于{B}坐标系的坐标轴转动, 则对旋转矩阵右乘相应的基本旋转矩阵。 例:假设{B}相对{A}的轴依次进行了下面三个变换: 1)绕x轴旋转 a 度;
1
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
圆柱坐标(cylindrical) : 两个线性平移运动和一个旋转运动
球坐标(spherical) :
一个线性平移运动和两个旋转运动
2
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
1、位置的描述 可以引入比例因子:
§2.2 空间描述和坐标变换—位置和姿态的描述
4、旋转矩阵性质
A R 矩阵有9个元素,其中只有3个是独立的。因为三个列矢量 1) B
都是单位主矢量,且两两相互垂直,所以它的9个元素满足6个约
束条件(正交条件):
A
A
xB A xB A y B A y B A z B A z B 1
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
进一步观察 因为
B A
,可以看出矩阵的行是单位矢量 {A}在 {B}中的描述.
R 为坐标系{A}相对于 {B}的描述
ˆT BX A A A ˆ Aˆ A ˆ B ˆT B R X B YB Z B YA B ˆT ZA B A T R B R 由转置得到 A
n o a 1
xB A y B A y B A z B A z B A xB 0
n o a
A 2)B R 把矢量在{B}中的坐标表达式变为在{A}中的坐标表达式的
变换矩阵:
A
A B P B R P
A 3)B R 是正交矩阵,即有:
A B
A T R 1 B R
这表明旋转矩阵的逆矩阵等于它的转置
ˆT AX B A A T A A ˆT ˆ Aˆ Aˆ B R B R YB X B YB Z B I 3 A ˆT ZB
A B
B 1 B T R A R A R
10
第二章 机器人运动学
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
1、位置的描述 对于直角坐标系{A},空间任一点的位置可用3*1 阶的列矢量 A P 来 表示(也称位置矢量):
px A P p y pz
除了直角坐标系外,也可采用圆柱坐标系或球坐标系来描述点的位置。
A A B P B R P
B 用旋转矩阵 A R 表示坐标系{B}相对
A 于{A}的方位。同样,用 B R 描述坐标系
{A}相对于{B}的方位。二者都是正交矩 阵,两者互逆。
B A A 1 A T R B R B R
14
第二章 机器人运动学
§2.3 映射—坐标变换
Example: Frame {B} is rotated relative to frame {A} about Z by 30 degrees. Here Z is pointing out of the page. Writing the unit vectors of {B} in terms of {A} and stacking them as the columns of the rotation matrix:
A R A P B 1 0 0 0 A
PB B P 1 1
其中,4×1的列向量表示三维空间的点,称为点的齐次坐标,仍
然记为 A p 或 B p 。上式可以写成矩阵形式:
A
p A TBp B
齐次变换矩阵也代表坐标平移与坐标旋转的复合,可将其分解成两 个矩阵相乘的形式:
ˆ ,Y ˆ ˆ X B B , ZB
A
: 表示坐标系 {B}主轴方向的单位矢量.
ˆ , AY ˆ , AZ ˆ : 相对于坐标系 {A}的描述. X B B B
的顺序
ˆ , AY ˆ , AZ ˆ 将这些单位矢量组成一个 3×3的矩阵,按照 A X B B B .
旋转矩阵:
r11 r12 A A ˆ Aˆ A ˆ r22 B R X B YB Z B r21 r31 r32
r13 r23 r33
标量
rij
可用每个矢量在其参考坐标系中单位方向上的投
影的分量来表示。
6
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
3、旋转矩阵计算
A B
R 称为旋转矩阵,上标A代表参考系{A},下标B代表被描述的
坐标系{B}。
0 1 R( x, ) 0 cos 0 sin cos R( y, ) 0 sin cos R( z, ) sin 0
A 于坐标系{A}的位置矢量 P
可由矢量相加得出:
A
P =
B
P + APB0
13
第二章 机器人运动学
§2.3 映射—坐标变换
2、旋转坐标系的映射
设坐标系{B}和{A}有共同的原点,但是两者的方位不同。
同一点P在两个坐标系{A}和{B}中的描述 A P 和 B P 具有以下变换关 A R ,称为坐标系旋转方程。 系B
A B
R 的各个分量可用一对单位矢量的点积来表示
ˆ X ˆ ˆ X ˆ X Y B A B A A ˆ ˆ ˆ Y ˆ A ˆ Aˆ A ˆ Y B R X B YB Z B X B YA B A ˆ ˆ ˆ ˆ X B Z A YB Z A ˆ X ˆ Z B A ˆ ˆ Z B YA ˆ Z ˆ Z B A
2)接着平移 [l ,l ,l ] ; 1 2 3
3)最后绕y轴旋转 b 度。
A B
R = Rot(y ,b ) 创Trans(l1 ,l2 ,l3 ) Rot(x ,a )
18
第二章 机器人运动学
§2.3 映射—坐标变换
Example: Frame {B} is rotated relative to frame {A} about Z by 30 ˆ , and translated 5 unit in Y ˆ . degrees, translated 10 units in X
0 sin cos 0 sin 1 0 0 cos
重要!
sin cos 0
0 0 1
7
第二章 机器人运动学 §2.2 空间描述和坐标变换—位置和姿态的描述
Frame {A} and frame {B} {B} is rotated relative to frame {A} about Z by
degrees
PxA A P PyA , Pz A
PxB B P PyB PzB
PxA PxB cos PyB sin Py A PxB sin PyB cos Pz A PzB
轾 nx 犏 犏 ny 犏 F= 犏 nz 犏 犏 0 臌
ox oy oz 0
ax ay az 0
Px Py Pz 1
例
z n
a 45 45 P 3 5 o
n轴与x轴平行,o轴相对于y轴45° a轴相对于z轴45°
F坐标系位于参考坐标系3,5,7位置
7
x
y
5
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
§2.3 映射—坐标变换
关于一般坐标系的映射 坐标系{B}的原点与{A}的既不重合,方位也不相同。 复合变换是由坐标旋转和坐标平移共同作用的。
A A B P B R P APBORG
16
第二章 机器人运动学
§2.3 映射—坐标变换
齐次变换 复合变换式对于点 B p 而言是非齐次的,但是可以将其表示成等 价的齐次变换形式:
为了简单,上式的前置上标被省略。 由两个单位矢量的点积可得到二者之间的余弦,因此可以理解为什
么旋转矩阵的各分量常被称作为方向余弦。components of rotation
matrices are often referred to as direction cosines
PA•PB=|PA|•|PB|•cosØ
3
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
2、方位的描述 为了规定空间某刚体B的方位,另设一直角坐标系{B}与此刚体固 接。用坐标系{B}的三个单位主矢量
zB x B ,y B ,
相对于坐标系{A}
的方向余弦组成的3*3 阶矩阵来表示刚体B相对于{A}的方位:
A B
R [ x B y B zB ]
A A A
0
R1 [ 0n, 0o, 0a]
ax ay az
r11 A B R r21 r 31
r12 r22 r32
r13 r23 r33
轾 nx o x 犏 0 R1 = 犏 ny o y 犏 犏 nz oz 犏 臌
a x a ?y a z
轾 n鬃 x o x 犏 0 R1 = 犏 n鬃 y o y 犏 犏 n鬃 z o z 犏 臌
PxA c PyA s 0 Pz A
s c 0
0 PxB 0 PyB 1 PzB
8
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
rij 可用每个矢量在其参考坐标系中单位方向上的投影的分量来表示:
1.000 A A B P B R P 1.732 0.000 The original vector P is not changed,
we compute a new description relative to another frame.
15
第二章 机器人运动学
轾 cos(n ,x ) cos(o ,x ) cos(a ,x ) 犏 犏 cos(n ,y ) cos(o ,y ) cos(a ,y ) 犏 犏 cos(n ,z ) cos(o ,z ) cos(a ,z ) 犏 臌 4
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
2、坐标系在固定参考坐标系中的表示 由表示方向的单位向量以及第四 个位置向量来表示
轾 wp x 轾 x 犏 犏 犏 犏 x y z wp y 其中: y A 犏 px = , py = , pz = P = 犏 = 犏 犏 w w w z wpz 犏 犏 犏 犏 w 犏 臌 w 臌
比例因子可为任意值,相当于缩放,当为零时,表示为一个长 度为无穷大的向量,表示方向向量,由该向量的三个分量来表示, 此时需将该向量归一化,使长度为1。
A B
R 1
11
第பைடு நூலகம்章 机器人运动学
§2.2 空间描述和坐标变换—坐标系的描述
B 用 A R 和
A
PBORG 来描述坐标系 {B} A {B} { B R , A PBORG }
12
第二章 机器人运动学
§2.3 映射—坐标变换
1、平移坐标系的映射 设坐标系{B}与{A}具有相同的方位,但是{B}的坐标原点与{A} 不重合,用位置矢量 A PB 描述它相对于{A}的位置,称为{B}相对于 {A}的平移矢量。如果点P在坐标系{B}中的位置为 B P ,则它相对
cos A B R sin 0
0.0 B P 2.0 0.0
sin cos 0
0 0.866 0.500 0.000 0.500 0.866 0.000 0 1 0.000 0.000 1.000
A B R 0 A
pB0 I 33 1 0
A
A pB0 B R 0 1 0 1
17
第二章 机器人运动学
§2.3 映射—坐标变换
连续旋转平移变换
连续相对转动,可把基本矩阵连乘起来,由于选转矩阵不可交换,
故完成转动的次序是重要的。 如果{B}坐标系相对于{A}坐标系的坐标轴转动,则对旋转矩阵左乘 相应的基本旋转矩阵,如果{B}坐标系相对于{B}坐标系的坐标轴转动, 则对旋转矩阵右乘相应的基本旋转矩阵。 例:假设{B}相对{A}的轴依次进行了下面三个变换: 1)绕x轴旋转 a 度;
1
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
圆柱坐标(cylindrical) : 两个线性平移运动和一个旋转运动
球坐标(spherical) :
一个线性平移运动和两个旋转运动
2
第二章 机器人运动学
§2.2 空间描述和坐标变换—位置和姿态的描述
1、位置的描述 可以引入比例因子:
§2.2 空间描述和坐标变换—位置和姿态的描述
4、旋转矩阵性质
A R 矩阵有9个元素,其中只有3个是独立的。因为三个列矢量 1) B
都是单位主矢量,且两两相互垂直,所以它的9个元素满足6个约
束条件(正交条件):
A
A
xB A xB A y B A y B A z B A z B 1