图像增强理论

图像增强理论
图像增强理论

第一章 绪论

图像增强研究现状

图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。图像增强主要可分为三类:频域图像增强方法、小波域图像增强方法、空域图像增强方法。

1.1频域图像增强方法

频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。其原理如下图所示:

频域图像增强原理图

常用的频域增强方法有低通滤波技术,是利用低通滤波器去掉反映细节和跳变性的高频分量。但其在去除图像尖峰细节的同时也将图像边缘的跳变细节去除掉了,而使得图像较模糊。低频滤波有理想低通滤波器、Butterworth 滤波器、指数滤波器等。高通滤波器技术是利用高通滤波器来忽略图像中过度平缓的部分,突出细节和跳变等的高频部分,使得增强后的图像边缘信息分明清晰。高通滤波技术进行增强处理后的图像,视觉效果不好,较适用于图豫中物体的边缘提取。高通滤波器有理想高通滤波器、梯形滤波器、指数滤波器等。频域增强方法中还有带通和带阻滤波、同态滤波等,一般是用来解决光动态范围过大或者光照不均而引起的图像不清等情况。

频域变换的基础是卷积处理,因此其基本原理为:设原始图像为),(y x f ,处理后图像为),(y x g ,而),(y x h 是线性不变算子。则根据卷积定理,有:

),(*),(),(y x h y x f y x g = (1-1) 其中*代表卷积。若),(v u G 、),(v u H 、),(v u F 分别是),(y x g 、),(y x h 、),(y x f 的傅立叶变换,则上式的卷积关系表示成变换域中为:

),(*),(),(v u F v u H v u G = (1-2)

其中),(v u H 用线性系统理论来说,是转移函数。在具体的增强中,),(y x f 是给定的,则),(v u F 也可通过变换求出。而),(v u H 通过不同的滤波器来确定,则 由式(1-2)可得:

)],(),([),(1v u F v u H F y x g -= (1-3)

1.2小波域图像增强方法

小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和

多分辨率分析的能力,因此它更适用于信号处理领域。之前的图像降噪大多采用低通滤波器直接滤除高频信息,因此使得在去除噪声的同时,也去掉了一些有用的高频信息,损失了图像的细节。而采用小波进行去噪,由于其多分辨率特性,它用不同中心频率的带通滤波器对信号进行滤波,把主要反映噪声频率的尺度系数去掉,再把剩余尺度的系数结合起来做反变换,从而使得噪声得到很好的抑制。

小波的反锐化掩模法是一种即简单、增强效果也不错的方法,但该算法对噪声非常敏感,而且会出现过冲现象(处理后图像有很明显的人工处理痕迹)。S.K.Mitra提出了一种基于Teager算法的非线性算子,来代替线性高通滤波器,对减小噪声和增强细节进行了这种考虑。G.Ramponi提出了一种立方反锐化掩膜方法进行图像增强,该方法用一个对边缘敏感的平方滤波器算子乘以拉普拉斯算子,只增强局部亮度变化区域的图像细节,从而相对减少噪声。柯丽等人提出了基于小波变换的图像增强方法,该算法主要针对CR图像,先将CR图像进行小波变换分解,针对各子图像的特征,对高频和低频部分采用不同的处理,最后进行小波变换得到增强后的CR图像。董卫军等人提出了基于多小波的图像增强算法,由于多小波的对称性和短支撑性,因此多小波在图像处理方面比单小波更有优势。

1.3空域图像增强方法

空域是指组成图像的像素的集合,空域图像增强直接对图像中像素灰度值进行运算处理,基本上是以灰度映射变换为基础的。空域图像增强知识本文在第二章中会有详细介绍,这里简略介绍一下。

空域图像增强主要有灰度变换和直方图均衡化处理。灰度变换的原理就是通过改变灰度的动态范围,达到增强图像灰度级细节部分的方法。一般的变换函数包括线性变换、非线性变换、分段线性变换。具体函数的选择与图像的成像系统和相应的应用场合有关。直方图均衡化是空域图像增强中应用最广泛的一种方法,其基本原理是使得处理后的图像灰度级近似均匀分布,来达到图像增强效果。但由于其变换函数采用的是累积分布函数,因此它产出的近似均匀直方图都很相似,这必然限制了它的功能。为了适应图像的局部特性,基于局部变换的图像增强方法应运而生,如局部直方图均衡化、对比度受限自适应直方图均衡化、利用局部统计特性的噪声去除方法。这些方法对图像细节部分的增强均有很好的效果,但均有一个共同的缺点,算法运算量较大,图像处理时间相对较长,使得这些算法不能适用于实时处理系统中。近年来,一类基于直方图分割的算法受到大家的广泛关注,该算法处理图像的侧重点在处理后图像的亮度保持上,使得处理后图像更适合人眼特性观察。但该方法应用到低照度图像增强上,对图像整体亮度的提高效果不明显。

第二章图像增强理论

2.1引言

图像增强是用来提高图像的视觉效果,或将图像转换成适用于人眼、机器分析的形式的一门技术。目前,已有很多技术用于图像增强,但从传统的图像增强技术分类来看,总体上可以分为两个大类:空域增强方法和频域增强方法两大类。空域增强方法是直接对图像中的像素进行处理,从根本上说是以图像的灰度映射变换为基础的,所用的映射变换类型取决于增强的目的。频域增强方法首先将图像空间中的图像以某种形式转换到其他空间中,然后利用该空间的特有性质进行

图像处理,最后再转换到原来的图像空间中,从而得到处理后的图像。

空间域增强方法因其处理的直接性,相对于频域增强复杂的空间变化,运算量相对要少一些,因此更广泛的应用于实际中。(本章主要介绍了空间域增强中的一些基本方法,并对其中应用最广泛的直方图均衡化进行一定的改进,使其更适用于低照度图像的处理)。(这里需要改进)

2.2基本灰度变换

灰度变换可使图像动态范围增大,对比度得到扩展,使图像清晰、特征明显,是图像增强的重要手段之一。它主要利用点运算来修正像素灰度,由输入像素点的灰度值确定相应输出点的灰度值,是一种基于图像变换的操作。灰度变换不改变图像内的空间关系,除了灰度级的改变是根据某种特定的灰度变换函数进行之外,可以看作是“从像素到像素”的复制操作。

2.2.1背景知识

在图像处理中,空域是指由像素组成的空间。空域增强方法是直接对图像中的像素进行处理,从根本上说是以图像的灰度映射变换为基础的,所用的映射变换类型取决于增强的目的。空域增强方法可表示为:

T

f

y

(y

g=(2-1)

x

x

,

)]

[

(

)

,

其中)

x

g是处理后的图像,T是对f的一种操作,

(y

,

,

(y

x

f是输入图像,)

其定义在)

x的邻域。另外,T能对输入图像集进行操作。例如,为了增强整

(y

,

幅图像的亮度而对图像进行逐个像素的操作。

定义一个点)

(y

,

x点的正方形或矩形子(y

,

x邻域的主要方法是利用中心在)

图像,如下图所示(缺图)。

图2-1图像中点)

3?领域

x的3

(y

,

T操作最简单的形式是针对单个像素,这时也就是在1

1?领域中。在这种情况下,g仅仅依赖于f在点)

x的值,T操作成为灰度级变换函数,形式为:

,

(y

s=(2-2)

T

(r

)

这里,令r和s是所定义的变量,分别是)

g在任意点)

,

(y

x

x的

(y

,

(y

x

,

f和)

灰度级。例如,如果)

T有如图2-2(a)所示的形状,这种变换将会产生比原始图

(r

像更高的对比度,进行变换时,在原始图像中,灰度级低于m时变暗,而灰度级在m以上时变亮。在这种对比度扩展技术里,在m以下的r值将被变换函数压缩在s的较窄范围内,接近黑色。对m以上的r值执行相反的操作。在极限情况下,如图2-2(b)所示,)

T产生了两级(二值)图像。这种形式的映射关系叫做阑值函

(r

数。有的相当简单,却有很大作用,处理方法可以用灰度变换加以公式化。因为在图像任意点的增强仅仅依赖于该点的灰度,这类技术常常是指点处理(缺图)。

图2-2对比度增强的灰度变换函数

更大的邻域会有更多的灵活性。一般的方法是,利用点),(y x 事先定义的邻域里的一个函数来决定g 在),(y x 的值,其公式化的一个主要方法是以利用所谓的模板(也指滤波器、核、掩模或窗口)为基础的。从根本上说,模板是一个33?二维阵列,如图2-1所示,图中,模板的系数值决定了处理的性质,如图像尖锐化等。以这种方法为基础的增强技术通常是指模板处理或滤波。

2.2.2线性变换

假定原图像),(y x f 的灰度范围为],a [b ,变换后的图像),(y x g 的灰度范围线性的扩展至],[d c ,如图2-3所示。则对于图像中的任一点的灰度值),(y x f ,一变换后为),(y x g ,其数学表达式如式2-3所示。

c y x f b c

d y x g +-?--=]a ),([a

),( (2-3) 若图像中大部分像素的灰度级分布在区间],a [b 内,max f 为原图的最大灰度级,只有很小一部分的灰度级超过了此区间,则为了改善增强效果,可以令

???????≤≤≤≤+-?--≤≤=f y x f b d b

y x f c y x f b c d y x f c y x g max ),(..........................................................

),(a ......................]a ),([a

a ),(0..........................................................),((2-4) 在曝光不足或过度的情况下,图像的灰度可能会局限在一个很小的范围内,这时得到的图像可能是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像中每一个像素灰度作线性拉伸,将有效改善图像视觉效果(缺图)。

图2-3线性变换

2.2.3非线性变换

非线性变换是利用非线性变换函数对图像进行灰度变换,主要有对数变换、指数变换、幂次变换等。

对数变换,是指输出图像的像素点的灰度值与对应的输入图像的像素灰度值之间为对数关系,其一般公式为:

)],(lg[),(y x f y x g = (2-5)

为了增加变换的动态范围,在上述公式中可以加入一些调制参数,这时变换函数变为:

c

b y x f y x g ln ]1),(ln[a ),(?++= (2-6) 式中a 、b 、

c 都是可以选择的参数,a 为Y 轴上的截距,确定了变换曲线的初始位置的变换关系,b 、c 两个参数确定变换曲线的变化速率。对数变换在很大程度上压缩了图像像素值的动态范围,它较适用于过暗的图像。

指数变换函数1),(]a ),([-=-y x f c b y x g ,a 、b 、c 是按需要可以调整的参数。高

灰度区扩展,低灰度区压缩。

2.3直方图处理

直方图是多种空间域处理技术的基础。直方图操作能有效地用于图像增强,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。

灰度级为]1,0[-L 范围的数字图像的直方图是离散函数k k n r h =)(,这里k r 是第k 级灰度,k n 是图像中灰度级为k r 的像素个数。

经常以图像中像素的总数(用n 表示)来除它的每一个值得到归一化的直方图。因此,一个归一化的直方图由n n r P k k /)(=给出。这里k =0,l ,...,L -1。简单地说,)(k r P 给出了灰度级为k r 发生的概率估计值。一个归一化的直方图其所有部分之和应等于1。

直方图均衡的变换函数采用的是累积分布函数,它的实现方法很简单,效率也较高,但它只能产生近似均匀分布的直方图,其弊端也是显而易见的。直方图规定化方法可以得到具有特定需要的直方图的图像,克服了以上变换函数单一的缺点。

2.3.1直方图均衡化

考虑连续函数并且让变量r 代表待增强图像的灰度级。在上文中,假设r 被归一化到区间[0,1],且r =0表示黑色及r =1表示白色。而且,考虑一个离散公式并允许像素值在区间]1,0[-L 内。

对于任一个满足上述条件的r ,我们做如下变换:

)(r T s = (2-7)

在原始图像中,对于每一个像素值r 产生一个灰度值s 。显然,可以假设变换函数)(r T 满足以下条件:

(a) )(r T )在区间10≤≤r 中为单值且单调递减

(b) 当10≤≤r 是,1)(0≤≤r T

条件(a)中要求)(r T 为单值是为r 保证反变换存在,单调条件保持输出图像从黑到白顺序增加。变换函数不单调增加将导致至少有一部分亮度范围被颠倒,从而在输出图像中产生一些反转灰度级。条件(b)保证输出灰度级与输人有同样的范围。图2.7给出了满足这两个条件的一个变换函数的例子。由s 到r 的反变换可以表示为:

=r )(1s T - 0≤s ≤1 (2-8)

图2-8单值单调递增的灰度级变换函数(缺图)

一幅图像的灰度级可被视为区间]1,0[的随机变量。随机变量的一个最重要的

基本描述是其概率密度函数((PDF)。令)(r P r 和)(s P S 分别代表随机变量r 和s 的概率密度函数。此处带有下标的r P 和S P 用于表示不同的函数。由基本概率理论得到一个基本结果:如果)(r P r 和)(r T 已知,且满足条件(a),那么变换变量s 的概率密度函数Ps(s)可由以下简单公式得到:

||

)()(ds

dr r P s P r S =(2-9) 因此,变换变量s 的概率密度函数由输入图像的灰度级PDF 和所选择的变换函数决定。

在图像处理中尤为重要的变换函数如下所示: dw w P r T s r

r ?==0)()((2-10) 其中w 是积分变量。式(2-13)的右部为随机变量r 的累积分布函数((CDF) 。因为概率密度函数水远为正,并且函数积分是一个函数曲线下的面积,所以它遵循该变换函数是一单值单调增加的条件,因此,满足条件(a)。类似地,区间[0,1]上变量的概率密度函数的积分也在区间[[0,1]上,因此,也满足条件(b)。

给定变换函数T(r),通过式(2-12)得到Ps(s)。根据基本微积分学(莱布尼茨准则),我们知道关于上限的定积分的导数就是该上限的积分值。也就是说:

?===r r r r P dw w P dr d dr r dT dr ds 0

)(])([)( (2-11) 用这个结果代替ds dr /,代入式(2-12),取概率值为正,得到:

)()(r P s P r S =||ds dr =1|)

(1|)(=r P r P r r 10≤≤s (2-12) 因为Ps(s)是概率密度函数,在这里可以得出,区间〔0,1]以外它的值为0,这是因为它在所有s 值上的积分等于1。我们看到式(2-12)中给出的PS(s)形式为均匀概率密度函数。简而言之,己证明执行式(2-13)给出的变换函数会得到一随机变量s ,其特征为一均匀概率密度函数。特别要注意从式(2-13)得到T(r)取决于Pr(r),但是,如式(2-15)指出的那样,Ps(s)的结果始终是均匀的,与Pr(r)的形式无关。

对于离散值,我们处理其概率与和,而不是概率密度函数与积分。一幅图像中灰度级rk 出现的概率近似为:

n

n r P k k r =)( 1,...,2,1,0-=L k (2-13) 其中,如此节开始指出的,n 是图像中像素的总和,k n 是灰度级为k r 的像个数,L 为图像中可能的灰度级总数。式(2-13)中变换函数的离散形式为:

∑∑=====k j j j k j r k k n n r P r T s 00)()( 1,...,2,1,0-=L

k (2-14) 因此,已处理的图像(即输出图像)由通过式(2-17),将输人图像中灰度级为k

r

的各像素映射到输出图像中灰度级为k s 的对应像素得到。如前所述,作为k r 的函数)(k r r P 的曲线称做直方图。式(2-17)给出的变换〔映射)称做直方图均衡化或直方图线性化。不难得出式(2-17)变换函数满足本节前边所述的条件(a)和(b)。

2.3.2直方图规定化

直方图均衡化是以累积分布函数变换法为基础的直方图修正技术,使得变 换后的灰度概率密度函数是均匀分布的,因此,它不能控制变换后的直方图而 交互性差。这样,在很多特殊的情况下,需要变换后图像的直方图具有某种制 定的曲线,例如对数、指数等,直方图规定化可以解决这一问题。

直方图规定化方法如下:假设)(r P r 是原始图像分布的概率密度函数,)(z P z 是希望得到的图像的概率密度函数。

先将对原始图像进行直方图均衡化处理,即:

dv v P r T s r

r )()(0?== (2-15) 假定己经得到了所希望的图像,并且它的概率密度函数是Pz(z)。对该图像也做均衡化处理,即:

dv v P z G u z

z )()(0?== (2-16) 由于对于这两幅图像,同样作了均衡化处理,所以他们具有同样的均匀密度。其中(3-9)的逆过程为)(1u G z -=,则如果用从原始图像中得到的均匀灰度级s 来代替逆过程中的u ,其结果灰度级将是所要求的概率密度函数)(z P z 的灰度级。

根据以上思路,可以总结直接直方图规定化增强处理的步骤如下:

(1)将原始图像进行均衡化处理;

(2)规定希望的灰度概率密度函数,并用(2-16)式计算它的累积分布函数)(z G ;

(3)将逆变换函数)(1s G z -=用到步骤((1)中所得的灰度级。

上述三步得到了原始图像的一种处理方法,只要求)(s G 是可逆的即可进行。但是,对于离散图像,由于)(s G 是一个离散的阶梯函数,不可能有逆函数存在。对此,只能进行截断处理,必将不可避免的导致变换后图像的直方图一般不能与目标直方图严格的匹配

实用计算机图像系统中常用交互式直方图规定化,把直方图规定化增强分为两类:一是用鼠标指定一个用折线形成的规定化直方图,用它对原图像作处理,对处理后的增强图像由人去判断是否该指定直方图处理效果好。若不满意再用鼠标指定另一种直方图。这样交互式处理以求得最佳处理效果,此法取决于操作者对图像增强先验知识的多少。另一种方法可预先在计算机内存中存上许多种密度函数)(r q 的表示式,例如规定的直方图为均衡、指数、双曲等各种函数,用这些

规定化图像),(y x f 直方图,对己知图像进行直方图规定化增强。处理后的图像由人去判断是否满意,然后再交互式选择另一函数试验,直到取得满意的效果为止。

2.4图像的空间域平滑(去噪声)

任何一幅原始图像,在其获取和传输等过程中,会受到各种噪声的干扰,使图像恶化,质量下降,图像模糊,特征淹没,对图像分析不利。为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。它可以在空间域和频率域中进行。本节介绍空间域的几种平滑法。

2.4.1局部平滑法

局部平滑法是一种直接在空间域上进行平滑处理的技术。假设图像是由许多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,而噪声则是统计独立的。因此,可用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。

设有一幅N N ?的图像),(y x f ,若平滑图像为),(y x g ,则有:

∑∈=s j i j i f M y x g ,),(1

),( (2-17)

式中1,...,1,0,-=N y x ;s 为),(y x 邻域内像素坐标的集合;M 表示集合s 内像素的总数。可见邻域平均法就是将当前像素邻域内各像素的灰度平均值作为其输出值的去噪方法。例如,对图像采用3×3的邻域平均法,对于像素),(n m 其邻域像素如下:

图2-1像素),(n m 的领域

则有∑∑∈∈++=Z i Z

j j n i m f n m g ),(91),(,其作用相当于用这样的模板同图像卷积。设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过上述平滑后,信号与噪声的方差比可望提高M 倍(为什么)。

这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。如下图(缺图)。

2.4.2 中值滤波

中值滤波也是一种典型的低通滤波器,它的目的是保护图象边缘的同时去除噪声。所谓中值滤波,是指把以某点),(y x 为中心的小窗口内的所有象素的灰度按从大到小的顺序排列,将中间值作为),(y x 处的灰度值(若窗口中有偶数个象

素,则取两个中间值的平均)。

2.4.3 选择式掩模算法

邻域平均法和加权平均法在消除噪声的同时,都存在平均化带来的缺陷,使尖锐变化的边缘或线条变得模糊。考虑到图像中目标物体和背景一般都具有不同的统计特性,即具有不同的均值和方差,为保留一定的边缘信息,可采用一种自适应的局部平滑滤波方法,这样可以得到较好的图像细节,它的优势是以尽量不模糊边缘轮廓为目的。

选择式掩模平滑法也是以模板运算为基础的,这里取5×5的模板窗口。在窗口内以中心像素为基准点,制作4个五边形、4个六边形、一个边长为3的正方形共9种形状的屏蔽窗口,分别计算每个窗口内的平均值及方差。由于含有尖锐边沿的区域,方差必定较平缓区域大,因此采用方差最小的屏蔽窗口进行平均化,这种方法在完成滤波操作的同时,又不破坏区域边界的细节。这种采用9种形状的屏蔽窗口,分别计算各窗口内的灰度值方差,并采用方差最小的屏蔽窗口进行平均化方法,也叫做自适应局部平滑方法。如图5-5所示为9种屏蔽窗口的模板。

55?邻域 1个正方形 4个五边形 4个六边形

图2-2 9种屏蔽窗口的模板

根据上面9种模板分别计算各模板作用下的均值及方差。

均值的计算公式为:N j i f M N

k k i ∑===1

),( (2-18)

方差的计算公式为:)),((2

12i N

k k i M j i f -=∑==σ (2-19) 式中,N k ...3,2,1=为各掩模对应的像素个数。

将计算得到的进行排序,最小方差所对应的掩模的灰度级均值作为平滑的结果输出。将55?的窗口在整个图像上滑动,利用上述方法就能实现对每个像素的平滑。 2.5 图像的锐化 锐化滤波能减弱或消除图像中的低频率分量,但不影响高频率分量。因为低频分量对应图像中灰度值缓慢变化的区域,因而与图像的整体特性,如整体对比度和平均灰度值等有关。锐化滤波将这些分量滤去可使图像反差增加,边缘明显。在实际应用中,锐化滤波可用于增强被模糊的细节或者低对比度图像的目标边缘。

图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图

像;二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、

对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分析奠定基础。图像锐化一般有两种方法:一是微分法,二是高通滤波法。高通滤波法的工作原理和低通滤波相似,这里不再赘述。下面主要介绍一下两种常用的微分锐化方法:梯度锐化和拉普拉斯锐化。但由于锐化使噪声受到比信号还要强的增强,所以要求锐化处理的图像有较高的信噪比;否则,锐化后图像的信噪比更低。

2.5.1梯度锐化

邻域平均法或加权平均法可以平滑图像,反过来利用对应的微分方法可以锐化图像。微分运算是求信号的变化率,有加强高频率分量的作用,从而使图像轮廓清晰。由于图像模糊的实质是图像受到平均或积分运算造成的,所以为了把图像中任何方向伸展的边缘和模糊的轮廓变得清晰,可以对图像进行逆运算如微分运算,从而使图像清晰化。

在图像处理中,一阶微分是通过梯度法来实现的。对于一幅图像用函数 ),(y x f 表示,定义),(y x f 在点),(y x 处的梯度是一个矢量,定义为:

??

????????=y f x f y x f G )],([ (2-20) 梯度的方向在函数),(y x f 最大变化率的方向上,梯度的幅度)],([y x f G 可由下式算出:

])()[()],([22y

f x f y x f G ??+??= (2-21) 由上式可知,梯度的数值就是),(y x f 在其最大变化率方向上的单位距离所增加的量。对于数字图像而言,微分

x f ??和y f ??可用差分来近似。式(2-21)按差分运算近似后的梯度表达式为:

22)]1,(),([)],1(),([)],([+-++-=j i f j i f j i f j i f j i f G (2-22) 为便于编程和提高运算速度,在计算精度允许的情况下,可采用绝对差算法近似为:

|)1,(),(||),1(),(|)],([+-++-=j i f j i f j i f j i f j i f G (2-23) 这种梯度法又称为水平垂直差分法,另一种梯度法是交叉地进行差分计算,称为罗伯特梯度法(Robert Gradient ),表示为:

22)]1,(),1([)]1,1(),([)],([+-++++-=j i f j i f j i f j i f j i f G (2-24) 同样,可以采用绝对差算法近似为:

|)1,(),1(||)1,1(),(|)],([+-++++-=j i f j i f j i f j i f j i f G (2-25)

运用以上两种梯度近似算法,在图像的最后一行或最后一列无法计算像素的梯度

时,一般用前一行或前一列的梯度值近似代替。

为了在不破坏图像背景的前提下更好地增强边缘,也可以对上述直接用梯度值代替灰度值的方法进行改进,即利用门限判断来改进梯度锐化方法。具体公式如下:

的计算方法可以采用式(5-8)或式(5-9)。对于图像而言,物体和物

体之间、背景和背景之间的梯度变化很小,灰度变化较大的地方一般集中在图像的边缘上,也就是物体和背景交接的地方。当我们设定一个阈值时,大于阈值就认为该像素点处于图像的边缘,对结果加上常数C,以使边缘变亮;而对于不大于阈值就认为该像素点是同类像素,即为物体或背景,常数C

的选取可以根据具体的图像特点。这样,即增亮了物体的边界,同时又保留了图像背景原来的状态,比传统的梯度锐化方法具有更好的增强效果和适用性。

2.5.2 拉普拉斯掩模锐化

1.基本理论

拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义为:

(5-11)

为了更适合于数字图像处理,将该方程表示为离散形式:

(5-12)

另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示。图5-9(a)表示离散拉普拉斯算子的模板,图5-9(b)表示其扩展模板,图5-9(c)则分别表示其他两种拉普拉斯的实现模板。从模板形式容易看出,如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮。因为图像中的边缘就是那些灰度发生跳变的区域,所以拉普拉斯锐化模板在边缘检测中很有用。一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线的位置。但此算子却可用二次微分正峰和负峰之间的过零点来确定,对孤立点或端点更为敏感,因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。同梯度算子一样,拉普拉斯算子也会增强图像中的噪声,有时用拉普

图像锐化处理的作用是使灰度反差增强,从而使模糊图像变得更加清晰。图像模糊的实质就是图像受到平均运算或积分运算,因此可以对图像进行逆运算,如微分运算能够突出图像细节,使图像变得更为清晰。由于拉普拉斯是一种微分算子,它的应用可增强图像中灰度突变的区域,减弱灰度的缓慢变化区域。因此,锐化处理可选择拉普拉斯算子对原图像进行处理,产生描述灰度突变的图像,再将拉普拉斯图像与原始图像叠加而产生锐化图像。拉普拉斯锐化的基本方法可以由下式表示:

这种简单的锐化方法既可以产生拉普拉斯锐化处理的效果,同时又能保留背景信息,将原始图像叠加到拉普拉斯变换的处理结果中去,可以使图像中的各灰度值得到保留,使灰度突变处的对比度得到增强,最终结果是在保留图像背景的前提下,突现出图像中小的细节信息。

5.6 图像增强质量评价

在进行图像增强过程中,对一幅含有噪声的图像在进行去噪之后图像质量是否有所提高,需要一个评价标准来衡量,因此,简单地引入图像的客观评价标准对去噪前后的图像质量进行衡量。

图像客观质量评价方法是先计算出被评价图像的某些统计特性和物理参量,最常用的是图像相似度的测量。图像相似度的测量通常是用处理后的图像与原图像之间的统计误差来衡量处理图像的质量,若误差越小,则从统计意义上来说,被评价图像与原图像的差异越小,图像的相似度就越高,获得的图像质量评价也就越高,此种评价方法大多适用于黑白图像及灰度图像的质量评价。常用的图像相似度测量参数有平均绝对误差(MAE )、均方误差(MSE )、归一化均方误差(NMSE )、信噪比(SNR )和峰值信噪比(PSNR )等。本节主要介绍图像的信噪比的计算方法并且编程实现,其他评价方法在第7章中将会有详细的介绍。

图像的信噪比的计算公式如下:

])],(),([)

,([log 1011211

210∑∑

∑∑====-=M i N

j M i N j j i f j i g j i g SNR

其中,M 和N 分别是图像长度和宽度上的像素个数,和分别是

原始图像和去噪后的图像在点处的灰度值。信噪比是用于比较被评价图像

与原图像质量的参数,信噪比的数值越大,图像质量越好。

图像的质量评价标准,如上述SNR等是纯误差测度,即原始图像与处理图像之间的数学统计差别,计算简单,用来评价图像的质量时仅仅考虑与原始图像相似程度的大小,忽视了图像内容对人眼的影响,有时与主观感知有较大差距,不能完整反映出图像的质量,因此该评价方法的使用具有一定局限性。

5.7 本章小结

本章主要介绍了几种图像的空域增强方法及其每种方法的基本原理,在程序中用类CImgEnhance实现了图像添加噪声和常用的图像增强的算法。本章从不同角度介绍了图像中噪声的来源和模型,以及如何计算信噪比及编程实现随机噪声和椒盐噪声的添加,为研究后续的图像平滑和滤波方法奠定基础。本章还简要介绍了图像的灰度修正方法,其中包括灰度校正、灰度变换及直方图修正;详细介绍了图像的空间域平滑方法,包括邻域平均法、加权平均法和选择式掩模平滑法;介绍了传统中值滤波方法和一种适合并行实现的快速中值滤波方法;在“图像的锐化”一节中重点介绍了两种微分锐化方法:梯度锐化方法和拉普拉斯掩模锐化方法。上述方法都给出了相应的实验结果,便于读者根据不同的应用场合和应用需求选择合适的算法(待改正)。

数字图像处理(频域增强)

数字图像处理(频域增强)

数字图像处理图像频域增强方法的研究 姓名: 班级: 学号:

目录一.频域增强的原理 二.频域增强的定义及步骤三.高通滤波 四. MATLAB程序实现 五.程序代码 六.小结

一.频域图像的原理 在进行图像处理的过程中,获取原始图像后,首先需要对图像进行预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及 其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。图像增强一般不能增加原图像信息,只能针对一些成像条件,把弱信号突出出来,使一些信息更容易分辨。图像增强的方法分为频域法和空域法,空域法主要是对图像中的各像素点进行操作;而频域法是在图像的某个变换域内,修改变换后的系数,例如傅立叶变换、DCT 变换等的系数,对 图像进行操作,然后再进行反变换得到处理后的图像。 MATLAB矩阵实验室(Matrix Laboratory)的简称,具有方便的数据可视化功能,可用于科学计算和工程绘图。它不仅在一般数据可视化软件都具有的功能方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。它具有功能丰富的工具箱,不但能够进行信号处理、语音处理、数值运算,而且能够完成各种图像处理功能。本文利用MATLAB工具来研究图像频域增强技术。图像增强是为了获得更好质量的图像,通过各种方法对图像进行处理,例如图像边缘检测、分割以及特征提取等技术。图像增强的方法有频域处理法与空域处理法,本文主要研究了频域处理方法中的滤波技术。从低通滤波、高通滤波、同态滤波三个方面比较了图像增强的效果。文章首先分析了它们的原理,然后通过MATLAB软件分别用这三种方法对图像进行处理,处理后使图像的对比度得到了明显的改善,增强了图像的视觉效果。

MATLAB图像增强总结程序

MATLAB图像增强程序举例 1.灰度变换增强程序: % GRAY TRANSFORM clc; I=imread('pout.tif'); imshow(I); J=imadjust(I,[0.3 0.7],[0 1],1); %transforms the walues in the %intensity image I to values in J by linealy mapping %values between 0.3 and 0.7 to values between 0 and 1. figure; imshow(J); J=imadjust(I,[0.3 0.7],[0 1],0.5); % if GAMMA is less than 1,the mapping si weighted to ward higher (brighter) %output values. figure; imshow(J); J=imadjust(I,[0.3 0.7],[0 1],1.5); % if GAMMA is greater than 1,the mapping si weighted toward lower (darker) %output values. figure; imshow(J) J=imadjust(I,[0.3 0.7],[0 1],1); % If TOP

2.直方图灰度变换 %直方图灰度变换 [X,map]=imread('forest.tif'); I=ind2gray(X,map);%把索引图像转换为灰度图像 imshow(I); title('原图像'); improfile%用鼠标选择一条对角线,显示线段的灰度值 figure;subplot(121) plot(0:0.01:1,sqrt(0:0.01:1)) axis square title('平方根灰度变换函数') subplot(122) maxnum=double(max(max(I)));%取得二维数组最大值 J=sqrt(double(I)/maxnum);%把数据类型转换成double,然后进行平方根变换%sqrt函数不支持uint8类型 J=uint8(J*maxnum);%把数据类型转换成uint8类型

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

全科医学培训内容

全科医学科 1.轮转目的 通过全科医学科培训,系统学习全科医学基本理论、培养全科临床思维、并将其应用于基层常见病与多发病的处理中,掌握病史采集、体格检查、病历书写(及SOAP书写)、诊断与鉴别诊断、疾病治疗、随访管理等临床技能。 2.基本要求 (1)全科医学和社区卫生服务理论 1)全科/家庭医学的主要概念与原则掌握:医学模式转变与健康观的理论,全科医学、全科医疗、全科医生概念,全 科医疗的基本原则;全科医学对个人、家庭和社区进行综合性、连续性、协调性一体化照顾的理论。 熟悉:全科医师的角色与素质要求、全科医疗与专科医疗的区别和联系。 了解:全科医学的历史起源,全科医学与其他学科的关系,国内外全科医学发展概况,我国发展全科医学的必然性、迫切性、特点与可行途径。 2)全科医师的临床维与工作方式

掌握:以人为中心、家庭为单位、社区为基础、预防为导向的基本原则和方法;全生命周期保健原则和内容。 熟悉:生命周期各阶段的主要疾病的社区规范化管理。 了解:生物医学模式的优势与缺陷、全科医疗成本效益原则及其与医疗保障体系的衔接。 3)常见慢性非传染性疾病健康管理与评价 掌握:慢性非传染性疾病的全科医疗管理技能,包括主要慢性非传染性疾病的常见危险因素及评价,筛检原则与方法;社区为基础的慢性非传染性疾病防治原则、规范化管理与评价。 4)健康档案 掌握:健康档案的建立和使用。 熟悉:基层医疗卫生服务机构的信息系统及其使用.。 5)健康教育 掌握:健康教育的基本概念,健康教育常用方法及其特点,居民健康教育的计划、实施、评价方法。 (2)症状学 掌握:常见症状如发热、消瘦、肥胖、淋巴结肿大、头痛、头晕、胸闷、胸痛、咳嗽、心悸、腹痛、便秘、血尿、关

matlab图像几何变换和图像增强

一.图像几何变化 (1)放大,缩小,旋转 程序: I=imread('111.jpg'); J=imresize(I,1.5); L=imresize(I,0.75); K=imrotate(I,35,'bilinear'); subplot(221),subimage(I); title('原图像'); subplot(222),subimage(J); title('放大后图像'); subplot(223),subimage(L); title('缩小后图像'); subplot(224),subimage(K);title('旋转后图像'); 二.图像频域变换 (1)傅里叶变换 真彩图像灰度图像傅里叶变换谱程序:I=imread('111.jpg'); figure(1); imshow(I); B=rgb2gray(I); figure(2);

imshow(B) D=fftshift(fft2(B)); figure(3); imshow(log(abs(D)),[ ]); (2)离散余弦变换 真彩图灰度图进行离散余弦变换后程序: RGB=imread('111.jpg'); figure(1); imshow(RGB); G=rgb2gray(RGB); figure(2); imshow(G); DCT=dct2(G); figure(3); imshow(log(abs(DCT)),[]); 三.图像增强: (1)指数变换 程序:

f=imread('111.jpg') f=double(f); g=(2^2*(f-1))-1; f=uint8(f); g=uint8(g); subplot(1,2,1),subimage(f); subplot(1,2,2),subimage(g); (2)直方图均衡 程序: I=imread('111.jpg'); I=rgb2gray(I); figure subplot(221);imshow(I); subplot(222);imhist(I) I1=histeq(I); figure; subplot(221);imshow(I1) subplot(222);imhist(I1) (3)空域滤波增强 锐化滤波(Roberts算子Sobel算子拉普拉斯算子)

全科医学基本理论考试题含答案

全科医学基本理论考试题 1.全科医疗的基本特征不包括() E A 为社区居民提供连续性服务 B 提供以病人为中心的服务 C 提供以社区为基础的服务 D 提供以家庭为单位的服务 E 提供以家庭病床为主的基层医疗服务 2.世界全科/家庭医生组织/学会(WONCA)成立于 C A 1969年 B 1986年 C 1972年 D 1993年 E 1992年 3.全科医学概念引入中国是在 B A 20世纪60年代后期 B 20世纪80年代后期 C 20世纪90年代后期 D 19世纪80年代后期 E 19世纪60年代后期 4.全科医生的工作方式,不包括 D A.以人为中心提供照顾 B.以家庭为单位提供照顾 C.提供机会性预防服务 D.主要提供急诊和住院服务 E. 以团队的形式提供所需服务 全科医生是 D A 全面掌握各科业务技术的临床医生 B 提供“六位一体”全部服务内容的基层医生 C专门为社区群众提供上门医疗服务的基层医生 D 经全科医学专业培训合格,在社区提供长期负责式医疗保健的医生

E以公共卫生服务为主的医生 全科医学的基本原则不包括 D A 以门诊为主体的照顾 B 为个体提供从生到死的全过程照顾 C 为服务对象协调各种医疗资源 D 提供以急诊室和家庭病床为主的服务 E 提供使社区群众易于利用的服务 5.全科医疗作为一种基层医疗保健,它不是 C A公众需要时最先接触的医疗服务 B 以门诊为主体的医疗照顾 C 仅关注社区中前来就医者 D 强调使用相对简便而有效的手段解决社区居民大部分健康问题 E 强调在改善健康状况的同时提高医疗的成本效益 6.全科医学“连续性服务”体现在 D A 全科医生对社区中所有人的生老病死负有全部责任 B 全科医生在患者生病的过程中均陪伴在病人床边 C对患者的所有健康问题都要由全科医生亲手处理 D全科医生对人生各阶段以及从健康到疾病的各阶段都负有健康管理责任E如果全科医生调动工作,就必须将自己的患者带走 7.对“以社区为基础的照顾”描述正确的是 C A 对辖区内全体居民进行健康登记 B 在居民社区内设立全科医学诊室 C 以一定的人群健康需求为基础,提供个体和群体相结合的服务 D 对社区内所有居民的进行健康状况普查 E 组成医-护-公卫团队每日巡回于居民区 8.对“以家庭为单位照顾”描述最佳的是 D A全科医生将家庭访视作为其日常工作中的最主要内容 B全科医生必须为社区内所有家庭建立家庭健康档案 C全科医生负责管理每个家庭所有成员疾病的诊疗及康复

图像增强及MATLAB实现

《数字图像处理》课程设计 课设题目:图像增强与MATLAB实现学校学院:华东交通大学理学院 学生班级:13级信息计算(2)班学生:超 学生学号:20130810010216 指导老师:自柱

图像增强与MATLAB实现 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键字:图像;图像增强;算法

目录 一、MATLAB的简介 (1) 1.1MATLAB主要功能 (1) 二、MATLAB的主要功能 (1) 2.1数字增强技术概述 (1) 2.2数字图像的表示 (2)

三、直方图的均衡化 (2) 3.1图像的灰度 (2) 3.2灰度直方图 (2) 3.3直方图均衡化 (3) 四、图像二值化 (5) 4.1图像二值化 (5) 五、对比度增强 (7) 5.1对比度增强 (7) 5.2灰度调整 (8) 5.3对数变换 (9) 六、滤波 (10) 6.1平滑滤波 (10) 6.2线性平滑滤波程序: (11) 6.3非线性滤波 (12) 七、锐化 (18) 八、参考文献 (19) 九、自我评价 (20)

一、Matlab的简介 1.1 MATLAB主要功能 MATLAB是建立在向量、数组和矩阵基础上的一种分析和仿真工具软件包,包含各种能够进行常规运算的“工具箱”,如常用的矩阵代数运算、数组运算、方程求根、优化计算及函数求导积分符号运算等;同时还提供了编程计算的编程特性,通过编程可以解决一些复杂的工程问题;也可绘制二维、三维图形,输出结果可视化。目前,已成为工程领域中较常用的软件工具包之一。 二、MATLAB的主要功能 2.1数字增强技术概述 图像增强是按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些信息使得图像更加实用。图像增强技术主要包含直方图修改处理、图像平滑处理、图像尖锐化处理等。 图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。从纯技术上讲主要有两类:频域处理法和空域处理法。 频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。

数字图像的频域增强论文

数字图像处理结课作业 --数字图像频域增强方法 及在matlab中的实现数字图像的频域增强

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

1.频域图像增强的目的、意义及主要内容 1.1频域图像增强技术的目的: 分析几种频域图像增强方法,并能够用频域法进行图像增强,通过形态学方法进行图像特征抽取和分析。熟练的运用MATLAB,掌握修改图像的傅里叶变换来实现图像的增强技术。 1.2频域图形增强技术的意义: 图像增强是图像处理中用来消除原始图像边缘模糊、对比度差等缺点的常用技术,它需要解决的问题包括边缘增强、噪声的滤除、高斯噪声的平滑和细节的保护等等。本论文主要是针对整体偏暗图像而提出的图像增强的方法。对于整体偏暗的图像,我们可以用直方图均衡化来调节图像的灰度分布,使图像变亮。此外,为了进一步提高图像的视觉效果,即解决包括边缘增强、噪声滤除等问题,我们还可以用频域图像增强方法(高通滤波器和低通滤波器)来处理,因为高通滤波器可以突出图像边缘,增强有用信息,使图像更加清晰,而低通滤波器可以平滑去噪,抑制无用信息,从而提高图像成分的可分辨性。 1.3主要内容

最优化理论与方法论文

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个

matlab提供的红外图像增强实例

matlab里提供的TM图像增强实例: View code for landsatdemoRun this demo Landsat Color Composite landsatdemo Landsat color composite demo. This demo allows you to experiment with creating color composites from Landsat Thematic Mapper https://www.360docs.net/doc/7d11724271.html,ndsat data consists of7spectral bands that each reveal different features of the region that is imaged.The data is read into a512-by-512-by-7array.To create a color composite, we form an RGB image by assigning spectral bands to red,green,and blue intensities. Try out some common color composites by clicking on the radio buttons.The numbers in square brackets map the spectral bands to red, green,and blue.The array[321]means band3will be shown as red intensities,band2will be shown as blue intensities,and band1will be shown as green intensities. "True Color[321]"-shows what our eyes would see from an airplane. "Near Infrared[432]"-shows vegetation as red,water as dark. "Shortwave Infrared[743]"-shows changes due to moisture. Click on"Custom Composite",and change the popup menus to create your own combinations of red,green,and blue. Click on"Single Band Intensity"to see individual bands as gray intensity images. Try turning off"Saturation Stretch"by clicking on the checkbox.For most Landsat data sets,saturation stretching is important.When saturation stretching is turned on,the demo clips2%of the pixels in each band and does a linear contrast stretch before displaying the image. Try turning on"Decorrelation Stretch"by clicking on the checkbox. This visual enhancement increases color separation by eliminating correlation between channels,making subtle spectral differences easier to recognize.If both"Saturation Stretch"and"Decorrelation Stretch"are checked,the decorrelation stretch is followed by a linear saturation stretch.

matlab数字图像处理—图像增强汇总

图像增强 图像增强的定义 图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程[9]。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的[10]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST 转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。 常用的图像增强方法 图像增强可分成两大类:空间域法和频率域法。基于空间域的算法处理时直接对图像灰度级做运算;基于频率域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。 基于空间域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。 基于频率域的算法把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。 图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。 ?????? ?????????????????????彩色图像灰度图像处理对象局部处理全局处理处理策略频率域模板处理(滤波)点处理(变换)空间域处理方法图像增强

数字图像处理整理经典

名词解释 数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。 1.数字图像:一幅图像f(x,y),当x,y和幅值f为有限的离散数值时,称该图像为数字图像。 图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。 数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。 图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。 无损压缩:可精确无误的从压缩数据中恢复出原始数据。 灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。 细化:提取线宽为一个像元大小的中心线的操作。 8、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 9、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 10、像素的邻域: 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 11、灰度直方图:以灰度值为自变量,灰度值概率函数得到的曲线就是灰度直方图。 12.无失真编码:无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。 13.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。 14.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。 15.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。 16.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。 17.色度:通常把色调和饱和度通称为色度,它表示颜色的类别与深浅程度。 18.图像锐化:是增强图象的边缘或轮廓。 19.直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法 20. 数据压缩:指减少表示给定信息量所需的数据量。 像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1),(x,y-1) 灰度直方图:灰度直方图是指反映一幅图像各灰度级像元出现的频率。?、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素数字图像是由有限的元素组成的,每个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。 4.空间分辨率:是图像中可辨别的最小细节。

2011年下学期最优化理论与方法考试试卷(A)

中南大学考试试卷 2011--2012学年 1 学期 时间100分钟 最优化理论与方法 课程 48 学时 学分 考试形式: 闭 卷 专业年级: 信科08、应数08 总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上,可用中英文作答。 1.(15 points ) For an unconstrained optimization problem: ),(min x f Let )0(x be a given point, )0(d be a descent search direction at )0(x . (1) With the exact line search, show that there is a steplength 0α satisfying .0)()0()0(0)0(=+?d d x f T α (2)Show that when applied to a quadratic objective function, the Newton method with the exact line search terminates in at most one iteration. 2. (15 points )For an unconstrained optimization problem: .2)(min 2 221x x x f += (1) Find a descent direction )0(d of f at .)1,1() 0(T x = (2) By the Armijo line search, find a steplength 0α along )0(d at .)0(x 3.(15 points ) (1)Let .2113???? ??=A Find two directions 1d and 2d such that 1d and 2d are conjugate with respect to the matrix A . (2)Show that when applied to a quadratic objective function, with the exact line search, the PRP conjugate gradient method is equivalent to the FR conjugate gradient method.

图像增强理论-13页文档资料

第一章绪论 图像增强研究现状 图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。图像增强主要可分为三类:频域图像增强方法、小波域图像增强方法、空域图像增强方法。 1.1频域图像增强方法 频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。其原理如下图所示: 频域图像增强原理图 常用的频域增强方法有低通滤波技术,是利用低通滤波器去掉反映细节和跳变性的高频分量。但其在去除图像尖峰细节的同时也将图像边缘的跳变细节去除掉了,而使得图像较模糊。低频滤波有理想低通滤波器、Butterworth滤波器、指数滤波器等。高通滤波器技术是利用高通滤波器来忽略图像中过度平缓的部分,突出细节和跳变等的高频部分,使得增强后的图像边缘信息分明清晰。高通滤波技术进行增强处理后的图像,视觉效果不好,较适用于图豫中物体的边缘提取。高通滤波器有理想高通滤波器、梯形滤波器、指数滤波器等。频域增强方法中还有带通和带阻滤波、同态滤波等,一般是用来解决光动态范围过大或者光照不均而引起的图像不清等情况。 频域变换的基础是卷积处理,因此其基本原理为:设原始图像为) f,处 (y x , 理后图像为) x , h是线性不变算子。则根据卷积定理,有: (y (y x , g,而) y h x g=(1-1) x x y f *) , (y ) , ( , ( ) 其中*代表卷积。若) (y , x (y x f , x (y , h、) g、) G、) , u F分别是) , (v (v u (v u , H、) 的傅立叶变换,则上式的卷积关系表示成变换域中为: u v F H u G=(1-2) u v , ( , ) (v *) , ) ( 其中) x f是 , (y , (v u H用线性系统理论来说,是转移函数。在具体的增强中,) 给定的,则) (v u , H通过不同的滤波器来确定,则, F也可通过变换求出。而) (v u 由式(1-2)可得: H u F v g- F =(1-3) x y , ) ( , )] u ( (1v [ , ) 1.2小波域图像增强方法 小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和

2018年最新全科医学概论答案

2018年最新《全科医学概论》答案 (C )社区教育在国外形成完整的教学体系,为社区培养新型医师C、20世纪70年代 (D )是全科医疗区别于专科医疗的一个十分重要的特征D、持续性照顾 “以病人为中心”的治疗模式应强调(E )E、疾病、病患和患病同等对待 《国家基本公共卫生服务规范2011版》建议对以下那些人进行骨质疏松风险筛查,除外(C ) C、各种原因引起的性激素水平升高的成年人 《国家基本公共卫生服务规范2011版》建议针对高血压的筛检,正确的是(E )E、ABCD 都对 APGAR家庭功能评估得分5分,显示(E)E、家庭功能严重障碍 APGAR家庭功能评估中不包括(C)C、自由度 BATHE问诊不包括(B )B、了解病人的疾病体征 COPC 处于3级水平的是C、通过社区调查或建立的档案资料能掌握所定义社区90%以上居民的健康状况,针对社区内的健康问题采取对策,但缺乏有效的预防策略 COPC的基本要素为(A)A.基层医疗、社区人群、解决问题的过程 COPC提供(C )C、以社区为范围的健康照顾 ECO-MAP图把(B )作为对象B、家庭 WHO五星医生应具备的五个方面能力不包括(D )D、医疗政策制定者 WHO止痛阶梯中处于第一阶梯的是(A )A、阿司匹林 WHO止痛阶梯中第二阶梯可添加哪类药物(A)A、阿司匹林 被世界卫生组织称为"20世纪的瘟疫"的不良行为是(A )A、吸烟 不属于家庭内部结构的是(A)A.家庭人口构成 不属于家庭生活周期发展阶段的是(A )A、恋爱期 不属于全科医学的基本原则是(A )A、科学技术、人文相统一 采用体质指数(BMI)判定肥胖时,WHO和我国的标准分别是(A )A、30,28 从服务内容上来讲,全科医学以(C )C、医疗 从全科医学的特性来看,开展科学研究具有以下学科基础,除外(D) D.社会学和社区医学基础 促使全科医学产生的背景不包括(D) D.医疗费用的高涨 胆固醇含量最高的食物是(B )B、蛋黄 当前,被普遍认为是临床预防服务的“金标准”的是哪个指南(B )B、USPSTF《临床服务指南》 对“以社区为基础的照顾”描述正确的是(C )C、以一定的人群健康需求为基础,提供个体和群体相结合的服务 对高血压患者的生活方式指导不包括(B )B、早睡早起 对家庭生活周期理解正确的是(C )C、家庭可以在家庭生活周期的某个阶段开始或结束 对精神疾病的发病影响密切的是(E )E、以上都是

matlab中的图像增强实验附程序代码

图像增强实验

一:试验目的 熟悉并掌握数字图像空域增强:空域变换增强,空域滤波增强 二:实验内容 (1)直方图均衡化进行图像增强代码: imag=imread('pout.tif'); imag=im2double(imag); subplot(2,2,1);imshow(imag);title('原始图像'); subplot(2,2,2);imhist(imag);title('原始图像的直方图'); imag1=histeq(imag); subplot(2,2,3);imshow(imag1);title('直方图均衡化后的图像'); subplot(2,2,4);imhist(imag1);title('直方图均衡化后的图像的直方图'); 直方图均衡化进行图像增强效果图 (2)对图像加入椒盐噪声,并分别用中值滤波和自适应的方法进行去噪处理的代码: imag2=imnoise(imag,'salt',0.02); imag3=medfilt2(imag2); imag4=wiener2(imag2); subplot(2,2,1);imshow(imag);title('原始图像'); subplot(2,2,2);imshow(imag2);title('加入椒盐噪声后的图像'); subplot(2,2,3);imshow(imag3);title('进行中值滤波后的图像'); subplot(2,2,4);imshow(imag4);title('进行自适应滤波后的图像'); 对图像加入椒盐噪声,并分别用中值滤波和自适应的方法进行去噪处理的效果 原始图 像 0.5 1 原始图像的直方图 直方图均衡化后的图像 0.5 1 0直方图均衡化后的图像的直方图

数字图像处理练习题3

Lecture16-17作业 一. 判断题(每题1分。T表示正确,F表示错误。) 1. 在数字图像中,一个像素的邻域只有8领域。(F) 2. 在空间域基于滤波器处理数字图像时,二维滤波器可以分解为多个一维滤波器,以提高计算效率(T)。 3. 彩色数字图像平滑处理无需考虑颜色模型。(F) 二. 单项选择题(每题1分。) 1. 能够实现数字图像平滑的处理方法(C)。 A. 线性点处理 B. 基于直方图的处理 C. 邻域处理 D. 非线性点处理 2. 最大值滤波器可用于检测数字图像中的像素点是(A)。 A. 最亮 B. 最暗 C. 中间亮度 D. 平均亮度 3. 最小值滤波器可用于检测数字图像中的像素点是(B)。 A. 最亮 B. 最暗 C. 中间亮度 D. 平均亮度 4. 阿拉法裁剪均值滤波器a-trimmed mean filter是(D)。 A. 中值median滤波器 B. 均值mean滤波器 C. 排序rank滤波器 D. 混合hybrid滤波器 三. 多项选择题(每题2分。) 1. 在数字图像中,基于邻域处理的滤波器包括(ABCD)。 A. 可以是十字、方形等形状 B. 可以是3X 3、5 X 5等不同尺寸 C. 可以有不同的权值 D. 可以采用中心为原点 四. 填空题(每题1分。) 1. 若操作是在像素的某个邻域内进行的,即输出数字图像的像素值由对应的输入数字图像的像素值及其邻域像素值决定,则称其为邻域操作。 2. 在数学上,数字图像模糊处理相当于数字图像被平均或被积分。 五. 简答题(每题4分。) 1. 在空间域进行数字图像排序滤波有哪些?各有什么特点? 排序滤波包括:中值滤波、中值滤波的线性组合、中值滤波的高阶组合、加权的中值滤波、迭代的中值滤波、最大值滤波、最小值滤波、中点值滤波。

图像增强及其matlab实现实例

图像增强及其matlab实现实例 图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。从纯技术上讲主要有两类:1)频域处理法2)空域处理法;频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。 2.1 空域滤波增强 空域滤波增强:使用空域模板进行的图像处理被称为空域滤波,模板本身被称为空域滤波器。空域滤波器包括:线性滤波器和非线性滤波器 空域滤波处理效果来分类,可以分为平滑滤波器,和锐化滤波器,平滑的目的在于消除混杂在图像中的干扰因素,改善图像质量,强化图像表现特征。锐化的目的在于增强图像边缘,以及对图像进行识别和处理。 2.1.1 平滑滤波器:用于模糊处理和减小噪声, 线性平滑滤波器 平滑线性空间滤波器的输出(响应)是包含在滤波掩模邻域内像素的简单平均值。因此这些滤波器也被称为均值滤波器。平滑滤波器的概念很简单:它是用滤波掩模确定的领域内像素的平均值去代替图像每个像素点的值。这种处理减少了图像灰度的尖锐化。 注:每个掩模前边的乘数等于它的系数值的和,以计算平均值。(详见数字图像处理P--93) 我们经常用这些极端类型的模糊处理来去除图像中的一些小物体。 例子:在matlab中利用线性平滑滤波器处理一副图像(详见matlab7.0图像处理) I=imread('eight.tif'); J=imnoise(I,'salt & pepper',0.02); >> %添加椒盐噪声 >> subplot(221) >> imshow(I) >> title('原图像') >> subplot(222) >> imshow(J) >> title('添加椒盐噪声图像')

相关文档
最新文档