第八章热力学作业(答案)

合集下载

物理学教程(第二版)上册课后答案8

物理学教程(第二版)上册课后答案8

物理学教程(第二版)上册课后答案8-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章热力学基础8-1如图,一定量的理想气体经历acb过程时吸热700 J,则经历acbda过程时,吸热为 ()(A) – 700 J (B) 500 J(C)- 500 J (D) -1 200 J分析与解理想气体系统的内能是状态量,因此对图示循环过程acbda,内能增量ΔE=0,由热力学第一定律Q=ΔE+W,得Q acbda=W= W acb+ W bd+W da,其中bd过程为等体过程,不作功,即W bd=0;da为等压过程,由pV图可知,W da= - 1 200 J. 这里关键是要求出W acb,而对acb过程,由图可知a、b两点温度相同,即系统内能相同.由热力学第一定律得W acb=Q acb-ΔE=Q acb=700 J,由此可知Q acbda= W acb +W bd+W da=- 500 J. 故选(C)题 8-1 图8-2如图,一定量的理想气体,由平衡态A 变到平衡态B,且它们的压强相等,即p A=p B,请问在状态A和状态B之间,气体无论经过的是什么过程,气体必然()(A) 对外作正功(B) 内能增加(C) 从外界吸热(D) 向外界放热题 8-2 图分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( ) (A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R iM m E Δ2Δ'=,可知欲使氢气和氦气升高相同温度,须传递的热量⎪⎪⎭⎫ ⎝⎛'⎪⎪⎭⎫ ⎝⎛'=eee222e2H H H H H H HH /:i M m i M m Q Q .再由理想气体物态方程pV =M m 'RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).8-4 一定量理想气体分别经过等压,等温和绝热过程从体积1V 膨胀到体积2V ,如图所示,则下述正确的是 ( )(A ) C A →吸热最多,内能增加 (B ) D A →内能增加,作功最少 (C ) B A →吸热最多,内能不变 (D ) C A →对外作功,内能不变分析与解 由绝热过程方程=γpV 常量,以及等温过程方程pV =常量可知在同一 p-V 图中当绝热线与等温线相交时,绝热线比等温线要陡,因此图中B A →为等压过程,C A →为等温过程,D A →为绝热过程.又由理想气体的物态方程RT pV ν=可知,p-V 图上的pV 积越大,则该点温度越高.因此图中B C A D T T T T <=<.对一定量理想气体内能,RT iE 2ν=,由此知0>∆AB E ,0=∆AC E ,.0<∆AD E 而由理想气体作功表达式⎰=V p W d 知道功的数值就等于p-V 图中过程曲线下所对应的面积,则由图可知AD AC AB W W W >>. 又由热力学第一定律Q =W +ΔE 可知0=>>AD AC AB Q Q Q .因此答案A 、B 、C 均不对.只有(D )正确.题 8-4 图8-5 一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J分析与解 热机循环效率η=W /Q 吸,对卡诺机,其循环效率又可表为:η=1-12T T ,则由W /Q 吸=1 -12T T可求答案.正确答案为(B). 8 -6 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979 m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得. 解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15 K8-7 如图所示,1 mol 氦气,由状态),(11V p A 沿直线变到状态),(22V p B ,求这过程中内能的变化、对外作的功、吸收的热量.分析 由题 8-4 分析可知功的数值就等于p-V 图中B A →过程曲线下所对应的面积,又对一定量的理想气体其内能RT iE 2ν=,而氦气为单原子分子,自由度i =3,则 1 mol 氦气内能的变化T R E ∆=∆23,其中温度的增量T ∆可由理想气体物态方程RT pV ν=求出.求出了B A →过程内能变化和做功值,则吸收的热量可根据热力学第一定律E W Q ∆+=求出. 解 由分析可知,过程中对外作的功为))((211212p p V V W +-=内能的变化为)(23231122V p V p T R E -=∆=∆ 吸收的热量)(21)(212211122V p V p V p V p E W Q -+-=∆+=题 8-7 图8-8 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功它的内能改变了多少分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值. 解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102 J其内能的改变为ΔE =Q -W =1.21 ×103 J8 -9 如图所示,在绝热壁的汽缸内盛有1 mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02 m 2 .从汽缸底部加热,使活塞缓慢上升了0.5 m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12 J·mol -1·K -1,摩尔定容热容C V ,m =20.80 J·mol -1·K -1 )题 8-9 图分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q p Δm p,v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12 J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2-p 1 V 1 )/R =p(V 2-V 1 )/R =p· S· Δl/R则 J 105.293m p,p ⨯=∆=RlpS C Q8-10 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量当体积不变时,需要多少热量(2) 在等压或等体过程中各作了多少功分析 (1) 由量热学知热量的计算公式为T C Q ∆=m ν.按热力学第一定律,在等体过程中,T C E Q V V ∆=∆=m ,ν;在等压过程中,⎰∆=∆+=.d m ,T C E V p Q p P ν (2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.42111-⨯==RT V p v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=.(1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V,V =-==T T C E Q v(2) 按分析中的两种方法求作功值① 利用公式()V V p W d ⎰=求解.在等压过程中,T R MmV p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R MmW W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C MmE Q 由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W 0ΔV V =-=E Q W8-11 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326 J 的热量传递给系统,同时系统对外作功126 J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52 J ,则此过程中系统是吸热还是放热传递热量是多少题 8-11 图分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE CA ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE CA ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326 J , W ABC =126 J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200 J由此可得从C 到A ,系统内能的增量为ΔE CA =-200 J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热. 8-12 如图所示,使1 mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.题 8-12 图分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT MmW 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J(2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =C p (V B -V C )=2.0×103JQ ACB =W ACB =2.0×103 J8-13 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4 kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=. (2) 炮弹的出口速度(忽略摩擦). 分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m, D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2. (1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W(2) 根据分析2122121v v m m W -=,则1-21s m 563⋅=+=v m2Wv 8-14 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.题 8-14 图分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln /ln 32121212121⨯=-'='+'=+=V V T T R Mm V V RT M m V V RT M m W W W CD AB )(由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J1081.325/ln /ln Δ42112121,121⨯=-'+'=-'+'=+=+=T T R M m V V RT M m T T C Mm V V RT M m E W Q Q Q m V DAAB DA AB由此得到该循环的效率为%15/==Q W η8-15 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.题 8-15 图分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =KT ,C 为常数.将其与理想气体物态方程pV =νRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题8-14的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C MmQ -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-=CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R /2,摩尔定容热容C V ,m =3R /2.故循环效率为()()%3.125/2ln 2312/5/2ln 231/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η8-16 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫⎝⎛'--''-='-''=T ηηT T T8-17 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?题 8-17 图分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知()()())/1(/11111,,B A B C D C AB DC A B m p CD m p ABCD T T T T T T T T T T T T C T T C Q Q ---=---=---=-=ννη (1)与求证的结果比较,只需证得BAC D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2) V C /T C =V D /T D (3)C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.8-18 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27 ℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式QPtQ W ==η,可得此条件下的最大功率. 解 根据分析,热机获得的最大功率为()1-712s J 100.2/1⋅⨯=-==tQ T T tQp η8-19 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q /1/112-=-=η出发,利用热力学第一定律和等体、等压方程以及γ=C p ,m /C V ,m 的关系来证明.题 8-19 图证 该热机循环的效率为CA BC Q Q Q Q /1/112-=-=η其中Q BC =νC p,m (T C -T B ),Q CA =νC V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1=T C /V 2,T A /p 1 =T C /p 2,代入上式得()()1/1/12121---=p p V V γη8-20 一定量的理想气体,沿图示循环,请填写表格中的空格.过程 内能增量J /E ∆ 对外作功J /W吸收热量J /Q B A → 1000C B → 1500 A C →-500ABCA=η分析 本循环由三个特殊过程组成.为填写表中各项内容,可分四步进行: (1)先抓住各过程的特点填写一些特殊值,如等温过程0=∆E ,等体过程0=W 等.(2)在第一步基础之上,根据热力学第一定律即可知道B A →,C B →过程的吸热Q .(3)对A C →过程,由于经ABCA 循环后必有0=∆E ,因此由表中第一列即可求出A C →过程内能的变化.再利用热力学第一定律即可写出A C →过程的Q 值.(4)在明确了气体在循环过程中所吸收的热量1Q 和所放出热量2Q ,或者所作净功W 后,可由公式1121Q WQ Q =-=η计算出循环效率.题 8-20 图解 根据以上分析,计算后完成的表格如下:过程 内能增量J /E ∆ 对外作功J /W吸收热量J /QB A → 1000 0 1000C B → 0 1500 1500 A C → -1000-500-1500ABCA=η40%8-21 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)题 8-21 图分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106 J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 . 解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e 在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107 J=8.0 kW·h8-22 1 mol 理想气体的状态变化如图所示,其中31→为温度300 K 的等温线.试分别由下列过程计算气体熵的变化:(1)经等压过程21→和等体过程32→由初态1到末态3;(2)经等温过程由初态1到末态3.分析 熵是热力学系统的状态函数,状态A 与B 之间的熵变AB S ∆不会因路径的不同而改变. 31→为等温过程,其熵变⎰→→==∆→321.//d 31T Q T Q S 过程由两个子过程构成,总的熵变应等于各子过程熵变之和,即322131→→→∆+∆=∆S S S ,但要注意21→和32→过程中温度是变化的,在计算熵变⎰=∆T Q S /d 时,必须寻找Q 与T 的函数关系,经统一变量后再积分.这里可以利用等压过程的T C Q p d d m ,=和等体过程的T C Q V d d m ,=两个公式. 解 (1)根据分析计算321→→过程的熵变如下:2ln ln)(ln ln lnlnln ln d d 12m ,m ,31m ,12m ,23m ,12m ,23m ,12m ,m ,m ,3221313221R V V C C V VC V V C p p C V V C T T C T T C T T C T TC S S S V p V p V p V p T T V T Tp =-=+=+=+=+=∆+∆=∆⎰⎰→→→(2) 直接由等温过程31→从初态到末态的熵变为2ln ln d d 1d 1131111313131R V V R V V T RT V p T Q T S V VVV =====∆⎰⎰⎰→ 从计算的结果可以看出,(1)和(2)计算的过程不同,但两种过程的熵变确实是相同的.可见熵变是状态量.。

课时作业8:10.3 热力学第一定律 能量守恒定律

课时作业8:10.3 热力学第一定律 能量守恒定律

1.(热力学第一定律的理解和应用)关于内能的变化,以下说法正确的是()A.物体吸收热量,内能一定增大B.物体对外做功,内能一定减少C.物体吸收热量,同时对外做功,内能可能不变D.物体放出热量,同时对外做功,内能可能不变答案C解析根据热力学第一定律ΔU=W+Q,物体内能的变化与做功及热传递两个因素均有关,物体吸收热量,内能不一定增大,因为物体可能同时对外做功,故内能有可能不变或减少,A错;物体对外做功,还有可能吸收热量,内能可能不变或增大,B错,C正确;物体放出热量,同时对外做功,内能一定减少,D错误.2.(能量守恒定律的理解和应用)自由摆动的秋千摆动幅度越来越小,下列说法正确的是()A.机械能守恒B.能量正在消失C.只有动能和重力势能的相互转化D.减少的机械能转化为内能,但总能量守恒答案D解析自由摆动的秋千摆动幅度减小,说明机械能在减少,减少的机械能等于克服阻力做的功,增加了内能.3.(热力学第一定律的理解和应用)一定量的气体从外界吸收了2.6×105 J的热量,内能增加了4.2×105 J.(1)是气体对外界做了功,还是外界对气体做了功?做了多少焦耳的功?(2)如果气体吸收的热量仍为2.6×105 J不变,但是内能增加了1.6×105 J,计算结果W =-1.0×105 J是负值,怎样解释这个结果?(3)在热力学第一定律ΔU=W+Q中,W、Q和ΔU为正值、负值各代表什么物理意义?答案见解析解析(1)根据ΔU=W+Q得W=ΔU-Q,将Q=2.6×105 J,ΔU=4.2×105 J代入式中得:W=1.6×105 J>0,说明外界对气体做了1.6×105 J的功.(2)如果吸收的热量Q =2.6×105 J ,内能增加了1.6×105 J ,即ΔU =1.6×105 J ,则W =-1.0×105 J ,说明气体对外界做功.(3)在公式ΔU =W +Q 中,ΔU >0,物体内能增加;ΔU <0,物体内能减少.Q >0,物体吸热;Q <0,物体放热.W >0,外界对物体做功;W <0,物体对外界做功.4.(气体实验定律和热力学第一定律的结合)如图6所示,两个截面积都为S 的圆柱形容器,右边容器高为H ,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的质量为M 的活塞.两容器由装有阀门的极细管道相连,容器、活塞和细管都是绝热的.开始时阀门关闭,左边容器中装有理想气体,平衡时活塞到容器底的距离为H ,右边容器内为真空.现将阀门缓慢打开,活塞便缓慢下降,直至系统达到新的平衡,此时理想气体的温度增加为原来的1.4倍,已知外界大气压强为p 0,求此过程中气体内能的增加量.图6答案 35(Mg +p 0S )H 解析 理想气体发生等压变化.设封闭气体压强为p ,分析活塞受力有pS =Mg +p 0S设气体初态温度为T ,活塞下降的高度为x ,系统达到新平衡,由盖—吕萨克定律得HS T=(H -x +H )S 1.4T解得x =35H 又因系统绝热,即Q =0外界对气体做功为W =pSx根据热力学第一定律ΔU =Q +W所以ΔU =35(Mg +p 0S )H题组一 热力学第一定律的应用1.(多选)关于物体内能的变化情况,下列说法中正确的是( )A .吸热的物体,其内能一定增加B .体积膨胀的物体,其内能一定减少C .放热的物体,其内能也可能增加D .绝热压缩的物体,其内能一定增加答案CD解析做功和热传递都可以改变物体的内能,不能依据一种方式的变化就判断内能的变化.2.(多选)下列过程可能发生的是()A.物体吸收热量,对外做功,同时内能增加B.物体吸收热量,对外做功,同时内能减少C.外界对物体做功,同时物体吸热,内能减少D.外界对物体做功,同时物体放热,内能增加答案ABD解析当物体吸收的热量多于对外做的功时,物体的内能就增加,A正确;当物体吸收的热量少于对外做的功时,物体的内能就减少,B正确;外界对物体做功,同时物体吸热,则物体的内能必增加,C错误;当物体放出的热量少于外界对物体做的功时,物体的内能增加,D正确.3.如图1所示是密闭的汽缸,外力推动活塞P压缩气体,对缸内气体做功800 J,同时气体向外界放热200 J,缸内气体的()图1A.温度升高,内能增加600 JB.温度升高,内能减少200 JC.温度降低,内能增加600 JD.温度降低,内能减少200 J答案A解析对一定质量的气体,由热力学第一定律ΔU=W+Q可知,ΔU=800 J+(-200 J)=600 J,ΔU为正表示内能增加了600 J,对气体来说,分子间距较大,分子势能为零,内能等于所有分子动能的和,内能增加,气体分子的平均动能增加,温度升高,选项A正确.4.给旱区送水的消防车停于水平地面,在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体()A.从外界吸热B.对外界做负功C.分子平均动能减小D.内能增加答案A解析胎内气体经历了一个温度不变、压强减小、体积增大的过程.温度不变,分子平均动能和内能不变.体积增大,气体对外界做正功.根据热力学第一定律气体一定从外界吸热.题组二能量守恒定律5.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,并从中穿出.对于这一过程,下列说法中正确的是()A.子弹减少的机械能等于木块增加的机械能B.子弹减少的动能等于木块增加的动能C.子弹减少的机械能等于木块增加的动能与木块增加的内能之和D.子弹减少的动能等于木块增加的动能与子弹和木块增加的内能之和答案D解析射穿木块的过程中,由于相互间摩擦力的作用使得子弹的动能减小,木块获得动能,同时产生热量,且系统产生的热量在数值上等于系统机械能的损失.A、B项没有考虑到系统增加的内能,C项中应考虑的是系统减少的机械能等于系统增加的内能.故正确答案为D.6.汽车关闭发动机后,沿斜面匀速下滑的过程中()A.汽车的机械能守恒B.汽车的动能和势能相互转化C.汽车的机械能转化成内能,汽车的总能量减少D.汽车的机械能逐渐转化为内能,汽车的总能量守恒答案C解析汽车能匀速下滑,一定受阻力作用,克服阻力做功,机械能转化为内能,一部分内能散发出去,汽车的总能量减少.7.(多选)一物体获得一定初速度后,沿着一粗糙斜面上滑,在上滑过程中,物体和斜面组成的系统()A.机械能守恒B.总能量守恒C.机械能和内能增加D.机械能减少,内能增加答案BD解析物体沿斜面上滑的过程中,有摩擦力对物体做负功,所以物体的机械能减少,由能量守恒定律知,内能应增加,能的总量不变.8.如图2所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有形状记忆合金制成的叶片,轻推转轮后,进入热水的叶片因伸展而“划水”,推动转轮转动.离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动.下列说法正确的是()图2A.转轮依靠自身惯性转动,不需要消耗外界能量B.转轮转动所需能量来自形状记忆合金自身C.转动的叶片不断搅动热水,水温升高D.叶片在热水中吸收的热量一定大于在空气中释放的热量答案D解析形状记忆合金从热水中吸收热量后,一部分能量在伸展划水时转化为水和转轮的动能,另一部分释放到空气中,根据能量守恒定律可知只有D项正确.题组三气体实验定律与热力学第一定律的结合9.如图3所示,某同学将空的薄金属筒开口向下压入水中.设水温均匀且恒定,筒内空气无泄漏,不计气体分子间的相互作用,则被淹没的金属筒在缓缓下降过程中,筒内空气体积减小,空气一定()图3A.从外界吸热B.内能增大C.向外界放热D.内能减小答案C解析由于不计气体分子之间的相互作用,且整个过程缓慢进行,所以可看成温度不变,即气体内能不变,选项B、D均错;根据热力学第一定律ΔU=W+Q,因为在这个过程中气体体积减小,外界对气体做了功,式中W>0,ΔU=0,所以Q为负,即气体向外放热,故选项A错,C对.10.(多选)如图4所示,a、b、c、d表示一定质量的理想气体状态变化过程中的四个状态,图中ad平行于横坐标轴,dc平行于纵坐标轴,ab的延长线过原点,以下说法正确的是()图4A.从状态d到c,气体不吸热也不放热B.从状态c到b,气体放热C.从状态a到d,气体对外做功D.从状态b到a,气体吸热答案 BCD解析 气体从状态d 到c ,温度不变,理想气体内能不变,但是由于压强减小,所以体积增大,对外做功,还要保持内能不变,一定要吸收热量,故A 错;气体从状态c 到状态b 是一个降压、降温过程,同时体积减小,外界对气体做功,而气体的内能还要减小(降温),就一定要伴随放热的过程,故B 对;气体从状态a 到状态d 是一个等压、升温的过程,同时体积增大,所以气体要对外做功,C 正确;气体从状态b 到状态a 是一个等容变化过程,随压强的增大,气体的温度升高,内能增大,而在这个过程中气体的体积没有变化,就没有做功,气体内能的增大是因为气体吸热的结果,故D 对.题组四 综合应用11.如图5所示,一定质量的理想气体从状态A 先后经过等压、等容和等温过程完成一个循环,A 、B 、C 状态参量如图所示,气体在状态A 的温度为27 ℃,求:图5(1)气体在状态B 的温度T B ;(2)气体从A →B →C 状态变化过程中与外界交换的总热量Q .答案 (1)600 K(或327℃) (2)2p 0V 0解析 (1)A 到B 的过程是等压变化,有V A T A =V B T B代入数据得T B =600 K(或327 ℃)(2)根据热力学第一定律有ΔU =Q +W其中W =-2p 0V 0解得Q =2p 0V 0(吸热)12.如图6所示,导热材料制成的截面积相等、长度均为45 cm 的汽缸A 、B 通过带有阀门的管道连接.初始时阀门关闭,厚度不计的光滑活塞C 位于B 内左侧,在A 内充满压强p A =2.8×105 Pa 的理想气体,B 内充满压强p B =1.4×105 Pa 的理想气体,忽略连接汽缸的管道体积,室温不变,现打开阀门,求:图6(1)平衡后活塞向右移动的距离和B 中气体的压强;(2)自打开阀门到平衡,B 内气体是吸热还是放热(简要说明理由).答案 (1)15 cm 2.1×105 Pa (2)放热,理由见解析解析 (1)活塞向右移动达到稳定后,对A 气体,有p A LS =p (L +x )S对B 气体,有p B LS =p (L -x )S得x =15 cmp =2.1×105 Pa(2)活塞C 向右移动,对B 中气体做功,而气体做等温变化,内能不变,由热力学第一定律可知B 内气体放热.13.(1)(多选)对于一定量的理想气体,下列说法正确的是( )A .若气体的压强和体积都不变,其内能也一定不变B .若气体的内能不变,其状态也一定不变C .若气体的温度随时间不断升高,其压强也一定不断增大D .气体温度每升高1 K 所吸收的热量与气体经历的过程有关E .当气体温度升高时,内能一定增大(2)如图7所示的汽缸中封闭着一定质量的理想气体,活塞和汽缸导热性能良好,活塞与汽缸间无摩擦,汽缸开口始终向上.在室温为27 ℃时,活塞距汽缸底部距离h 1=10 cm ,之后将汽缸放置在冰水混合物中,此时外界大气压强为1 atm ,则:图7①在冰水混合物中,活塞距汽缸底部距离h 2=____ cm.②此过程中气体内能________(选填“增大”或“减小”),气体将________(选填“吸热”或“放热”).答案 (1)ADE (2)①9.1 ②减小 放热解析 (1)由理想气体状态方程pV T=C 可知,当气体的压强和体积都不变时,温度也不会变化,故内能也一定不变,选项A 正确;当气体的内能不变时,气体可能在发生等温变化,故状态可能变化,选项B 错误;由理想气体状态方程pV T=C 可知,当气体的温度不断升高时,压强可能升高,也可能降低,还可能保持不变,选项C 错误;气体温度每升高1 K ,内能的增量相同,但气体做功情况不同时气体所吸收的热量也不同,选项D 正确;当气体温度升高时,分子的平均动能增大,气体的内能一定增大,选项E 正确.(2)①由图可知,汽缸内气体的变化为等压变化,由盖—吕萨克定律可得10 cm ×S 300 K =h2×S273 K,解得h2=9.1 cm.②放入冰水混合物后缸内气体温度降低,故内能减小;由于温度降低,气体体积减小,故外界对气体做正功;由热力学第一定律ΔU=W+Q可知,汽缸内气体内能减小是由于气体向外放热引起的.。

热力学统计物理习题及答案第八章玻色统计和费米统计

热力学统计物理习题及答案第八章玻色统计和费米统计

159第八章 玻色统计和费米统计8.1 试证明,对于玻色或费米统计,玻耳兹曼关系成立,即ln .S k Ω=解: 对于理想费米系统,与分布{}l a 相应的系统的微观状态数为(式(6.5.4))()!,!!l ll l l Ωa a ωω=-∏(1)取对数,并应用斯特令近似公式,得(式(6.7.7))()()ln ln ln ln .l l l l l l l l lΩa a a a ωωωω=----⎡⎤⎣⎦∑ (2)另一方面,根据式(8.1.10),理想费米系统的熵为()ln ln ln ln S k ΞΞΞk ΞN Uαβαβαβ⎛⎫∂∂=-- ⎪∂∂⎝⎭=++ ()ln ,l l l k Ξa αβε⎡⎤=++⎢⎥⎣⎦∑ (3)其中费米巨配分函数的对数为(式(8.1.13))()ln ln 1.l l lΞe αβεω--=+∑ (4)由费米分布e 1l ll a αβεω+=+易得1e l l l la αβεωω--+=- (5)和l n.l ll la a ωαβε-+= (6)将式(5)代入式(4)可将费米巨配分函数表示为ln ln.l l ll lΞa ωωω=-∑ (7)将式(6)和式(7)代入式(3),有160 ln ln l l ll l l l l l aS k a a a ωωωω⎛⎫-=+ ⎪-⎝⎭∑ ()()ln ln ln .l l l l l l l l lk a a a a ωωωω=----⎡⎤⎣⎦∑ (8)比较式(8)和式(2),知ln .S k Ω= (9)对于理想玻色系统,证明是类似的.8.2 试证明,理想玻色和费米系统的熵可分别表示为()()()()B.E.F.D.ln 1ln 1,ln 1ln 1,s s s s ss s s s sS k f f f f S k f f f f =-++⎡⎤⎣⎦=-+--⎡⎤⎣⎦∑∑其中s f 为量子态s 上的平均粒子数. s∑表示对粒子的所有量子态求和. 同时证明,当1s f <<时,有()B.E. F.D.M.B.ln .s s s sS S S k f f f ≈≈=--∑解: 我们先讨论理想费米系统的情形. 根据8.1题式(8),理想费米系统的熵可以表示为()()()F.D.ln ln ln ln ln l l l l l l l l ll l l l l l l l l S k a a a a a a k a a ωωωωωωωω=----⎡⎤⎣⎦⎡⎤-=--+⎢⎥⎣⎦∑∑1ln 1ln ,lll l l l lll l aa a a k ωωωωω⎡⎤⎛⎫⎛⎫=---+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∑ (1) 式中l∑表示对粒子各能级求和. 以ls la f ω=表示在能量为l ε的量子态s 上的平均粒子数,并将对能级l 求和改为对量子态s 求和,注意到~,l lsω∑∑上式可改写为()()F.D.ln 1ln 1.s s s s sS k f f f f =-+--⎡⎤⎣⎦∑ (2)161由于1s f ≤,计及前面的负号,式(2)的两项都是非负的. 对于理想玻色气体,通过类似的步骤可以证明()()F.D.ln 1ln 1.s s s s sS k f f f f =--++⎡⎤⎣⎦∑ (3)对于玻色系统0s f ≥,计及前面的负号,式(3)求和中第一项可以取负值,第二项是非负的. 由于绝对数值上第二项大于第一项,熵不会取负值. 在1s f <<的情形下,式(2)和式(3)中的()()()()1ln 11s s s s s f f f f f ±≈±≈-所以,在1s f <<的情形下,有()B.E. F.D.ln .s s s sS S k f f f ≈≈--∑ (4)注意到s sf N =∑,上式也可表示为B.E. F.D.ln .s s sS S k f f Nk ≈≈-+∑ (5)上式与7.4题式(8)一致,这是理所当然的.8.3 求弱简并理想费米(玻色)气体的压强和熵. 解: 式(8.2.8)已给出弱简并费米(玻色)气体的内能为32252311122π2N h U NkT g V mkT ⎡⎤⎛⎫⎢⎥=± ⎪⎢⎥⎝⎭⎢⎥⎣⎦(1) (式中上面的符号适用于费米气体,下面的符号适用于玻色气体,下同). 利用理想气体压强与内能的关系(见习题7.1)2,3Up V=(2) 可直接求得弱简并气体的压强为32252111,2π2h p nkT n g mkT ⎡⎤⎛⎫⎢⎥=± ⎪⎢⎥⎝⎭⎢⎥⎣⎦(3) 式中Nn V=是粒子数密度. 由式(1)可得弱简并气体的定容热容量为162 32272311,22π2V VU C T h Nk n mkT ∂⎛⎫= ⎪∂⎝⎭⎡⎤⎛⎫⎢⎥= ⎪⎢⎥⎝⎭⎢⎥⎣⎦(4)参照热力学中的熵的积分表达式(2.4.5),可将熵表示为()0.VC S dT S V T=+⎰(5) 将式(4)代入,得弱简并气体的熵为()322072311ln .22π2hS Nk T Nk n S V g mkT ⎛⎫=±+ ⎪⎝⎭ (6) 式中的函数()0S V 可通过下述条件确定:在322312πN hn V mkT λ⎛⎫=<< ⎪⎝⎭的极限条件下,弱简并气体趋于经典理想气体. 将上述极限下的式(6)与式(7.6.2)比较(注意补上简并度g ),可确定()0S V ,从而得弱简并费米(玻色)气体的熵为332227222π511ln .22π2mkT h S Nk ng h g mkT ⎧⎫⎡⎤⎛⎫⎪⎪⎛⎫⎢⎥=+±⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭(7) 弱简并气体的热力学函数也可以按照费米(玻色)统计的一般程序求得;先求出费米(玻色)理想气体巨配分函数的对数ln Ξ,然后根据式(8.1.6)、(8.1.8)和(8.1.10)求内能、压强和熵. 在求巨配分函数的对数时可利用弱简并条件作相应的近似. 关于费米(玻色)理想气体巨配分函数的计算可参阅王竹溪《统计物理学导论》§65和§64.8.4 试证明,在热力学极限下均匀的二维理想玻色气体不会发生玻色-受因斯坦凝聚.解: 如§8.3所述,令玻色气体降温到某有限温度c T ,气体的化学势将趋于-0. 在c T T <时将有宏观量级的粒子凝聚在0ε=的基态,称为玻色-爱因斯坦凝聚. 临界温度c T 由条件163()0d e 1c kT D n εεε+∞=-⎰(1)确定.将二维自由粒子的状态密度(习题6.3式(4))()222πd d L D m hεεε=代入式(1),得2202πd .e 1c kT L m n hεε+∞=-⎰ (2) 二维理想玻色气体的凝聚温度c T 由式(2)确定. 令cx kT ε=,上式可改写为2202πd .e 1c x L x mkT n h +∞=-⎰ (3) 在计算式(3)的积分时可将被积函数展开,有()()211e 1e e ,e 1e 1e x x xx x x----==+++-- 则d 111e 123xx +∞=+++-⎰11.n n∞==∑ (4) 式(4)的级数是发散的,这意味着在有限温度下二维理想玻色气体的化学势不可能趋于零. 换句话说,在有限温度下二维理想玻色气体不会发生玻色-爱因斯坦凝聚.8.5 约束在磁光陷阱中的原子,在三维谐振势场()22222212x y x V m x y z ωωω=++中运动. 如果原子是玻色子,试证明:在c T T ≤时将有宏观量级的原子凝聚在能量为()02x y z εωωω=++164 的基态,在3,0,N N ωω→∞→保持有限的热力学极限下,临界温度c T 由下式确定:31.202,c kT N ω⎛⎫=⨯ ⎪⎝⎭其中()13.x y z ωωωω=温度为T 时凝聚在基态的原子数0N 与总原子数N 之比为31.c N T N T ⎛⎫=- ⎪⎝⎭解: 约束在磁光陷阱中的原子,在三维谐振势场中运动,其能量可表达为222222222111,222222y x z x y z p p p m x m y m z m m m εωωω⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1) 这是三维谐振子的能量(哈密顿量). 根据式(6.2.4),三维谐振子能量的可能值为,,111,222xyzn n n x x y y z z n n n εωωω⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,0,1,2,x y z n n n = (2)如果原子是玻色子,根据玻色分布,温度为T 时处在量子态,,x y z n n n 上的粒子数为,,11112221.e1x y z x x y y z z n n n n n n kT a ωωωμ⎡⎤⎛⎫⎛⎫⎛⎫+++++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=- (3) 处在任一量子态上的粒子数均不应为负值,所以原子气体的化学势必低于最低能级的能量,即()0.2x y z μεωωω<≡++(4) 化学势μ由()01,,1e1x x y y z z x y zn n n n n n kT N ωωωεμ⎡⎤+++-⎣⎦=-∑(5)确定. 化学势随温度降低而升高,当温度降到某临界值c T 时,μ将趋于0.ε临界温度c T 由下式确定:165()1,,1,e1x x y y z z x y zn n n n n n kT N ωωω⎡⎤++⎣⎦=-∑(6) 或,,1,e1x y zx y zn n n n n n N ++=-∑(7) 其中(),,.ii i cn n i x y z kT ω==在1ickT ω<< 的情形下,可以将i n 看作连续变量而将式(7)的求和用积分代替. 注意到在d d d x y z n n n 范围内,粒子可能的量子态数为3d d d ,c x y z kT n n n ω⎛⎫ ⎪⎝⎭即有3d d d ,1x zy x y zc n n n kT n n n N eω++⎛⎫= ⎪⎝⎭-⎰ (8)式中()13.x y z ωωωω=为了计算式(8)中的积分,将式中的被积函数改写为()()()011e 1e 1ee e .x y z x y z x y z x y z x y z n n n n n n n n n n n n l n n n l ++-++++∞-++-++==⎡⎤--⎢⎥⎣⎦=∑积分等于00003d d de d e d e d e 111.202.y xz x y z x y z l n l n l n x y zn n n l l n n n n n n l ∞+∞+∞+∞---++=∞==-==∑⎰⎰⎰⎰∑ 所以式(8)给出166 13.1.202C N kT ω⎛⎫= ⎪⎝⎭(9)式(9)意味着, 在,0N ω→∞→而3N ω保持有限的极限情形下,C kT 取有限值. 上述极限称为该系统的热力学极限.在c T T <<时,凝聚在基态的粒子数0N 由下式确定:30 1.202,kT N N ω⎛⎫-= ⎪⎝⎭上式可改写为31.C N T N T ⎛⎫=- ⎪⎝⎭(10) 式(9)和式(10)是理想玻色气体的结果. 实验上实现玻色凝聚的气体,原子之间存在弱相互作用,其特性与理想玻色气体有差异. 互作用为斥力或吸力时气体的特性也不同. 关于互作用玻色气体的凝聚可参阅Dalfovo et al. Rev. Mod. Phys. 1999, 71(465).8.6 承前8.5题,如果,z x y ωωω>>,则在z kT ω<< 的情形下,原子在z 方 向的运动将冻结在基态作零点振动,于是形成二维原子气体. 试证明C T T <时原子的二维运动中将有宏观量级的原子凝聚在能量为()02x y εωω=+的基态,在2,0,N N ωω→∞→保持有限的热力学极限下,临界温度c T 由下式确定:21.645,C kT N ω⎛⎫= ⎪⎝⎭其中()12.x y ωωω=温度为T 时凝聚在基态的原子数0N 与总原子数N 之比为21.C N T N T ⎛⎫=- ⎪⎝⎭解: 在,z x y ωωω>>的情形下,原子z 方向的运动将冻结在基态作零点振动,于是形成二维原子气体. 与8.5题相似,在c T T <时将有宏观量级的原子 凝聚在能量为()02x y εωω=+的基态. 临界温度c T 由下式确定: 2d de 1x yx yC n n kT n n N ω+∞+⎛⎫= ⎪-⎝⎭⎰16721.645,C kT ω⎛⎫= ⎪⎝⎭(1)其中()12,x y ωωω=201d d 11.645.e 1x y x y n n l n n l∞+∞+===-∑⎰(2)在,0N ω→∞→而2N ω保持有限的热力学极限下c kT 为有限值,有12.1.645C N kT ω⎛⎫= ⎪⎝⎭(3) C T T ≤时凝聚在基态的原子数0N 与总原子数N 之比由下式确定:20 1.645,kT N N ω⎛⎫-= ⎪⎝⎭或21.C N T N T ⎛⎫=- ⎪⎝⎭(4) 低维理想玻色气体玻色凝聚的理论分析可参看8.5题所引Dalfovo et al及其所引文献. 低维玻色凝聚已在实验上得到实现,见Gorlirz et al.Phys.Rev.Lett.2001,87(130402).8.7 计算温度为T 时,在体积V 内光子气体的平均总光子数,并据此估算(a )温度为1000K 的平衡辐射.(b )温度为3K 的宇宙背景辐射中光子的数密度.解: 式(8.4.5)和(8.4.6)已给出在体积V 内,在ω到d ωω+的圆频率范围内光子的量子态数为()223d d .πV D c ωωωω=(1) 温度为T 时平均光子数为()()d ,d .e1kTD N T ωωωωω=- (2) 因此温度为T 时,在体积V 内光子气体的平均光子数为168 ()223d .πe1kTVN T cωωω+∞=-⎰(3) 引入变量x kTω=,上式可表示为 ()3223033233d πe 12.404.πx V kT x xN T c kVT c +∞⎛⎫= ⎪-⎝⎭=⎰或()332332.404.πk n T T c =(3)在1000K 下,有163210.n m -≈⨯在3K 下,有835.510.n m -≈⨯8.8 试根据普朗克公式证明平衡辐射内能密度按波长的分布为()58πd ,d ,e1hc kThcu T λλλλλ=-并据此证明,使辐射内能密度取极大的波长m λ满足方程m hc x kT λ⎛⎫=⎪⎝⎭5 5.x e x -+=这个方程的数值解为 4.9651.x = 因此,4.9651m hcT kλ=m λ随温度增加向短波方向移动.解: 式(8.4.7)给出平衡辐射内能按圆频率的分布为()3231,d d .πe 1kTu T c ωωωωω==- (1)根据圆频率与波长熟知的关系2cπωλ=,有16922πd d .cωλλ=(2)如果将式(1)改写为内能按波长的分布,可得()58πd ,d .e1hc kThcu T λλλλλ=-- (3)令hcx kTλ=,使(),u T λ取极大的波长m λ由下式确定: 5d 0.d e 1x x x ⎛⎫= ⎪-⎝⎭(4) 由式(4)易得55e .x x --= (5)这方程可以用数值方法或图解方法求解. 图解方法如下:以x 为横坐标,y 为纵坐标,画出两条曲线1e ,,5x y xy -=-= 如图所示. 两条曲线的交点就是方程(5)的解,其数值约为4.96. 精确的数值解给出 4.9651.x = 所以使(),u T λ为极大的m λ满足4.9651m hcT kλ=32.89810m K.-=⨯⋅ (6)右方是常量,说明m λ随温度的增加向短波方向移动,称为维恩位移定律.值得注意,式(6)确定的使(),u T λ为极大的m λ与式(8.4.11)给出的使(),u T ω为极大的m ω并不相同. 原因是(),u T λ是单位波长间隔的内能密度,170 (),u T ω是单位频率间隔的内能密度. m λ与m ω分别由5d 0d e 1x x x ⎛⎫= ⎪-⎝⎭(4) 和3d 0d e 1x x x ⎛⎫= ⎪-⎝⎭(7) 确定,其中.hcx kT kTωλ== 由这两个方程解得m x 显然不同.8.9 按波长分布太阳辐射能的极大值在480nm λ≈处,假设太阳是黑体,求太阳表面的温度. 解: 由上题式(6)知32.89810m K.m T λ-=⨯⋅假设太阳是黑体,太阳表面温度的近似值为392.89810K 6000K.48010T --⨯==⨯8.10 试根据热力学公式d VC S T T=⎰及光子气体的热容量求光子气体的熵.解: 式(8.4.10)给出光子气体的内能为24433π.15k U VT c =(1) 由此易得其定容热容量为243334π15V V U k C VT T c ∂⎛⎫== ⎪∂⎝⎭(2) 根据热力学关于均匀系统熵的积分表达式(2.4.5),有0d d ,V V C p S T V S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰ (3)171积分沿任意一条积分路线进行. 如果取积分路线为由(0,V )到(T ,V )的直线,即有242423333304π4πd ,1545Tk k V S T T T c c ==⎰ (4)其中已取积分常量0S 为零.如果取其他积分路线,例如由(0,0)至(T ,V )的直线,结果如何?8.11 试计算平衡辐射中单位时间碰到单位面积器壁上的光子所携带的能量,由此即得平衡辐射的通量密度.u J 计算6000K 和1000K 时u J 的值. 解: 根据式(8.4.3)和(6.2.15),在单位体积内,动量大小在p 到d p p +,动量方向在θ到d ,θθϕ+到d ϕϕ+范围内,平衡辐射的光子数为232sin d d d ,e 1cpp p h βθθϕ- (1) 其中已利用式(8.4.2)将动量为p 的光子能量表示为cp ,因子2是计及光子自旋在动量方向的两个可能投影而引入的.以d A 表示法线方向沿z 轴的器壁的面积元. 以d d d ΓA t 表示在d t 时间内碰到d A 面积上,动量大小在p 到d p p +,方向在θ到d ,θθϕ+到d ϕϕ+范围的光子数. 它等于以d A 为底,以cos d c t θ为高,动量在d d d p θϕ范围内的光子数. 因此单位时间(d 1t =)内,碰到单位面积()d 1A =的器壁上(或穿过单位面积),动量在d d d p θϕ范围内的光子所携带的能量为232sin d d d cos .e 1cp p p c cp h βθθϕθ⋅⋅- (2)对式(2)积分,p 从0到,θ+∞从0到π,2ϕ从0到2π,即得到辐射动量密度u J 为π232π2300023302d sin cos d d e 12πd .e 1u cp cp c p p J h c p p h ββθθθϕ+∞+∞=⋅⋅-=-⎰⎰⎰⎰ 令x cp β=,上式可表示为172 4233042432π1d e 12ππ6,90u x c x x J h c c kT h c β+∞⎛⎫=⋅ ⎪-⎝⎭⎛⎫=⋅⋅ ⎪⎝⎭⎰或24423π.60u k J T c =(3) 在6000K ,有727.1410J m ;u J -=⨯⋅在1000K ,有520.5510J m .u J -=⨯⋅8.12 室温下某金属中自由电子气体的数密度283610m ,n -=⨯某半导体中导电电子的数密度为28310m n -=,试验证这两种电子气体是否为简并气体. 解: 根据§8.5,在e 1α>>,即31n λ<<的情形下费米气体满足非简并性条件,遵从玻耳兹曼分布;反之,在e 1α<<,即31n λ>>的情形下,气体形成强简并的费米气体.3223,2πh n n mkT λ⎛⎫= ⎪⎝⎭(1) 将283300,610m T K n -==⨯代入,得33101,n λ≈>> (2)说明该金属中的自由电子形成强简并的费米气体. 将203300K,10m T n -==代入,得35101,n λ-≈<<所以该半导体中的导电电子是非简并气体,可以用玻耳兹曼统计讨论. 金属中自由电子数密度的估计见§8.5,半导体中导电电子数密度的估计请参阅补充题3.8.13 银的导电电子数密度为28 3.5.910m -⨯试求0 K 时电子气体的费米能量、费米速率和简并压.173解: 根据式(8.5.6)和(8.5.8),0 K 下金属中自由电子气体的费米能量(电子的最大能量)、费米速率(电子的最大速率)和电子气体的压强取决于电子气体的密度n . 式(8.5.6)给出()()222303π.2n mμ= (1) 将31342839.110kg, 1.0510J s, 5.910m m n ---=⨯=⨯⋅=⨯ 代入,即得()1800.87610J 5.6eV.μ-=⨯= (2)费米速率F υ等于61F 1.410m s .υ-==⨯⋅ (3)式(8.5.8)给出0 K 下电子气体的压强为()()10200 2.110Pa.5p n μ=≈⨯ (4)8.14 试求绝对零度下自由电子气体中电子的平均速率.解: 根据式(8.5.4),绝对零度下自由电子气体中电子动量(大小)的分布为F 1,,f p p =≤F 0,,f p p => (1)其中F p 是费米动量,即0 K 时电子的最大动量. 据此,电子的平均动量为FF34F30F 23F38π1d 34.8π14d 3p p Vp pp h p p V p p p h ===⎰⎰(2) 因此电子的平均速率为F F 33.44p p υυm m === (3)8.15 试证明,在绝对零度下自由电子的碰壁数可表示为1,4n υΓ=174 其中Nn V=是电子的数密度,υ是平均速率. 解: 绝对零度下电子速率分布为F F 1,,0,,f υυf υυ=≤=> (1)式中F υ是0 K 时电子的最大速率,即费米速率. 单位体积中速率在d υd d θϕ间隔的电子数为()32F 32sin d d d .m υυυυh θθϕ≤ (2)单位时间内上述速度间隔的电子碰到法线沿z 轴的单位面积器壁上的碰撞数为3232cos sin d d d .m d υυυhΓθθθϕ=⋅ (3)将上式积分,υ从0到F ,υθ从0到π,2ϕ从0到2π,得0 K 时电子气体的碰壁数为F π32π32300034F 32d sin cos d d 211242υm υυh m υh Γθθθϕπ==⋅⋅⋅⎰⎰⎰ 34F 3π.2m υh = (4) 但由式(2)知单位体积内的电子数n 为F 3π2π2300033F 32d sin d d 2122π3υm υυh m υh Γθθϕ==⋅⋅⋅⎰⎰⎰ 33F 38.3m υh π= (5) 所以F 31.444n υn υΓ=⋅=最后一步用了8.14题式(3).8.16已知声速a= 1.8.8)),试证明在0 K理想费米气体中a=解: 式(1.8.8)已给出声速a为a=(1)式中的偏导数是熵保持不变条件下的偏导数. 根据能氏定理,0 K下物质系统的熵是一个绝对常数,因此0 K下物理量的函数关系满足熵为不变的条件.根据式(8.5.8)和(8.5.6),0 K下理想费米气体的压强为()()()2252322523π52p nnmμ==()()22523353213π.52mmρ=(2)故()2222F32213π,323Sppnm m mρ⎛⎫∂==⎪∂⎝⎭即a==(3)8.17 等温压缩系数Tκ和绝热压缩系数Sκ的定义分别为1TTpVκρ⎛⎫∂=- ⎪∂⎝⎭和1.SSpVκρ⎛⎫∂=- ⎪∂⎝⎭175176 试证明,对于0 K 的理想费米气体,有()()()3100.20T S n κκμ==解: 根据式(8.5.6)和(8.5.4),0 K 下理想费米气体的压强为()()5223232203π.552N p n mV μ⎛⎫== ⎪⎝⎭(1) 在温度保持为0 K 的条件下,p 对V 的偏导数等于()2223223π.32T p N V m V ∂⎛⎫⎛⎫=- ⎪ ⎪∂⎝⎭⎝⎭由式(A.5)知()()222232313.23π2T TV V p p N N V m V -⎛⎫∂== ⎪∂∂⎛⎫⎝⎭⎛⎫ ⎪∂ ⎪⎝⎭⎝⎭(2) 所以0 K 下()()5223231331.2203π2T T V VV p n N mV κμ⎛⎫∂=-==⎪∂⎝⎭⎛⎫⎪⎝⎭(3) 根据能氏定理,T =0 的等温线与S =0 的等熵线是重合的,因此0 K 下.T SV V p p ⎛⎫⎛⎫∂∂= ⎪ ⎪∂∂⎝⎭⎝⎭ 由此可知()131.20S S V V p n κμ⎛⎫∂=-= ⎪∂⎝⎭ (4) 式(4)也可以从另一角度理解. 式(2.2.14)和(2.2.12)给出s VT pC C κκ= (5) 和2.p V TVT C C ακ-=(6)由式(6)知,0 K 下,p V C C =177所以式(5)给出0 K 下.S T κκ8.18 试求在极端相对论条件下自由电子气体在0K 时的费米能量、内能和简并压.解: 极端相对论条件下,粒子的能量动量关系为.cp ε=根据习题6.4式(2),在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为()()238πd d .VD ch εεεε=(1) 式中已考虑到电子自旋在动量方向的两个可能投影而将习题6.4式(2)的结果乘以因子2.0 K 下自由电子气体的分布为()()()1,0;0,0.f μμεμμ≤⎧⎪=⎨>⎪⎩(2)费米能量()0μ由下式确定:()()()()023338π8π1d 0,3VV N ch ch μεεμ==⋅⎰ 故()1330.8n ch μπ⎛⎫=⎪⎝⎭(3) 0 K 下电子气体的内能为()()()()()()0003343d 8πd 8π104U D Vch V ch μμεεεεεμ===⋅⎰⎰()30.4N μ=(4) 根据习题7.2式(4),电子气体的压强为178 ()110.34U p n V μ== (5)8.19 假设自由电子在二维平面上运动,面密度为.n 试求0 K 时二维电子气体的费米能量、内能和简并压.解: 根据6.3题式(4),在面积A 内,在ε到d εε+的能量范围内,二维自由电子的量子态数为()24d d .AD m hπεεε=(1) 式中已考虑到电子自旋在动量方向的两个可能投影而将6.3题式(4)的结果乘以2.0 K 下自由电子的分布为()()()1,0;0,0.f μμεμμ≤⎧⎪=⎨>⎪⎩ (2)费米能量()0μ由下式确定:()()02204π4πd 0,A AN m m h hμεμ==⎰ 即()220.4π4πh N h m A mμ== (3)0 K 下二维自由电子气体的内能为()()()022204π4πd 00.22A A m NU m h h μεεμμ===⎰ (4) 仿照习题7.1可以证明,对于二维的非相对论粒子,气体压强与内能的关系为.Up A=(5) 因此0 K 下二维自由电子气体的压强为()10.2p n μ= (6)8.20 已知0 K 时铜中自由电子气体的化学势()07.04eV,μ=试求300 K 时的一级修正值.179解: 根据式(8.5.17),温度为T 时金属中自由电子气体的化学势为()()()22π01,120kT T μμμ⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦300 K 下化学势()T μ对()0μ的一级修正为()()()22350 1.121001207.8810eV.kT πμμμ-⎡⎤-=-⨯⎢⎥⎣⎦=-⨯ 这数值很小,不过值得注意,它是负的,这意味着金属中自由电子气体的化学势随温度升高而减小. 这一点可以从下图直接看出. 图中画出了在不同温度下电子分布函数()f ε随ε的变化. 0 K 时电子占据了能量ε从零到()0μ的每一个量子态,而()0εμ>的状态则全部未被占据,如图中的0T 线所示. 温度升高时热激发使一些电子从能量低于μ的状态跃迁到能量高于μ的状态. 温度愈高,热激发的电子愈多,如图中的1T 线和2T 线所示()12.T T < 费米分布1e 1hT f εμ-=+要求在任何温度下εμ=的状态12f =,即占据概率为1.2从图8-2可以看出,化学势μ必然随温度升高而减少,即()210.μμμ<<8.21 试根据热力学公式VC S dT T=⎰,求低温下金属中自由电子气体的熵.解: 式(8.5.19)给出低温下金属中自由电子气体的定容热容量为()2π.20V kTC Nk μ= (1)180 根据热力学关于均匀系统熵的积分表达式(2.4.5),有0d d .V V C p S T V S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰ (2)取积分路线为(0,V )至(T ,V )的直线,即有()()2220ππd ,2020T Nk kTS T Nk μμ==⎰ (3)其中已取积分常量0S 为零.8.22 由N 个自旋极化的粒子组成的理想费米气体处在径向频率为r ω,轴向频率为r λω的磁光陷阱内,粒子的能量(哈密顿量)为()()222222221.22x y z r m p p p x y z m εωλ=+++++ 试求0 K 时费米气体的化学势(以费米温度表示)和粒子的平均能量. 假设5-1210,3800s ,8r N ωλ===,求出数值结果.解: 由式(6.2.4)知,粒子的能量本征值为(),,,xyzn n n r x y z n n n εωλ=++,,0,1,2,x y z n n n = (1)式中已将能量零点取为1.2r λω⎛⎫+ ⎪⎝⎭理想费米气体的化学势(),T N μ由下式确定:(),,1.e1r x y z x y zn n n n n n N βωλμ⎡⎤++-⎣⎦=+∑(2) 如果N 足够大使大量粒子处在高激发能级,粒子的平均能量远大于r ω ,或者温度足够高使r kT ω>> ,式(2)的求和可以改写为对能量的积分. 令,,,d ,d ,d ,x x r y y r z z r x r y r z r n n n εωεωελωεωεωελω======式(2)可表达为()()3d d d 1.e 1x y z x y zr N βεεεμεεελω+++=+⎰ (3)引入新的积分变量x y z εεεε=++,可进一步将式(2)改写为181()()31d d d ,e 1xyrN βεμεεελω-=+⎰⎰⎰ (4)式中被积函数只是变量ε的函数,与x ε和y ε无关. 对一定的ε,d x ε和d y ε的积分等于以x ε轴、y ε轴和x y εεε+=三条直线为边界的三角形面积,如图所示,这面积等于21.2ε 所以式(4)可表达为()()d ,1D N eβεμεε-=+⎰(5)其中()()231d d .2r D εεεελω=(6)它是能量在ε到d εε+范围内粒子的状态数.0 K 时系统尽可能处在能量最低的状态. 由于泡利原理的限制,粒子将从能量为零的状态开始,每一量子态填充一个粒子,到能量为()0μ的状态止.()0μ由下式确定:()()()()30233011d .322rr N μμεελωλω==⎰由此可得()()1306.r N μωλ= (7)0 K 时费米气体的能量为182 ()()()()()()0003343d 1d 20142r r E D μμεεεεελωμλω===⎰⎰()30.4N μ=(8) 粒子的平均能量为()30.4εμ= (9)对于题给的数据,可得30nK,r ω=()0 3.5μK,F T kμ==2.7μK.Ek=8.23 承上题,试求低温极限F T T <<和高温极限F T T >>下,磁光陷阱中理想费米气体的化学势、内能和热容量.解: 首先讨论低温极限F T T <<的情形. 根据式(8.5.13)和(8.5.16),积分()d ,e 1kT I εμηεε+∞-=+⎰(1)在低温极限下可展开为()()()220πd 6I kT μηεεημ'=++⎰ (2) 对于磁光陷阱中的理想费米气体,有20d ,e 1kT c N εμεε+∞-=+⎰(3)其中()31.2r c λω=上式确定费米气体的化学势. 利用式(1),(2)可得1832321π,3c kT N μμ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦因此11233231πN kT c μμ-⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()()22π01.30kT μμ⎧⎫⎡⎤⎪⎪≈-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(4) 气体的内能为30d ,1kTc U e εμεε+∞-=+⎰利用式(1),(2)可得()()()()()()24242224242224212π4π0112π430034π0112π4300C kT U C kT kT kT kT N μμμμμμμμ⎡⎤⎛⎫=+⎢⎥⎪⎝⎭⎢⎥⎣⎦⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪⎪⎪≈-⋅+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪⎪⎪≈-⋅+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎪⎪⎩⎭⎩⎭()()223201π.430kT N μμ⎧⎫⎡⎤⎪⎪≈+⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(5) 热容量为()2d π.d 0U kTC Nk T μ== (6) 在高温极限F T T >>的情形下,有Fe ee1.T kTTμα--=≈≈ (7)磁光陷阱内的费米气体是非简并的,遵从玻耳兹曼分布. 按照玻耳兹曼统计求热力学函数的一般程序,先求粒子配分函数184 ()()1023e d 1ed 2rZ D βεβεεεεελω+∞-+∞-==⎰⎰()3312.2r βλω=(8)内能为1ln 3.U NZ NkT β∂=-=∂ (9) 上式与能量均分定理的结果相符. 根据式(7.6.7),气体的化学势为()31Z ln ln 6.0kT kT kT N μμ⎧⎫⎡⎤⎪⎪=-=-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(10)最后一步用了式(8)和补充题4式(7).实验已观察到处在磁光陷阱内的费米气体在温度低于费米温度时所显示的费米简并性和费米压强. 见B. DeMarco, D. S. Jin. Science. 1999,285(1703). A. G . Truscott et al. Science. 2001,191(2570).8.24 关于原子核半径R 的经验公式给出()151/31.310m ,R A -=⨯⋅式中A 是原子核所含核子数. 假设质子数和中子数相等,均为A /2,试计算二者在核内的密度.n 如果将核内的质子和中子看作简并费米气体,试求二者的()0μ以及核子在核内的平均能量.核子质量271.6710kg.n m -=⨯ 解: 根据核半径的经验公式()11531.310m ,R A -=⨯⋅假设核内质子数和中子数相等,均为2A,则二者的密度均为 ()45-31520.0510m .4π1.310m 3A n A -=≈⨯⨯⋅如果将核内的质子和中子看作简并费米气体,根据式(8.5.6),费米能量()0μ185为()()22231103π20.4310J 27MeV.n mμ-==⨯≈由式(8.5.7)知,核子在核内的平均能量为()113050.2610J 16MeV.εμ-==⨯≈ 核的费米气体模型是20世纪30年代提出的核模型. 它在定性描述原子核的粗略性质方面取得了一定的成功. 核的费米气体模型把核子看作是约束在核内的无相互作用的自由粒子. 从核子散射实验知道,核子之间存在很强的相互作用,其中包含非常强的排斥心. 将核子看作核内无相互作用的自由粒子,可以这样理解:排斥心的半径约为150.410m -⨯,核内核子之间的平均距离约为152.410m -⨯,因此原子核的“最密集”体积与实际体积之比约为30.412.4100⎛⎫≈ ⎪⎝⎭,这样核子实际上感受到的只是相互作用中较弱的“尾巴”部分. 其 次,由于泡利原理的限制,大多数核子(特别是处在费米面深处低能态的粒子)发生碰撞时,其状态很难发生改变,仅在费米面附近的少数核子有可能在碰撞时改变其状态. 作为一个初步近似,费米气体模型忽略了核子之间的相互作用.8.25 3He 是费米子,其自旋为1/2在液3He 中原子有很强的相互作用. 根据朗道的正常费米液体理论,可以将液3He 看作是由与原子数目相同的3He 准粒子构成的费米液体. 已知液3He 的密度为-381kg m ⋅,在0.1 K 以下的定容热容量为 2.89.V C NkT = 试估算3He 准粒子的有效质量*.m解: 我们首先粗略地介绍一下朗道费米液体理论的有关概念.如§8.5所述,在0 K 理想费米气体处在基态时,粒子占满了动量空间中半径为费米动量F p 的费米球:()123F 3π,p n = (1)F p p >的状态则完全未被占据. 气体处在低激发态时,有少量粒子跃造到186 F p p >的状态,而在费米球中留下空穴. F p 的大小取决于气体的数密度.n朗道假设,如果在理想费米气体中逐渐加入粒子间的相互作用,理想费米气体将过渡为费米液体,气体的粒子过渡为液体的准粒子. 液体中的准粒子数与原来气体或液体中的实际粒子数相同. 对于均匀系统,准粒子的状态仍可由动量p 和自旋S 描述. 在0 K 费米液体处在基态时,准粒子占满了动量空间中半径为F p 的费米球,F p 仍由式(1)确定,但n 是液体的粒子数密度. 费米液体处在低激发态时,有少量准粒子跃迁到F p p >的状态,而在费米球中留下空穴.以()d f p ω表示单位体积中动量在p 到d p p +的准粒子数. 在自旋量子数为1/2的情形下,有32d d .ph ω=()f p 满足归一化条件()d .f p n ω=⎰ (2)由于费米液体的准粒子之间存在相互作用,单个粒子的能量()p ε与其他准粒子所处的状态有关,即与准粒子的分布有关. 因此,与理想费米气体不同,费米液体的能量不能表达为单个准粒子的能量之和,即()()d ,Ep f p Vεω≠⎰ (3) 而是分布函数()f p 的泛函. 准粒子能量()p ε由下式定义:()()δδd ,Ep f p Vεω=⎰ (4) 或()()δ.δE V p f p ε⎛⎫∂ ⎪⎝⎭=∂⎡⎤⎣⎦(5) 上式的意义是,准粒子能量()p ε等于增加一个动量为p 的粒子所引起的系统能量的增加. ()p ε既与液体中准粒子的分布有关,也是分布函数()f p 的泛函. 习题8.2曾得到处在平衡状态的理想费米气体的熵的表达式()()()(){}ln 1ln 1d ,S kV f p f p f p f p ω=-+--⎡⎤⎡⎤⎣⎦⎣⎦⎰ (6)式中的两项可以分别理解为由于粒子具有分布()f p 和空穴具有分布()1f p -所导致的熵. 式(6)不仅适用于平衡态,也适用于非平衡态. 如果()f p 是某187非平衡态下粒子的分布,相应的熵也由式(6)表达. 在总粒子数、总能量和体积给定的情形下,平衡态的分布(费米分布)使式(6)的熵取最大值. 根据前述朗道的假设,费米液体的准粒子与理想费米气体的粒子存在一一对应的关系. 将式(6)中的()f p 理解为费米液体中准粒子的分布,费米液体的熵亦可由式(6)表达. 在总粒子数、总能量和体积给定的情形下,平衡态的分布使式(6)的熵取最大值. 可以证明,平衡态的分布具有下述形式:()()1.e1p kTf p εμ-=+ (7) 这是平衡态下费米液体中准粒子的分布函数,1kT 和kTμ是拉氏乘子. 显然,T 和μ分别是费米液体的温度和化学势. 需要强调,虽然式(7)形式上与费米分布相似,但由于()p ε是分布函数()f p 的泛函,式(7)实际上是分布函数()f p 的一个复杂的隐函数表达式.以()()()()00,f p p ε和()0μ分别表示0 K 时的分布函数、准粒子能量和化学势. 由式(7)可知,()()0f p 是一个阶跃函数:()()()()()()()()0001,0;0,0.p f p p εμεμ⎧≤⎪=⎨>⎪⎩ (8)上式给出0 K 时费米液体准粒子的动量分布,与前述的图像一致.在接近0 K 的低温下,分布函数应与阶跃分布()()0f p 接近. 作为一级近似,可以用()()0f p 近似地确定准粒子的能量().p ε 这意味着()p ε简单地成为p 的确定的函数()()0.p ε 对于F p p ≈的动量值,可以将函数()()0p ε按F p p -作泰勒展开,即()()()()0F F 0,p υp p εμ-=- (9)其中()()F0F p p υp ε⎡⎤∂=⎢⎥∂⎢⎥⎣⎦ (10)是准粒子在费米面的速度. 对于理想费米气体,有()2F F ,.2p p p υm mε==可以类似地引入准粒子有效质量*m 的概念,定义188 *FF,p m υ=(11) 并将()0μ和F ~p p 处的()()0p ε简单地记为()2F*0,2p mμ= (12)()()()20F *.2p p p p mε=≈ (13)如§8.5所述,仅费米面附近的电子对理想费米气体的低温热容量有贡献,其表达式为(式(8.5.19)和(8.5.6))()()222223ππ.203πV C kT mkTNk n μ== (14)根据费米液体与理想费米气体的相似性,可以直接写出低温下费米液体的热容量为()()22*2223ππ,203πV C kT m kTNk n μ== (15) 其中*m 是费米液体准粒子的有效质量. 将题中所给液3He 的实测数据代入,注意3He 的质量密度nm ρ=(m 是3He 原子的质量),可得3He 准粒子的有效质量约为*3.m m ≈ (16)关于朗道费米液体理论,可参看《量子统计物理学》(北京大学编写组)§5.5和Lifshitz, Pitaevskii. Statistical Physics Ⅱ. §1, §2.189补充题1 写出二维空间中平衡辐射的普朗克公式,并据此求平均总光子数、内能和辐射通量密度.解: 根据(6.2.14),二维空间中在面积A 内,在x p 到d ,x x y p p p +到d y yp p +的动量范围内,光子可能的量子态数为22d d .x yA p p h(1)换到平面极坐标,并对辐角积分,可得在面积A 内,动量大小在p 到d p p +范围内,光子的量子态数为24πd .Ap p h(2) 再利用光子的能量动量关系cp ε=和能量频率关系εω= ,可得二维空间中在面积A 内,在ω到d ωω+的频率范围内的光子的量子态数为()2d d .AD cωωωωπ=(3) 根据玻色分布和式(3),可得温度为T 时二维平衡辐射在面积A 内,在ω到d ωω+的频率范围内的光子数为()2,d d .πe 1A N T c βωωωωω=- (4)对频率积分,得温度为T 时二维平衡辐射击的总光子数为()()02220,d d πe 11d πe 1x N T N T A cA x x c βωωωωωβ+∞+∞+∞==-⎛⎫= ⎪-⎝⎭⎰⎰⎰2222π.6A k T c =(5) 温度为T 时在面积A 内,在ω到d ωω+的频率范围内,二维平衡辐射的能量为()22,d d .πe 1A u T c βωωωωω=- (6)这是二维平衡辐射的普朗克公式. 对频率积分,得温度为T 时二维辐射场的内能为190 ()223220d πe 11d πe 1x Au T cA x x c βωωωβ+∞+∞=-⎛⎫=⎪-⎝⎭⎰⎰33222.404.πA k T c =(7) 参照式(2.6.7)或8.11题,可得二维辐射场的辐射通量密度u J 与内能密度的关系为33221.202.2πu c J u k T c π==(8) 应当说明,随着人工微结构材料研究的进展,目前已有可能研制出低维的光学微腔. (参阅E. Yablonovitch. Jour. Mod·Opt. 1994,41(173). 章蓓. 光学微腔. 见:介观物理. 北京:北京大学出版社,1995.276). 不过光学微腔中辐射场的模式分布与(3)所表达的自由空间中的模式分布是不同的.补充题 2 金属中的自由电子在外磁场下显示微弱的顺磁性. 这是泡利(Pauli )根据费米分布首先从理论上预言的,称为泡利顺磁性. 试根据费米分布导出0K 金属中自由电子的磁化率.解: §7.8和习题7.27讨论的顺磁性固体,其顺磁性来自磁性离子的磁矩在外磁场作用下的取向. 离子磁矩是其不满壳层的束缚电子的轨道磁矩与自旋磁矩之和,磁性离子是定域的,遵从玻耳兹曼分布。

08热力学第二定律习题解答

08热力学第二定律习题解答

第八章热力学第二定律一选择题1. 下列说法中,哪些是正确的?( )(1)可逆过程一定是平衡过程;(2)平衡过程一定是可逆的;(3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。

A. (1)、(4)B. (2)、(3)C. (1)、(3)D. (1)、(2)、(3)、(4)解:答案选A。

2. 关于可逆过程和不可逆过程的判断,正确的是( )(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡是有摩擦的过程一定是不可逆的。

A. (1)、(2) 、(3)B. (1)、(2)、(4)C. (1)、(4)D. (2)、(4)解:答案选C。

3. 根据热力学第二定律,下列哪种说法是正确的?( )A.功可以全部转换为热,但热不能全部转换为功;B.热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运动的能量,但无规则运动的能量不能变成有规则运动的能量。

解:答案选C。

4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:( )A. 温度不变,熵增加;B. 温度升高,熵增加;C. 温度降低,熵增加;D. 温度不变,熵不变。

解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。

因过程是不可逆的,所以熵增加。

故答案选A 。

5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( )(1) 两种不同气体在等温下互相混合;(2) 理想气体在等体下降温;(3) 液体在等温下汽化;(4) 理想气体在等温下压缩;(5) 理想气体绝热自由膨胀。

A. (1)、(2)、(3)B. (2)、(3)、(4)C. (3)、(4)、(5)D. (1)、(3)、(5) 解:答案选D 。

二 填空题1.在一个孤立系统内,一切实际过程都向着 的方向进行。

【精品】热力学作业题答案

【精品】热力学作业题答案

【关键字】精品第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aPV b T V V b =--+=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

∴ P=19.22MPa2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson 方程;(4)普遍化关系式。

解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 11c r c rBP PV BP P Z RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程 (3) Redlich-Kwang 方程 (4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T === ∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433k ωω=+-=+⨯-⨯=∴()()()a T RTPV b V V b b V b =--++- (5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-7:答案: 3cm第三章3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。

大学物理答案8.第八章

大学物理答案8.第八章

⼤学物理答案8.第⼋章第⼋章热⼒学第⼀和第⼆定律思考题8-13 强光照射物体,可以使物体的温度上升,导致物体内能的改变。

试问这⼀过程属于热量传递还是⼴义的做功。

8-14 储⽓瓶中的⼆氧化碳急速喷出,瓶⼝处会出现固态的⼆氧化碳----⼲冰。

为什么?8-15 ⽇常⽣活中有“摩擦⽣热”的提法,从物理上讲正确的表述是什么?8-16 有⼈说:只有温度改变时,才有吸热或放热现象。

这种说法正确吗?试举例说明之。

8-17 微元dW、dQ和dU与具体微元过程有关吗?微元dQT呢?8-18 参考§8.4关于开尔⽂表述与克劳修斯表述等价性的证明,试⽤反证法证明卡诺循环与克劳修斯表述的等价性。

8-19 等温膨胀过程的熵变⼤于零,有⼈说这表明此过程是不可逆的过程。

这种说法正确吗?8-20 基于克劳修斯表述证明两条绝热线不可能相交。

8-21 定义状态量焓H=U+pV。

对准静态且只有压强做功的过程,证明dH=Tds+Vdp,并说明该量在等压过程中的物理意义。

8-22报载,⼀⼩孩在夏季午睡时,由于长时间压着⼀个⼀次性打⽕机,导致打⽕机破裂,其⽪肤轻度冻伤。

试思考其中的物理原因。

8-23 ⼀般来说,物体吸热(放热)温度上升(下降),其热容量为正值。

但是对于⾃引⼒系统,热容量可能取负值。

试以第七章例7.3为例说明之。

习题8-1 某⼀定量氧⽓原处于压强P1=120atm 、体积V1=1.0L 、温度t1=27摄⽒度的状态,经(1)绝热膨胀,(2)等温膨胀,(3)⾃由膨胀,体积增⾄V2=5.0L 。

求这三个过程中⽓体对外做功及末状态压⼒值。

解:112120, 1.0,300 5.0p atm V l T K V l====氧⽓的775225p vC R R C γ=== (1)绝热膨胀:111611122212() 1.2810a V p V p V p p P V ---===? 1412[1()] 1.44101V pVW J V γγ-=-=?- (2)等温过程:111611122212() 1.2810a V p V p V p p P V ---=∴==? 1412[1()] 1.44101V pVW J V γγ-=-=?- (3)⾃由膨胀,T 不变 622.4310a p P =? W=08-2 将418.6J 的热量传给标准态下的5.00×10-3kg 的氢⽓[Cv,m=20.331J/(mol.k)] (1) 若体积不变,这热量变为什么?氢⽓的温度变为多少? (2) 若温度不变,这热量变为什么?氢⽓的压强及体积变为多少? (3) 若压强不变,这热量变为什么?氢⽓的温度和体积变为多少?解:(1)V 不变5131416.8, 1.01310,273.15 510Q W U Q J P Pa T K M Kg-?=+?∴?==?==?50, 8.05522M QW Q U R T T KM R µµ?=?=?=∴?== 273.158.05281.2()T K ∴=+=(2)T 不变12211123111111 0, 1.0775.610QMRT V VMU Q W RT Ln e V V MRT MPV RT V m P µµµµ-===∴===∴==?223112225.610 1.0776.0310() 9.4110 ( )PV V m P Pa V --∴=??=?==? (3)P 不变22321212221211111 , 5.85(),72273.15 5.7279.0()5.7210P MQQ C T T K M R T K V V T MRTT MRT V V m T T T PT P µµµµ??===∴=+======?1125()121.6 299.02M W P V V J U R T J µ=-=?== 计算结果Q U W ?≠?+是因为Cp 和Cv 近似取值,若取实验值20.331,28.646v p C C ==可得:25.845,279.0,297.1T K T K U J ?==?=8-3有20.0L 的氢⽓,温度为27摄⽒度,压强为P=1.25105pa 。

工程热力学第八章湿空气作业

工程热力学第八章湿空气作业

第8章 湿 空 气例1:如果室外空气的参数为p=1.0133bar ,t=30℃,φ=0.90,现欲经空气调节设备供给2t =20℃,2φ=0.60的湿空气,试用h-d 图分析该空气调节过程,并计算析出的水分及各过程中的热量。

解:利用h-d 图分析计算该题所给条件下的空调过程,如图8.1,根据所给条件t=30℃,φ=0.90,在h-d 图上确定初态1,并查得1h =62.2kJ/k(a),1d =15.7g/kg(a)同样,由2t =20℃,2φ=0.60在图上确定终态2,并查得2h =34.1kJ/k(a),2d =15.7g/kg(a),由定2d 线与φ=1线的交点4, 查得4h =26.4kJ/kg(a), 2d =4d空调过程的分析:定湿冷却过程:湿空气的冷却过程,因其组成成分不变,即含湿量不变,但相对湿度增加,温度下降,直降到露点。

所以,是定湿降温过程。

例如,在h-d 图上自初态1沿1d =15.7g/kg(a)的定湿线进行到与φ=1线的交点3。

此时已成饱和空气,再继续冷却,过程自状态3沿饱和线(临界线)进行,直至与终态含湿量相等的状态4,在这个冷却去湿阶段中,将有水蒸气凝结成水析出,并放出热量。

1-4过程的放热量,可用焓差表示,即q=14h h -=26.4-62.2=-35.8kJ/kg(a)式中负号表示冷却时湿空气放出热量。

冷却去湿过程:每公斤干空气所析出的水分等于湿空气含湿量的减少量,即14d d d -=∆=7.1-15.7=-8.6g/kg(a)式中负号表示湿空气析出水分。

加热过程:为了达到工程所要求的湿度,常采用降温去湿,但往往使温度过低(如4点C t 08.8=,为了保证空调后的气体温度(本题要求20℃),去湿后,常常需要加热升温。

如在图8.1中就是自状态4沿定4d 线进行到终点2,温度升高,含湿量不变,相对湿度下降,这是定湿加热过程。

加热过程的吸热量也可以用焓差表示,即42h h q -==34.1-26.4=7.7kJ/kg(a)图8.1例2:已知干湿球湿度计的读数为:干球温度t 1=28℃,湿球温度t 2=19解ϕ=44%例3空气t 1=34t 3=20℃,ϕ3m A =50kg/min 试计算:(1(2(3解:按给定参数和过程在h —d 图上查出状态点1、2、3的有关参数,根据t 1、ϕ1查得d 1=0.0274kg/(kg 干空气)h 1=105kJ/(kg 干空气)根据t 3、ϕ3查得d 3=0.0073kg/(kg 干空气)h 3=38kJ/(kg 干空气)冷却去湿过程达到的状态为d 2=d 3=0.0073kg/(kg 干空气)的饱和空气状态,照此查得h 2=105kg/(kg 干空气)t 2=9℃(1)空气中需要除去的水分为min kg/005.1)0073.00274.0(50)(21=-⨯=-=d d mm a w(2)冷却介质带走的热量为w w a h m h h mQ --=)(2112 其中凝结水的焓为kJ/kg 64.379186.42=⨯==t C h pw w故有 min /kJ 2.38667.37005.1)27105(5012=⨯--⨯=Q(3)加热器加入的热量为假定空气处理室所用的喷雾水的水温为t w =12℃。

热力学作业题答案复习课程

热力学作业题答案复习课程

热力学作业题答案第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式 323.15190.6 1.695rc T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTPP P V == ∴ c r PVZ P RT=654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯ 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01ZZ Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

第八、九章 热力学基础 气体动理论 南京大学出版社 习题解答

第八、九章  热力学基础 气体动理论 南京大学出版社 习题解答

第八章 气体动理论8-6 目前,真空设备内部的压强可达101001.1-⨯Pa ,在此压强下温度为27℃时1m 3体积中有多少个气体分子?解:由 nKT p =得10103231011024510(m )13810300p n KT ---⋅⨯===⋅⨯⋅⨯⨯8-7 每秒有1023个氧分子以500m·s -1的速度沿与器壁法线成45º角的方向撞在面积为4102-⨯m 2的器壁上,问这群分子作用在器壁上的压强为多大?解:每个分子对器壁碰撞时,对器壁的作用冲量为 02cos45f t mv ∆= 每秒内全部N 个分子对器壁的作用冲量,即冲力为02cos 45F N mv =⋅根据压强定义式得:233023442cos 451023210500cos 456021021018810(Pa)F N mv p S S --===创创?=状创=状8-8 有N 个粒子,其速率分布函数为 d ()d Nf v C N v== (0<v <0v ) 0)(=v f (v >0v ) (1) 画出该粒子的速率分布曲线 (2) 由0v 求出常量C (3) 求粒子的平均速率解: (1)粒子的速率分布曲线如图2-2所示 (2) 由于0100()d d v f v v C v Cv ==⎰⎰由分布函数的归一化条件()0d 1f v v ∞=⎰,得01Cv =则1C v =(3) 粒子平均速率为0001()d d 2V v v vf v v vv v ∞===⎰⎰8-9 某些行星的温度可达到81.010K ⨯,这是发生核聚变(热核反应)所需的温度,在此温度下的恒星可视为由质子组成。

试求:(1)质子的平均动能;(2)质子的方均根速率。

(大量质子可视为由质点组成的理想气体) 解(1)将质子视为理想气体,2381533kT 1.3810110 2.0710(J)22ε--==⨯⨯⨯⨯=⨯(2)质子的方均根速率为:61.5810(m/s)===⨯8-10. 储有氧气的容器以速度s /m 100v =运动,假设该容器突然停止,全部定向运动的动能都变为气体分子热运动的动能,容器中氧气的温度将会上升多少? 解: 容器作匀速运动,由于体积和压强不变,所以容器内的温度不变。

工程热力学思考题参考答案

工程热力学思考题参考答案

第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的靠近等温过程,从而使压缩的耗功减小。

2、既然余隙容积具有不利影响,是否可能完全消除它答:对于活塞式压气机来说,由于制造公差、金属材料的热膨胀及安装进排气阀等零件的需要,在所难免的会在压缩机中留有空隙,所以对于此类压缩机余隙容积是不可避免的,但是对于叶轮式压气机来说,由于它是连续的吸气排气,没有进行往复的压缩,所以它可以完全排除余隙容积的影响。

3、如果由于应用气缸冷却水套以及其他冷却方法,气体在压气机气缸中已经能够按定温过程进行压缩,这时是否还需要采用分级压缩为什么答:我们采用分级压缩的目的是为了减小压缩过程中余隙容积的影响,即使实现了定温过程余隙容积的影响仍然存在,所以我们仍然需要分级压缩。

4、压气机按定温压缩时,气体对外放出热量,而按绝热压缩时不向外放热,为什么定温压缩反较绝热压缩更为经济答:绝热压缩时压气机不向外放热,热量完全转化为工质的内能,使工质的温度升高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。

等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。

5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S图上面积表示其值。

答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=-111121n n g c p p T R n n w 绝热过程:即q=0,所以6、活塞式压气机生产高压气体为什么要采用多级压缩及级间冷却的工艺答:由于活塞式压气机余隙容积的存在,当压缩比增大时,压气机的产气量减小,甚至不产气,所以要将压缩比控制在一定范围之内,因此采用多级压缩,以减小单级的压缩比。

8热力学

8热力学

习题及参考答案第八章 热力学 参考答案思考题8-1 “功、热量和内能都是系统状态的单值函数”这种说法对吗?如有错请改正。

8-2 质量为M 的氦气(视为理想气体),由同一初态经历下列两种过程:(1)等体过程;(2)等压过程。

温度升高了ΔT ,要比较这两种过程中气体内能的改变,有一种解答如下:(1) 等体过程T C ME V V ∆∆μ= (2) 等压过程T C ME p p ∆∆μ=∵V p C C ,∴Vp E E ∆∆以上解答是否正确?如有错误请改正。

8-3 摩尔数相同的氦气和氮气(视为理想气体),从相同的初状态(即p 、V 、T 相同)开始作等压膨胀到同一末状态,下列有关说法有无错误?如有错误请改正。

(1)对外所作的功相同; (2)从外界吸收的热量相同; (3)气体分子平均速率的增量相同。

8-4 一定量的理想气体,从p-V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A →C 是绝热过程,问:(1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?8-5 在下列理想气体各种过程中,哪些过程可能发生?哪些过程不可能发生?为什么?(1)等体加热时,内能减少,同时压强升高; (2)等温压缩时,压强升高,同时吸热; (3)等压压缩时,内能增加,同时吸热; (4)绝热压缩时,压强升高,同时内能增加。

8-6 甲说:“系统经过一个正的卡诺循环后,系统本身没有任何变化。

”乙说:“系统经过一个正的卡诺循环后,不但系统本身没有任何变化,而且外界也没有任何变化。

”甲和乙谁的说法正确?为什么?8-7 从理论上讲,提高卡诺热机的效率有哪些途径?在实际中采用什么办法? 8-8 关于热力学第二定律,下列说法如有错误请改正: (1)热量不能从低温物体传向高温物体;(2)功可以全部转变为热量,但热量不能全部转变为功。

8-9 理想气体经历如图所示的abc 平衡过程,则该系统对外作功A ,从外界吸收的热量Q 和内能的增量ΔE 的正负情况为(A )ΔE >0,Q >0,A <0; (B )ΔE >0,Q >0,A >0; (C )ΔE >0,Q <0,A <0; (D )ΔE <0,Q <0,A >0。

热力学作业答案

热力学作业答案

循环过程系统的熵变是多少?
又因为
解:(1)对于可逆绝热过程,有 S1 0
等容过程,有
T1V1 1 T2V2 1
S2

dQ dE TT

1
CV
ln

V2 V1

CV


CP CV
T1 T2
dT T
CV
1 CV ln 2
3 (1) RT :
1mol 理想气体的内能;
2
(2) 3 R :
定容摩尔热容量

2
(3) 5 R : 定压摩尔热容量

2
10.绝热的容器被一隔板分为两半。设两边温度
相同。左边充满理想气体,其压强为P0,右边是 真空。当把隔板抽出时,左边的气体对真空作自
由膨胀,达到平衡后,气体的温度变化T_=__0
A
Q3’
Q2 地下水T2
Q

Q3

Q3'
T3 T1
Q1
T3 T2

T2 T3 T2

T1 T3 T1
Q1
(1

T1 T3

T3 T2
)
T3 T2
Q1

3H
5. 如图示,为1摩尔单原子分子理想气体的循环过程( ln2 = 0.69 )。求:(1)状态的状态参量;(2)求循环效率。
解:(1) PaVa RTa
7. 第二定律开尔文表述说明 热功转化过程 不可 逆,克劳修斯表述说明 热传递过程 不可逆。
8. 卡诺机从373K高温热源吸热,向273K低温热 源放热。若从高温热源吸收1000J热量,则该机

工程热力学思考题答案,第八章

工程热力学思考题答案,第八章

第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么?答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的234高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。

等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。

5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S图上面积表示其值。

答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q所以c w 6数n 7m2s 2’nm i=S T ∆0为图中的17nm1.8、如图8-13所示的压缩过程1-2,若是可逆的,则这一过程是什么过程?他与不可逆绝热压缩过程1-2的区别何在?两者之中哪一过程消耗的功大?大多少?图8-13答:若压缩过程1-2是可逆过程,则其为升温升压的吸热过程。

它与不可逆绝热过程的区别是:此过程没有不可逆因素的影响,在所有以1-2过程进行的压缩过程其耗功是最小的。

对于不可逆绝热压缩过程:q=△u+w,q=0,所以w=-△u,w c=△u可逆压缩过程1-2:q=△u+w,⎰=21Tdsq,所以⎰-∆=21Tdsuwc,所以不可逆绝热的耗功大,大了⎰21Tds。

热工学智慧树知到答案章节测试2023年中国矿业大学

热工学智慧树知到答案章节测试2023年中国矿业大学

第三章测试1.热力学第一定律指出()。

A:能量只能转换而不能被创造或者消灭B:能量只能增加或者转换而不能被消灭C:能量在转换中是有方向性的D:能量在转换中是有条件的答案:A2.空气在压缩过程中消耗外界的功90 kJ,内能增加40 kJ,空气向外界放热()。

A:40 kJB:130 kJC:50 kJD:90 kJ答案:C3.没有体积变化的过程就一定不对外做功。

()A:错B:对答案:A4.气体被压缩时一定消耗外功。

()A:错B:对答案:B5.工质经过一个循环又回到初态,其值不变的是()。

A:焓B:功C:焓、功、比容D:比容答案:AD第四章测试1.卡诺定律表明:所有工作于同温热源与同温冷源之间的一切热机的效率()。

A:都相等,仅仅取决于热源和冷源的温度B:都相等,可以采用任何循环C:可能不相等,以可逆热机的热效率为最高D:可能不相等,与所采用的工质有关答案:C2.在温度分别为1000℃和300℃之间工作的热机的热效率为70%,则这个热机是()。

A:无法实现B:不可逆热机C:卡诺热机D:可逆热机答案:A3.封闭热力系统发生放热过程,系统的熵不一定减少。

()A:对B:错答案:A4.某热机中工质先从T1’=1000K的热源吸热150kJ/kg,再从T1”=1500K的热源吸热450kJ/kg,向T2=500K的热源放热360kJ/kg,则该循环能够实现。

()A:错B:对答案:B5.热力学第二定律阐明了能量传递和转换过程中的()。

A:限度B:条件C:方向性D:数量答案:ABC第五章测试1.PV=RT描述了()的变化规律。

A:理想气体热力平衡状态B:任何气体热力平衡状态C:理想气体任意过程中D:任何气体准静态过程中答案:A2. 1 kg理想气体定容加热,温度从27℃升高到127℃,压力将变为原来的()。

A:3/4B:27/127C:127/27D:4/3答案:D3.理想气体的比定压热容是温度的单值函数。

()A:对B:错答案:A4.当理想气体的比容不变而压力升高时,其密度减小。

大学物理学 (第版.修订版) 北京邮电大学出版社 上册 第八章习题8答案

大学物理学 (第版.修订版) 北京邮电大学出版社 上册 第八章习题8答案

习题8选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。

](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。

热力学第一定律描述个热力学过程中的能量守恒定性质。

](3) 如题图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题图[答案:B。

b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b2a cb构成逆循环,ΔE = 0,A净< 0,Q = Q b2a+ Q acb= A净<0,但Q acb= 0,∴Q b2a <0 放热; b2a压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的.[](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.[答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。

第八章 热力学作业(答案)

第八章 热力学作业(答案)

第八章 热力学基础一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。

【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆AB E[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =.[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有 (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。

[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。

工程热力学课后作业答案(第八章)第五版

工程热力学课后作业答案(第八章)第五版

8-1 温度=t 20℃,压力=p 0.1MPa ,相对湿度=j 70%的湿空气2.5m 3。

求该湿空气的含湿量、水蒸气分压力、露点、水蒸气密度、干空气质量、湿空气气体常数。

如该湿空气在压力不变的情况下,被冷却为10℃的饱和空气,求析出的水量。

解:(1)水蒸气分压力:根据=t 20℃,查水蒸气表得对应的饱和压力为0023368.0=s p MPa =´==0023368.07.0s v p p j 0.00163576 MPa 含湿量:s s v vp B p p B p d j j -=-=622622=10.34)(/a kg g 露点:查水蒸气表,当=vp 0.00163576 MPa 时,饱和温度即露点=t 14.35℃0381=v kg m /3水蒸气密度:01234.01==vr 3/m kg 干空气质量:=´´-==2932875.2)76.163510(5TR V p m a a a 2.92㎏求湿空气质量=+=)001.01(d m m a 2.95㎏湿空气气体常数:=-=510378.01287vp R 288.8)/(K kg J ·查在=t 10℃,查水蒸气表得对应的饱和压力为=s p 1.228 kPa sv p p =含湿量:vv p B p d -=6222=7.73)(/a kg g 析出水量:)2(d d m m aw -==7.62g 8-2 温度=t 25℃,压力=p 0.1MPa ,相对湿度=j 50%的湿空气10000kg 。

求该湿空气的露点、绝对湿度、含湿量、湿空气密度、干空气密度、湿空气容积。

解:水蒸气分压力:根据=t 25℃,查水蒸气表得对应的饱和压力为=sp 3.169kPa ==svp p j 0.5×3.169=1.58kPa 露点:查水蒸气表,当=v p 1.58kPa 时,饱和温度即露点时,饱和温度即露点=t13.8℃ =t 25℃,''s v =43.36kg m /3绝对湿度:''/s s v v j jr r ===0.01153/m kg 含湿量:ss v v p B p p B p d j j -=-=622622=9.985)(/a kg g 湿空气密度:)985.9001606.01(10298287)001606.01(5´+´=+=d p T R v a =0.867kg m /3=+=v d001.01r 1.163/m kg 干空气密度:===v v a a 11r 1.153/m kg 湿空气容积:=+==v dm v m V a 001.018600 m 38-3查表题查表题 8-4 压力B 为101325Pa 的湿空气,在温度t 1=5℃,相对湿度j 1=60%的状态下进入加热器,在t 2=20℃离开加热器。

工程热力学思考题及答案 第 八 章

工程热力学思考题及答案 第 八 章

沈维道、将智敏、童钧耕《工程热力学》课后思考题答案工程热力学思考题及答案第 八 章 气体和蒸汽的流动1.改变气流速度起主要作用的是通道的形状,还是气流本身的状态变化?答:改变气流速度主要是气流本身状态变化。

2.当气流速度分别为亚声速和超声速时,下列形状的管道宜于作喷管还是宜于作扩压管?答:气流速度为亚声速时图6-1中的1图宜于作喷管,2图宜于作扩压管,3图宜于作喷管。

当声速达到超声速时时1图宜于作扩压管,2图宜于作喷管,3图宜于作扩压管。

4图不改变声速也不改变压强。

3.当有摩擦损耗时,喷管的流出速度同样可用()2022h h c f −=计算,似乎与无摩擦损耗时相同,那么摩擦损耗表现在哪里呢?答:摩擦损耗包含在流体出口的焓值里。

摩擦引起出口速度变小,出口动能的减小引起出口焓值的增大4.在图6-2中图a 为渐缩喷管,图b 为缩放喷管。

设两喷管的工作背压均为0.1MPa,进口截面压力均为1 MPa,进口流速1f c 可忽略不计。

1)若两喷管的最小截面面积相等,问两喷管的流量、出口截面流速和压力是否相同?2) 假如沿截面2’-2’切去一段,将产生哪些后果?出口截面上的压力、流速和流量起什么变化?答:1)若两喷管的最小截面面积相等,两喷管的流量相等,渐缩喷管出口截面流速小于缩放喷管出口截面流速,渐缩喷管出口截面压力大于缩放喷管出口截面压力。

2) 若截取一段,渐缩喷管最小截面面积大于缩放喷管最小截面面积,则渐缩喷管的流量小于缩放喷管的流量,渐缩喷管出口截面流速小于缩放喷管出口截面流速,渐缩喷管出口截面压力大于缩放喷管出口截面压力。

μ时可利5.图6-3中定焓线是否是节流过程线?既然节流过程不可逆,为何在推导节流微分效应J用dh=0?答:定焓线并不是节流过程线。

在节流口附近流体发生强烈的扰动及涡流,不能用平衡态热力学方法分析,不能确定各截面的焓值。

但是在距孔口较远的地方流体仍处于平衡态,忽略速度影响后节流前和节流后焓值相等。

(完整版)大学物理学(课后答案)第8章

(完整版)大学物理学(课后答案)第8章

第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。

则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。

而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。

8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。

开始时它们的压强和温度都相同。

现将3 J 热量传给氦气,使之升高到一定的温度。

若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。

故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。

故正确的是(C )。

8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。

又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名__________ 学号____________ 《大学物理Ⅰ》答题纸第八章第八章热力学基础一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B 等压过程,A→C 等温过程;A→D 绝热过程,其中吸热量最多的过程(A) 是A→B. (B)是A→C. (C)是A→D.(D)既是A→B 也是A→C, 两过程吸热一样多。

【提示】功即过程曲线下的面积,由图可知A;AB A AAC AD根据热力学第一定律:Q A EAD 绝热过程:Q 0 ;AC 等温过程:Q A AC ;AB 等压过程:Q A AB E AB ,且 E 0AB[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板p分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是γγ(A) p0.(B) p0/ 2.(C) 2 p0.(D) p0 / 2.【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E 得 E 0 ,∴T T ;根据状态方程pV RT 得p0V0 pV ;已知V 2V0 ,∴p p0 / 2 .[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为 E ,熵增量为S ,则应有(A) E 0 ...... S 0 (B) E 0...... S 0.(C) E 0...... S 0.(D) E 0...... S 0【提示】由上题分析知: E 0;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。

[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加 1 倍.那么气体温度的改变(绝对值)在(A) 绝热过程中最大,等压过程中最小.(B) 绝热过程中最大,等温过程中最小.(C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小.【提示】如图。

等温AC 过程:温度不变,T T 0 ;C A等压过程:T TB Ap p ,根据状态方程pV RT ,得:,T B 2T A ,T B T A T AA BV VB A1姓名__________ 学号____________ 《大学物理Ⅰ》答题纸第八章绝热过程: 1 1T V T V ,A A D D1 1V 1AT T TD A AV 2D,得:11T T T 1 T ,所以,选择(D)D A A A2【或者】等压过程: A p (V V ) R T T ,p A B A B A T TB AApR;绝热过程:iA E R T T ,D A2T TD A i2AR;∵iR R,由图可知2A A,所以TB T A T D T Ap[ A ]5. (自测提高3)一定量的理想气体,分别经历如图(1)所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热.p p ad(A) abc 过程吸热,def 过程放热.(B) abc 过程放热,def 过程吸热.(C) abc 过程和def 过程都吸热.(D) abc def过程和过程都放热.eb cfO V O V 图(1) 图(2)【提示】(a)T a T c , E c E a 0,Q abc A abc (E c E a ) A abc 0,吸热。

(b)df 是绝热过程,Q 0 ,∴E f E d A df ,dfQ A (E E ) A A ,“功”即为曲线下的面积,由图中可见,def def f d def dfA A ,故Q def 0,放热。

def df[ B ]6.(自测提高6)理想气体卡诺循环过程的两条绝热p线下的面积大小(图中阴影部分)分别为S1 和S2,则二者的大小关系是:(A) S1> S2.(B) S1 = S2.(C) S1 < S2.(D) 无法确定.S2 1V O【提示】两条绝热线下的面积大小即为“功的大小”。

绝热过程的功i的大小为 A E R T T ,仅与高温和低温热源的温差有关,而两个绝热过程( )1 22对应的温差相同,所以作功 A 的数值相同,即过程曲线下的面积相同。

二、填空题1.(基础训练13)一定量的某种理想气体在等压过程中对外作功为200 J.若此种气体为单原子分子气体,则该过程中需吸热500 J;若为双原子分子气体,则需吸热700 J.2姓名__________ 学号____________ 《大学物理Ⅰ》答题纸第八章M【提示】据题意200( )A pdV p V R T JMmoli M iE R T A,2 M 2moli 2 Q A E A2对于单原子分子:i 3,所以5Q A 500( J );2对于双原子分子:i 5 ,所以7Q A 700( J ) 22.(基础训练14)给定的理想气体(比热容比为已知),从标准状态(p0、V0、T0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T=T31,压强p=p3【提示】求温度的变化,可用绝热过程方程: 1 1T V TV ,0 01V T0 0 T T0 3 1V求压强的变化,可用绝热过程方程:p V pV ,得:0 0V p0 0 p p0 3V3.(自测提高11)有摩尔理想气体,作如图所示的循环过程acba,其中acb 为半圆弧, b a 为等压线,p c=2p a.令气体进行 a b 的等压过程时吸热Q ab,则在此循环过程中气体净吸热量Q <Q ab.(填入:>,<或=)pp cc【提示】a-b 过程:iQ A E S R Tab 矩形2paOa bVa VbV而acba 循环过程的净吸热量Q A S半圆,∵p c=2p a ,由图可知:S矩形S半圆,且T 0, E 0 ,所以Q Qab4.(自测提高12)如图所示,绝热过程AB、CD,等温过p程DEA,和任意过程BEC,组成一循环过程.若图中ECD 所AC 包围的面积为70 J,EAB 所包围的面积为30 J,DEA 过程中系E统放热100 J,则:(1) 整个循环过程(ABCDEA )系统对外作功为D40J.(2) BEC 过程中系统从外界吸热为140J.BVO【提示】(1) 整个循环过程(ABCDEA )系统对外作功为A A (逆循环) A (正循环)30 70 40(J);EABE ECDE(2)Q ABCDEA Q AB Q BEC Q CD Q DEA 0 Q BEC 0 ( 100) ,Q A J ,Q BEC 1 4 0J( ) 同时40( )ABCDEA3姓名 __________ 学号 ____________ 《大学物理Ⅰ》 答题纸 第八章5.(自测提高 13)如图示,温度为 T 0,2 T 0,3 T 0 三条等温线与两条绝热线围成三个卡 诺循环: (1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为 η1:33.3% ,η 2: 50%,η3 : 66.7%p aT2 1【提示】由T1热源的温度) ,得:T2T 1 cd 0 1 1 T 3T 3 ab0 1(T 1对应高温热源的温度, T 2 对应低温 , 2T Tef 1 01 1T2T2cd,d b3T 0c 2T 0 fe T 0 OV3TT2ef11 T3T3ab6.(自测提高 15)1 mol 的单原子理想气体,从状态 I (p 1,V 1)变化至状态 II ( p 2,V 2),如图 所示, 则此过程气体对外作的功为1() ,吸收的热pp (VV )12212p量为13 ()pp (V V )( p Vp V )12212 21 122II (p 2,V 2)I (p 1,V 1) OV【提示】 ①气体对外作的功= 过程曲线下的梯形面积;i②由热力学第一定律,得Q A E AR (T 2 T 1) ,2其中 i 3, 1mol , R(T T )p VpV ,212 21 113Q ( pp )(VV ) ( p VpV )12212 21 12 2三.计算题5.(基础训练 18)温度为 25℃、压强为 1 atm 的 1 mol 刚性双原子分子理想气体,经等 温过程体积膨胀至原来的 3 倍.(1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的 3 倍,那么气体对外作的功又是多少?解:(1)等温膨胀: TK , 1273 25 298V V ,1mol2 3 1V2A RT ln 2720( J)1V1(2)绝热过程:iA E R(T T ) ,其中i 5 ,1mol ,T2 可由绝热过程方2 12程求得: 1 1T V TV ,2 2 1 11 1V 11T T T 192 K2 1 1V 32,4姓名__________ 学号____________ 《大学物理Ⅰ》答题纸第八章5A 1 8.31 (192 298) 2202( J)2p (105 Pa)5 Pa)B 32、(基础训练19)一定量的单原子分子理想气体,从初态 A 出发,沿如图所示直线过程变到另一状态B,又经过2等容、等压两过程回到状态A.(1) 求A→B,B→C,C→A 各过程中系统对外所作的功W,内能的增量 E 以及所吸收的热量.整个循环过程中系统对外所作的总功以及从Q (2) 1OA12CV (10 3 m3)外界吸收的总热量(过程吸热的代数和).解:i 3,1(1) A B : 1A ( p p )(V V ) 200 JB A B A2i 3E R(T T ) (p V p V ) 750 J1 B A B B A A2 2Q1 A1 E1 950JB C :A2 0i 3E R(T T ) (p V p V ) 6 J002 C B C C B B2 2Q2 A2 E2 600JC A :A3 p A(V A V C ) 100Ji 3E R(T T ) (p V p V ) 150 J3 A C A A C C2 2Q3 A3 E3 250J(2) A A1 A2 A3 100JQ Q Q Q 1 0 J01 2 33.(基础训练22)一定量的理想气体经历如图所示的循环过程,A→B 和C→D 是等压过程,B→C 和D→A 是绝热过程.已知:T C=300 K,T B=400 K .试求:此循环的效率.解: 1 Q2Q1pA BQ1 C P T B T A , Q2 C P (T C T D ) ( )Q T T T (1 T /T )2 C D C D C Q T T T (1 T / T )1 B A B A BDCO V根据绝热过程方程得到:p 1 1A T p TA D D , 1 1p B T p TB C C而p A p ,p C p DB所以有T A /T T /T ,B DC Q T2 C Q T1 BQ T2 C故 1 1 25%Q T1 B(此题不能直接由TC1 式得出,因为不是卡诺循环。

相关文档
最新文档