定积分的概念59205
《定积分的定义》课件
总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看
微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积
解释定积分的概念
解释定积分的概念
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
具体来说,定积分定义如下:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子
区间[x₀,x₁], (x₁,x₂], (x₂,x₃], …, (xₙ-1,xₙ],其中x₀=a,xₙ=b。
a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x
叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
同时,应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。
定积分的概念 课件
若 f(x)≤0,则在[a,b]上曲边梯形的面积 S=-bf(x)dx;
a
若在[a,c]上,f(x)≤0,在[c,b]上,f(x)≥0,则在[a,
b]上曲边梯形的面积 S=-cf(x)dx+bf(x)dx.
a
c
【正解】 05(x-2)dx=S2-S1=12×32-12×22=52,故502(x -2)dx=5.
∴05(x-2)dx=S1+S2=12×22+12×32=123,
∴052(x-2)dx=2×123=13.
【错因分析】 在应用定积分的几何意义求定积分时,
错解中没有考虑在 x 轴下方的面积取负号,x 轴上方的面积取
正号,导致错误. 【防范措施】 若 f(x)≥0,则在[a,b]上曲边梯形的面
积 S=bf(x)dx;
间[xi-1,xi]上任取一点 ξi(i=1,2,…,n),作和式 f(ξi)Δx
=
,当 n→∞时,上述和式无限接近某个常
数,这个常数叫做函数 f(x)在区间[a,b]上的 定积分 ,记作
bf(x)dx,
a
即bf(x)dx=
.
a
其中 a 与 b 分别叫做 积分下限 与 积分上限 ,区间 [a,b]叫做 积分区间 ,函数 f(x)叫做 被积函数 ,x 叫做 积分变量 ,f(x)dx 叫做 被积式 .
定积分的概念
定积分的概念 【问题导思】 分析求曲边梯形的面积和求变速直线运动的路程的步 骤,试找出它们的共同点. 【提示】 两个问题均可通过“分割、近似代替、求和、 取极限”解决.都可以归结为一个特定形式和的极限.
如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi -1<xi<…<xn=b 将区间[a,b]等分成 n 个小区间,在每个小区
定积分的知识点总结
定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的基本概念
定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。
也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。
2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。
(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。
(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。
(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。
二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。
2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。
三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。
定积分的概念及性质课件
06
定积分的进一步应用
积分变换
积分变换的定义
积分变换是一种将函数在某一区间内的行为转化为另一种函数的方法,常见的积分变换包括傅里叶变换和拉普拉斯变 换等。
积分变换的性质
积分变换具有一些重要的性质,例如线性性质、时间平移性质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
积分变换的应用
积分变换在信号处理、图像处理和控制系统等领域有着广泛的应用,通过积分变换可以将复杂的信号或 系统转换为易于分析和处理的函数形式。
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域函数转换为频域函数的方法, 它可以将一个时间函数分解成一系列不同频率的正弦和余 弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要的性质,例如线性性质、对称性 质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
傅里叶变换的应用
傅里叶变换在信号处理、图像处理和控制系统等领域有着 广泛的应用,通过傅里叶变换可以将复杂的信号或系统转 换为易于分析和处理的频域函数形式。
反常积分
反常积分的定义
反常积分是一种在无穷区间上定 义的积分,它通常用于处理一些 在无穷远处收敛的函数。
符号的意义
定积分的符号表示一个函 数在一个区间上的总值, 其中“∫”表示积分号。
计算公式
定积分可以通过一个公式
来计算x,其中a和b
是区间的端点。
02
定积分的性质
连续函数的积分性质
积分区间可加性
对于任意两个不相交的区间[a,b]和[b,c],有$\int_{a}^{c}f(x)dx = \int_{a}^{b}f(x)dx + \int_{b}^{c}f(x)dx$。
定积分的概念
思考? 思考?
曲边梯形的面积
曲边梯形由连续曲线
y = f ( x ) ( f ( x ) ≥ 0) 、
y
y = f (x)
x 轴与两条直线 x = a 、
x=b
A=?
o
a b x
所围形的面积 实例 求由曲线 y = x 2 , x = 1, y = 0 围成的面积 围成的面积.
1
x 3dx .
1 2 n −1 T = [ 0, , , L , ,1], n n n i i −1 i , ], i = 1, 2,L , n, 则有 并取 ξ i = ∈ [ n n n
解: 作 [0,1]上的分割
∑
i =1
n
i 3 1 1 f (ξ i )∆xi = ∑ ( ) ⋅ = 4 n n i =1 n lim ∑
a = x0 < x1 < L < xn −1 < xn = b
o
y
y = f ( x)
a x1 x2 xi −1 xi
ξi
xn −1 b
x
(2) 在每个小区间上任取一点ξ i ∈ [ xi −1 , xi ]( i = 1, 2,L , n ), 则有
S ≈ ∑ f (ξ i )∆xi ,
i =1 n
∫a f ( x )dx
b
= ∫a f ( t )dt = ∫a f ( u)du
b
b
(2)定义中区间的分法和
ξ i 的取法是任意的. 的取法是任意的.
上的定积分存在时 (3)当函数 f ( x ) 在区间[a , b]上的定积分存在时,
称
f ( x ) 在区间[a , b]上可积. 可积.
定积分的定义与性质
定积分的定义与性质1. 定积分的定义1.1 引言在微积分中,定积分是一种重要的数学工具,用来计算曲线下面的面积或求函数在一定区间上的平均值。
定积分的概念由牛顿和莱布尼兹在17世纪提出,对于各种实际问题的求解起着至关重要的作用。
1.2 定积分的符号表示定积分可以用积分符号∫来表示,表示函数f(x)在区间[a, b]上的定积分为∫[a,b] f(x)dx其中f(x)是被积函数,x是自变量,[a, b]是积分区间。
1.3 定积分的几何意义定积分的几何意义是曲线下面的面积。
具体来说,若f(x)在区间[a, b]上非负,则∫[a,b] f(x)dx表示由横坐标轴、直线x=a、x=b和曲线y=f(x)所围成的图形的面积。
1.4 定积分的计算方法计算定积分的方法主要有以下两种:•几何法:将曲线下面的面积划分成无数个小矩形,通过求和的方式逼近曲线下面的总面积。
•代数法:通过对函数f(x)进行积分运算,得到曲线下面的面积。
2. 定积分的性质定积分具有一些重要的性质,它们可以帮助我们更好地理解和应用定积分。
2.1 线性性质定积分具有线性性质,即对于任意函数f(x)和g(x),以及任意常数a和b,有以下等式成立:∫[a,b] (af(x) + bg(x)) dx = a∫[a,b] f(x) dx + b∫[a,b] g(x) dx这意味着定积分可以在函数之间进行加法和标量乘法运算。
2.2 区间可加性设函数f(x)在区间[a, b]和[b, c]上连续,则有:∫[a,c] f(x) dx = ∫[a,b] f(x) dx + ∫[b,c] f(x) dx这表明定积分在区间上具有可加性,可以将一个大区间上的积分分解成两个子区间上的积分之和。
2.3 积分中值定理根据积分中值定理,如果函数f(x)在区间[a, b]上连续,则至少存在一个c∈(a, b),使得∫[a,b] f(x) dx = f(c)(b-a)这个定理给出了定积分与函数平均值之间的关系。
定积分的定义和性质
性质:区间可加性是定积分的一个重要性质,它表明定积分具有线性性质,可以像加法一样进行区间上的运算。
单击此处添加标题
积分中值定理
定理定义:若函数f在闭区间[a,b]上连续,则在开区间(a,b)上至少存在一点ξ,使得f(ξ)=(b-a)∫f(x)dx
定理证明:通过构造辅助函数和运用中值定理证明
方法步骤:选择适当的中间变量,进行变量替换,化简积分
适用范围:被积函数或积分区间具有特定形式时
分部积分法
定义:将两个函数的乘积进行积分的一种方法
注意事项:选择合适的u和v,以便简化计算过程
应用:解决某些复杂的不定积分问题
公式:∫udv=∫vdu+∫u'vdx
有理函数的积分法
计算步骤:首先将有理函数分解为简单分式之和或差,然后分别求各简单分式的积分,最后合并各简单分式的积分结果。
,a click to unlimited possibilities
定积分的定义和性质
目录
01
单击添加目录标题
02
定积分的定义
03
定积分的性质
04
定积分的计算方法
01
添加章节标题
02
定积分的定义
积分上限函数
积分上限函数的定义:定积分被定义为积分上限函数在某区间上的值。
积分上限函数的性质:积分上限函数在区间上单调递增或递减,取决于被积函数在区间上的符号。
应用场景:在求解定积分时,可以利用微积分基本定理将复杂的积分转化为简单的积分,从而简化计算过程。
定理证明:可以通过牛顿-莱布尼茨公式进行证明,该公式将定积分与不定积分联系起来。
04
定积分的计算方法
微积分基本定理的应用
定积分的概念课件
区间可加性
总结词
定积分的区间可加性是指定积分在区间上的 值等于该区间内各小区间的定积分之和。
详细描述
定积分的区间可加性表明,对于任意两个不 相交的区间$[a, b]$和$[c, d]$,有
$int_{a}^{b}f(x)dx+int_{c}^{d}f(x)dx=int_ {a}^{d}f(x)dx$。这意味着可以将一个大区 间分割成若干个小区间,然后求各小区间的 定积分,再将它们相加,得到整个大区间的
体积计算
规则体积
对于规则的立体图形,如长方体、圆柱体、圆锥体等 ,可以直接利用定积分的值来计算其体积。例如,对 于圆柱体,其体积可以通过定积分$int_{a}^{b} 2pi r(h) dr$来计算。
曲顶体积
对于曲顶的立体图形,如球、球缺等,也可以利用定 积分来计算其体积。通过将曲顶立体分割成若干小锥 体,然后求和这些小锥体的体积,最后利用极限思想 得到整个曲顶立体的体积。
定积分的性质
02
线性性质
总结词
定积分的线性性质是指定积分具有与加法和数乘运算类似的性质。
详细描述
定积分的线性性质允许我们将一个被积函数与常数相加或相乘,其结果等于将相应的常数加到或乘到 该函数的定积分上。即,对于两个函数的定积分,有$int (k_1f+k_2g) dx = k_1int f dx + k_2int g dx$,其中$k_1$和$k_2$是常数。
应用
无穷区间上的积分在解决一些实际问题时非常有用,例如 求某些物理量(如质量、面积等)的无穷累加和。
一致收敛性
定义
01
一致收敛性是函数序列的一种收敛性质,它描述了函数序列在
某个区间上的一致收敛性。
定积分的概念 课件
被积函数的曲线是圆心在原点,半径为2的半圆,
由定积分的几何意义知,此定积分为半圆的面积,
所以
2 4 x2 dx 22 2 .
2
2
例3:利用定积分的几何意义,求下列各式的值.
(2)
2
sinxdx;
2
y
解:在右图中,被积函数f (x) sin x
f(x)=sinx
在[ , ]上连续,且在[ ,0]上
y
y
f(x)=x2
f(x)=x2
y
f(x)=(x-1)2-1
y
f(x)=1
0a
x -1 0 2
xa 0
b x -1 0
2x
①
②
③
④
解:(1)在图①中,被积函数f (x) x2在[0,a]
上连续,且f (x) 0,根据定积分的几何意
义,可得阴影部分的面积为 A
a 0
x2dx
y
f(x)=x2
y
2
sin xdx 0
2).
sin xdx 2
2 sin xdx
0
0
0
3.试用定积分表示下列各图中影阴部分的面积。
y
y=x2
y y=f(x)
0 12 x
y=g(x)
0a
bx
练习4(2):
计算积分 1 1 x2 dx 0
解:由定积分的几何意义知,该积分值等于
曲线y 1 x 2 , x轴,x 0及x 1所围
f(x)dx —叫做被积表达式,
x ———叫做积分变量, a ———叫做积分下限, O a
bx
b ———叫做积分上限,
[a, b] —叫做积分区间。
定积分的定义:
《定积分的概念》课件
详细描述
微积分基本定理指出,一个定积分可 以用被积函数的不定积分来表示。这 个定理是计算定积分的基石,因为它 提供了一种将定积分问题转化为求不 定积分问题的途径。
பைடு நூலகம்
微积分基本定理的应用
总结词
微积分基本定理的应用广泛,包括计算面积、体积、速度和加速度等。
详细描述
通过微积分基本定理,我们可以计算各种物理量,如物体的运动速度、加速度,以及平面图形的面积 等。这些应用在科学、工程和经济学等领域都有广泛的应用。
定积分的计算方法
总结词
定积分的计算方法包括直接法、换元法 和分部积分法等。
VS
详细描述
直接法是直接利用微积分基本定理计算定 积分的方法;换元法是通过换元公式将复 杂的积分转化为简单的积分;分部积分法 则是通过将两个函数的乘积进行求导,再 利用微积分基本定理计算定积分的方法。 这些方法在解决实际问题时各有优缺点, 需要根据具体情况选择合适的方法。
通过将物体的运动轨迹分割成无数小的线段,再利用定积分计算这些线
段上的速度和加速度的积分和,可以求得物体的整体速度和加速度。
定积分在经济学中的应用
计算边际成本和边际收益
在经济学中,定积分可以用于计算边际成本和边际收益,这是通过将成本或收益函数在一定的范围内进行分割,再利 用定积分计算这些分段上的成本或收益的积分和,可以求得整体的边际成本和边际收益。
预测市场需求
通过将市场需求函数在一定的范围内进行分割,再利用定积分计算这些分段上的需求函数的积分和,可以预测整体的 市场需求。
评估投资项目的风险
通过将投资项目的风险函数在一定的范围内进行分割,再利用定积分计算这些分段上的风险函数的积分 和,可以评估整体的投资项目的风险。
定积分的概念定积分应用
THANKS
谢谢
总结词
定积分在弹性力学中用于计算物体在受力作用下的应力和应变。
详细描述
在弹性力学中,物体在受力作用下的应力和应变可以通过将弹性力学方程与定积分相结合来计算。通过确定物体 的受力分布和边界条件,可以计算出物体的应力和应变。
热传导中的温度分布
总结词
定积分在热传导中用于计算物体内部的温度分布。
详细描述
在热传导问题中,物体内部的温度分布可以通过将热传导方程与定积分相结合来计算。通过确定物体 的热源、边界条件和初始温度分布,可以计算出物体在不同时刻的温度分布。
积分区间
由积分下限和积分上限 确定的闭区间,表示为 $[a, b]$。
定积分的几何意义
定积分表示曲线与直线$y = x$ 及$x$轴所夹的面积,即曲线下
方间的距离。
当定积分的积分区间为$[a, b]$ 时,定积分的值等于曲线与直线 $y = x$及$x$轴所夹的面积在 $x=a$和$x=b$处的面积差。
恒力做功的计算
在物理学中,恒力做功可以直接用力 和位移的乘积来计算。然而,当作用 力是变力时,不能简单地用力和位移 的乘积来计算。
定积分的引入
为了计算变力做功,我们需要引入定 积分的概念。通过将变力函数在位移 区间上进行积分,可以得到变力做功 的值。
04
CHAPTER
定积分在经济学中的应用
边际和弹性
消费者剩余和生产者剩余
消费者剩余
生产者剩余
定积分可用于计算消费者剩余,即消费者愿 意支付的价格与实际支付的价格之间的差额。 通过积分可以求出整个需求曲线下方的面积, 即总消费者剩余。
定积分也可用于计算生产者剩余,即生产者 愿意接受的价格与实际接受的价格之间的差 额。通过积分可以求出整个供给曲线上方的 面积,即总生产者剩余。
定积分的概念 课件
,求下列定积分的值:
① 0e(2x+x2)dx;
② 0e(2x2-x+1)dx.
【解题探究】1.题(1)中求
2
0
f(x)dx时需分几段?
2.在题(2)中
2
0
[f(x)-2x]dx与
02f(x)dx,02(-2x)dx有何等量关
系?
3.在题(3)②中如何用已知定积分来表示所求积分值?
【探究提示】1.需分两段求解,一是 (0x1 +1)dx,另一个是
知识点1 定积分的概念与几何意义 1.对定积分概念与几何意义的三点说明 (1)定积分的概念是对“分割、近似代替、求和、取极限”这 四个步骤的高度概括,其中包含着重要的数学思想方法—— “以直代曲”,只有理解了定积分的定义过程,才能掌握定积 分的计算与应用.
(2)定积分
b
a
f(x)dx
是一个常数——实数,一般情况下,被积
因 为n13 Δin1xi=2 12,当16 (n1→ n1∞)(时2 ,n1 Δ) x2→. 0,
n
所以
(1x2+2)dx=lim
0
n
n i1
f
i
x
lim[1 (1 1 )(2 1 ) 2] 1 2 7 .
n 6
n
n
33
【延伸探究】若题(2)的积分区间变为[-1,1],其余不变,
a g(x)dx= a
2 0ag(x)dx.
【微思考】
(1)定积分
02(x2+x+1)dx与
2
0
x2dx,
2
0
(x+1)dx有什么关系?
提示:02(x2+x+1)dx=02
一节定积分的概念
在a,b上所做的功的即 近似值,
n
n
WWi F(i)si.
i1
i1
(3)取极限
把所有小区间长度中最的大值记为 max(si )
n
则 0时,和式F(i ) si的极限值定义为变力
i1
在区间a, b上,对质点所做的功即,
n
W=lim 0 i1
F(i
)
si
.
以上两问题虽然不同,但解决问题的方法却相
同,即归结为求同一结构的总和的极限.由此引入定
w=F·s. 但实际问题中,物体在运动中受力常常不是恒力,此 时不能直接用上述公式计算变力所做的功.如果已知F(s) 是位移s的连续函数,物体位移区间为[a,b](即位移s从a变 到b).则所求功显然取决于位移区间及定义在这个区间上 的函数F(s).如果把位移区间分成许多小区间,总功应等 于对应于各小区间上变力所做功之总和.
yf(x)为曲边的曲A边a梯 B的b形 面积等于同一
而高f为 ()的矩形的. 面积
性质 2 被积函数中的常数因子可以提到积分号前面,即
a bk(x f)d xka bf(x)d x(k是常 ). 数
证明
a bk(fx)dx l i0m i n1k(fi) xi
n
l im 0ki 1f(i)xi
n
=
k
lim
0 i1
f
(i
)xi
=
k
b
a
f
(x)dx.
性质 3 如果积分区间[a,b]被分点c分成区间[a,c]和[c,b], 则
在几何abf上(x表)d示x 上述曲边梯形的面积A的相反数.
如果在[a,b]上f(x)既可取正值又可取负值,则定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程资源 同济大学《高等数学》(第七版)上册
教学内容与过程
一、定积分问题举例 1、曲边梯形的面积
设)(x f y =在区间],[b a 上非负连续。
由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点
b x x x x x a n n =<<<<<=-1210Λ
把],[b a 分成
n 个小区间
],[,],,[],,[12110n n x x x x x x -Λ
它们的长度依次为:n
x x x ∆∆∆,,,21Λ
(2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积
,)(i i i x f A ∆≈∆ξ ]).,[(1i i i x x -∈∀ξ
(3)求和:曲边梯形面积∑∑==∆≈∆=
n
i i
i
n i i
x
f A A 1
1
)(ξ
(4)取极限:曲边梯形面积,)(lim 1
∑=→∆=n
i i
i
x f A ξλ其中
}.,,m ax {1n x x ∆∆=Λλ
2、变速直线运动路程
设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 (1)分割:在],[21T T 中任意插入1-n 个分点
b t t t t t a n n =<<<<<=-1210Λ
x
a b y
o 1
x i
x 1-i x i ξ
—。