不等式及不等式组测试题
不等式与不等式组测试题(含答案)】
不等式与不等式组测试题(含答案)】一、选择题1.A2.B3.B4.B5.B6.C二、填空题7.|x/2 - 5/2|。
= 38.x <= 189.x < -4/2 = -210.40 <= x <= 48三、做一做11.解:x = 3/4,解集表示在数轴上如下图所示。
o-----|--------------o----|0.1/7.3/4.112.解:x。
8/2 = 4 或 x < -2/2 = -1,解集表示在数轴上如下图所示。
o-----------------o-----|1.4.13四、想一想13.解:将第一个方程乘以2,得6x + 4y = 2m + 2,将第二个方程乘以3,得6x + 3y = 3m - 3.两式相减得y = m - 5,代入第一个方程得6x + 4(m - 5) = 2m + 2,化简得2x = m + 3,因为x。
y,所以m + 1.0,解得m。
-1.14.解:设这个两位数为10a + b,其中a和b分别表示十位和个位数字。
根据题意得a = b + 2,又因为50 < 10a + b < 70,所以5 < a < 7.因为a和b都是非负整数,所以只有a = 6,b = 4时满足条件,所求的两位数为64.五、实际应用15.解:设XXX家每月用水量为x立方米,则当x。
5时,水费为9 + 2(x - 5) = 2x - 1元。
因为每月水费不少于15元,所以有1.8x。
= 15 或 2x - 1.= 15,解得x。
= 8.33,所以XXX家每月用水量至少为9立方米。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)
人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
人教部编第九章 不等式与不等式组 测试题2
周口市2020-2020学年度下期七年级第九章不等式与不等式组检测题一.抉择 题 (每题3分,共30分〕1. 假定x y >,那么以下式子过错 的选项是( )A.33x y ->-B.33x y ->-C.32x y +>+D.33x y > 2. 如图表现 了某个不等式的解集, 该解集所含的整数解的个数是( )A 4 B. 5 C. 6 D.73. 假定不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,那么a 的取值范畴 为( )A a >0 B. a =0 C. a >4 D. a =4 4. 不等式组⎩⎨⎧≥->+0302x x 的解集是( )A.32≤≤-xB.32≥-<x x 或C.32<<-xD.32≤<-x5. 不等式组⎩⎨⎧-≥-111x x <的解集在数轴上表现 准确 的选项是( )6. 假如不等式组⎩⎨⎧><m x x 3有解,那么m 的取值范畴 是( )A.m >3 B 3≥m C. m <3 D 3≤m7. 地方电视台2套“快乐 辞典〞栏目中,有一期的标题如下列图,两个天平都均衡,那么三个球体的分量即是 个正方体的分量( )A.2B.3C.4D.58. 韩日“天下 杯〞时期,重庆球迷一行56人从旅店 剩出租车道到球场为中国对加油,现有A,B 两个出租车队,A 队比B 队少3辆车,假定全体 布置剩A 队的车,每辆5人,车不敷 ,每辆坐 6人,有的车未坐满,那么A 队有出租车( )A.11辆B.10辆C.9辆D.8辆-1012222111000-1 -1 -1A BCD9. 甲从一个鱼摊上买了三条鱼,均匀每条a 元,又从另一个鱼摊买了两条鱼,均匀每条b 元,厥后 他又以每条2ba +的价钱把鱼全体 卖给了乙,后果发觉 赔了钞票 ,缘故是( )A.b a >B.b a <C.b a =D.b a 和的巨细 有关10. 某次常识 比赛 共有30道抉择 题,称对一题得10分,假定答错或不答一道题,那么扣3分,要使总得分很多 于70分那么应当 至多答对几多 道题?假定设答对x 题,可得式子为( )A.103(30)70x x -->B.103(30)70x x --≤C.10370x x -≥D. 103(30)70x x --≥二.填空题 〔每题3分,共30分)11. 不等式(m -2)x >2-m 的解集为x <-1,那么m 的取值范畴 是__________________。
不等式与不等式组单元测试题(新苏版初一下).doc
不等式与不等式组单元测试题(新苏版初一下)【一】填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩旳解集是2、用代数式表示,比x 旳5倍小1旳数不小于x 旳21与4旳差。
3、34125x +-<≤旳非正整数解为 4、一罐饮料净重约300克上注有“蛋白质含量≥0.6%”其中蛋白质旳含量至少为克。
5、-1≤3X ≤12旳自然数解有个.6、小明用100元钱去购买笔记本和钢笔共30件。
每本笔记本2元,每支钢笔5元那么小明最多买支钢笔。
、7、假如3x -m ≤0旳正整数解是1、2、3那么m 旳取值范围是;8、假设不等式mx -2<3x +4旳解集是x >3m 6-,那么m 为、 9、不等式组旳解集是n <x <m ,那么m 、n 旳大小关系是、10、某次数学测验中有16道选择题,评分方法:答对一道得6分,答错一道扣2分,不答得0分。
某学生有一道题未答,那么那个同学至少要答对﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏道题,成绩才能在60分以上。
【二】选择题〔每题3分,共30分〕11、a<b,那么以下不等式中不正确旳选项是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-412、以下表达不正确旳选项是()A 、假设x<0,那么x 2>xB 、假如a<-1,那么a>-aC 、假设43-<-a a ,那么a>0D 、假如b>a>0,那么ba 11-<- 13、假如两个不等式旳解集相同,那么这两个不等式叫做同解不等式。
以下两个不等式是同解不等式旳是〕A 、484<-x 与12->xB 、93≤x 与3≥xC 、x x 672<-与x 47≤-D 、0321<+-x 与231->x 14、一元一次不等式组⎩⎨⎧>-<-xx x 332312旳解集是〔〕A 、-2<x <3B 、-3<x <2C 、x <-3D 、x <215、代数式1-m 旳值大于-1,又不大于3,那么m 旳取值范围是().13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、假设1-=a a,那么a 只能是〔〕A 、a ≤-1B 、a <0C 、a ≥-1D 、a ≤0x <m x >n17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩旳解集是().1.0.01.21A x B x C x D x >-><<-<<18、假如关于x 、y 旳方程组322x y x y a +=⎧⎨-=-⎩旳解是负数,那么a 旳取值范围是() A.-4<a<5B.a>5C.a<-4D.无解 19、假设关于x 旳不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩旳解集是x>2a,那么a 旳取值范围是() A.a>4B.a>2C.a=2D.a ≥220、假设方程组2123x y m x y +=+⎧⎨+=⎩中,假设未知数x 、y 满足x+y>0,那么m 旳取值范围是() .4.4.4.4A m B m C m D m >-≥-<-≤-21、解以下不等式(或不等式组),并在数轴上表示解集。
榆中县第一中学七年级数学下册第九章【不等式与不等式组】经典测试(含答案解析)
一、选择题 1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥3.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-4.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .5.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <26.若a b >,则下列不等式中,不成立的是( ) A .33a b ->- B .33a b ->-C .33a b > D .22a b -+<-+ 7.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc <8.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤79.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .10.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤11.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .二、填空题12.“x 的4倍与1的差不大于3”用不等式表示为 ________________ . 13.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.14.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.15.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.16.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.17.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限 18.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.19.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________.20.不等式组210360x x ->⎧⎨-<⎩的解集为_______.21.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.三、解答题22.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案. 23.解不等式组并将不等式组的解集表示在数轴上.(1)1223(2)4x x x ⎧-≤⎪⎨⎪<-+⎩ (2)1232(2)3(1)1x x x x ⎧>-⎪⎨⎪-≤--⎩24.若关于x 的方程23244x m m x -=-+的解不小于7183m--,求m 的取值范围. 25.解不等式组:323(2)52x x x -<⎧⎨-≤+⎩.一、选择题1.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( )A .B .C .D .3.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( )A .B .C .D .4.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .5.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <26.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤9.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,7天后,小圆背诵的诗词最多为( )A .10首B .11首C .12首D .13首10.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 11.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D .二、填空题12.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号).13.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.14.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.15.若不等式(2﹣a )x >2的解集是x <22a-,则a 的取值范围是_____. 16.绝对值小于π的非负整数有____________.17.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.18.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________. 19.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.20.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.21.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.三、解答题22.某县举办运动会需购买A ,B 两种奖品,若购买A 种奖品5件和B 种奖品2件,共需80元;若购买A 种奖品3件和B 种奖品3件,共需75元. (1)求A 、B 两种奖品的单价各是多少元?(2)大会组委会计划购买A .B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,并求出自变量m 的取值范围,以及确定最少费用W 的值. 23.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.24.某商店有A 商品和B 商品,已知A 商品的单价比B 商品单价多12元,若购买400件B 商品与购买100件A 商品所用钱数相等. (1)求A ,B 两种商品的单价分别是多少元.(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4,如果需要购买A ,B 两种商品的总件数不少于32,且该商店购买的A ,B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.25.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.一、选择题1.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .102.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 3.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥4.不等式()31x -≤5x -的正整数解有( ) A .1个B .2个C .3个D .4个5.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --7.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-8.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .269.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤10.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤11.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x > B .若x y >,则22x y -<- C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题12.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 13.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__. 14.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.15.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 16.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.17.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 18.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.19.若关于x 、y 的二元一次方程组23242x y a x y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.20.点()1,2P x x -+不可能在第__________象限.21.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________. 三、解答题22.解下列不等式组:(1)3(1)51124x x x x -<+⎧⎨-≥-⎩ (2)3(2)421152x x x x --≥⎧⎪-+⎨>⎪⎩ 23.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩ 24.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.25.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.。
不等式单元测验
第九章 不等式与不等式组测试题一、选择题:(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ab,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 2.若0<a <1,则下列四个不等式中正确的是( ) A .a <1<1a B .a <1a <1 C .1a <a <1 D .1<1a<a 3.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( )A.3m ≥ B.3m = C.3m < D.3m ≤4. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )。
A 、0 B 、-3 C 、-2 D 、-15.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )6.以下所给的数值中,为不等式-2x + 3<0的解的是( ). A .-2 B .-1 C . D .2 7.若b a <,则下列各式中不一定成立的是( )A .11-<-b aB .33ba <C . b a ->-D . bc ac < 8. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )B9.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有( )人。
A 40B 41C 42D 4310.如果关于x 的不等式组{x 13m x m <+>-无解,那么m 的取值范围是( )A m >1B m ≥1C m <1D m ≤1二、填空题 :(每小题3分,共24分)11. 2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a12. 不等式2(x -3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_______________。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。
不等式与不等式组(压轴题综合测试卷)(人教版)(原卷版)
专题9.4 不等式与不等式组(满分100)学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人得 分一.选择题(本大题共10小题,每小题3分,满分30分) 1.(2023春·四川达州·八年级校考阶段练习)若不等式2x+53−1≤2−x 的解集中x 的每一个值,都能使关于x 的不等式3(x ﹣1)+5>5x +2(m +x)成立,则m 的取值范围是( ) A .m >−35B .m <−15C .m <−35D .m >−152.(2023春·福建泉州·七年级晋江市第一中学校考期中)若关于x 的不等式mx - n >0的解集是x <15,则关于x 的不等式(m +n)x >n −m 的解集是( ) A .x >−23B .x <−23C .x <23D .x >233.(2022秋·八年级课时练习)已知方程|x|=ax+1有一个负根而且没有正根,那么a 的取值范围是( ). A .a >-1B .a =1C .a≥1D .非上述答案4.(2023春·江苏·七年级专题练习)已知关于x 的不等式组{3a −2x ≥02a +3x >0 恰有3个整数解,则a 的取值范围是( ) A .23≤a ≤32B .43≤a ≤32C .43<a <32D .43≤a <325.(2023春·江苏·七年级期末)关于x 的不等式组{a −x >32x +8>4a有解且每一个x 的值均不在−2≤x ≤6的范围中,则a 的取值范围是( ) A .a <1B .a ≤1C .1<a ≤5D .a ≥56.(2022春·山西运城·八年级统考期末)若不等式组{2x −a <1x −2b >3的解 为−3<x <1,则(a +1)(b −1)值为( ) A .−6B .7C .−8D .97.(2023春·四川资阳·七年级四川省安岳中学校考期中)若整数a 使关于x 的不等式组{x+13≤2x+59x−a2>x−a+13至少有1个整数解,且使关于x ,y 的方程组{ax +2y =−4x +y =4的解为正整数,那么所有满足条件的a 值之和为( )A .﹣17B .﹣16C .﹣14D .﹣128.(2022春·重庆渝北·八年级校联考阶段练习)如果关于x 的不等式组{x−43−x <−4x −m >0的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x ,y 均为整数),则不符合条件的整数m的有( ) A .-4B .2C .4D .109.(2023春·江苏·七年级专题练习)若关于x 的一元一次不等式组{−2x+3m4≥2x2x +7≤4(x +1)有解,且最多有3个整数解,且关于y 的方程3y −2=2m−3(8−y)2的解为非负整数,则符合条件的所有整数m 的和为( ) A .23B .26C .29D .3910.(2022春·重庆綦江·七年级统考期末)如果关于x 、y 的方程组{3x +2y =m +12x +y =m −1 中x >y ,且关于x 的不等式组{x−12<1+x35x +2≥x +m 有且只有4个整数解,则符合条件的所有整数m 的和为( ) A .8 B .9C .10D .11评卷人得 分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022春·江苏连云港·七年级统考期末)对非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n +12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x =_____. 12.(2023春·江苏·七年级专题练习)若不等式|x −2|+|x +3|+|x −1|≥a 对一切数x 都成立,则a 的取值范围是________.13.(2023春·全国·七年级专题练习)若6a =3b +12=2c ,且b ≥0,c ≤9,设t =2a +b −c ,则t 的取值范围为______.14.(2022春·重庆南川·八年级统考期中)某公司急需生产一批不超过10000套的工装服(一套工装服含领带、衬衣、裙子各一件)该公司计划将员工分为甲、乙、丙三个组,分别生产领带、衬衣、裙子,他们于某天零时同时开工,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零时甲完成任务,再几天后(不少于一天)的中午12时乙完成任务,再过几天(不少于一天)后的8时丙完成了任务,已知三个组每天完成的任务分别是500件,400件,300件,则该公司甲组完成任务工作了______天.15.(2023春·江苏·七年级专题练习)将长为4,宽为a (a 大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图①所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当n =3时,a 的值为 ___________.评卷人得 分三.解答题(本大题共9小题,满分55分)16.(4分)(2023春·全国·七年级专题练习)解下列不等式: (1)解不等式6x ﹣4>5(x ﹣1)+3; (2)解不等式1-0.1x+10.4>1-0.15x 0.5,并把不等式的解在数轴上表示出来.17.(8分)(2022秋·江西景德镇·七年级景德镇一中校考期中)根据要求解不等式或答题 (1){2x +5≤3(x +2)1−2x 3+15>0 ; (2)若关于x 的不等式组{2x <3(x −3)+13x+24>x +a有四个整数解,则a 的取值范围是? (3)mx +1>2x +n ; (4)2|x +1|−|x |>3|2−x |.18.(6分)(2022秋·全国·七年级专题练习)已知2x−13−1≥x −5−3x 2,求|x −1|−|x +3|的最大值和最小值.19.(6分)(2022·安徽·九年级专题练习)某商场计划拨款9万元从厂家购买50台电视机,已知该厂家生产三种不同型号的电视机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,商场销售一台甲种电视机可获利150元,销售乙种电视机每台可获利200元,销售丙种电视机每台可获利250元. (1)若同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案; (2)经市场调查这三种型号的电视机是最受欢迎的,且销售量乙种是丙种的3倍.商场要求成本不能超过计划拨款数额,利润不能少于8500元的前提,购进这三种型号的电视机共50台,请你设计这三种不同型号的电视机各进多少台?20.(6分)(2022春·湖北武汉·七年级校考阶段练习)如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果) (2)若k 使得方程组{3x +2y =k +14x +3y =k −1中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组{2x−63>x −3x+32≤x −a的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.21.(6分)(2022秋·浙江宁波·八年级校考期中)(1)阅读下面的材料并把解答过程补充完整. 问题:在关于x ,y 的二元一次方程组{x −y =2x +y =a中,x >1,y <0,求a 的取值范围.分析:在关于x 、y 的二元一次方程组中,用a 的代数式表示x ,y ,然后根据x >1,y <0列出关于a 的不等式组即可求得a 的取值范围.解:由{x −y =2x +y =a 解得{x =a+22y =a−22又因为x >1,y <0所以{a+22>1a−22<0解得a 的取值范围是 . 因为x +y =a ,所以a 的取值范围就是x +y 的取值范围. (2)请你按照上述方法,完成下列问题:①已知x ﹣y =4,且x >3,y <1,求x +y 的取值范围;①已知a ﹣b =m ,在关于x ,y 的二元一次方程组{2x −y =−1x +2y =5a −8中,x <0,y >0,请直接写出a +b 的取值范围.22.(6分)(2023春·江苏·七年级专题练习)我们把关于x 的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”. (1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由; ①{2x −4=05x −2<3;①{x−53=2−3−x 2x+32−1<3−x 4. (2)若关于x 的组合{5x +15=03x−a2>a 是“有缘组合”,求a 的取值范围;(3)若关于x 的组合{5a−x2−3=2x −3a x−a 2+1≤x +a是“无缘组合”;求a 的取值范围.23.(6分)(2022春·四川资阳·七年级校考期中)使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x−3=1与不等式x+3>0,当x=2时2x−3=2×2−3=1,x+3=2+3=5>0同时成立,则称“x=2”是方程2x−3=1与不等式x+3>0的“理想解”.(1)已知①x−12>32,①2(x+3)<4,①x−12<3,试判断方程2x+3=1的解是否为它与它们中某个不等式的“理想解”;(2)若{x=x0y=y0是方程x−2y=4与不等式{x>3y<1的“理想解”,求x0+2y0的取值范围;(3)当实数a、b、c满足a<b<c且a+b+c=0时,x=m恒为方程ax=c与不等式组{x−1≥t+s4x−4≤2t+s 的“理想解”,求t、s的取值范围.24.(7分)(2022春·江苏南通·七年级校考期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程x−1=3的解为x=4,而不等式组{x−1>1x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x−1=3是不等式组{x−1>1x−2<3的“相依方程”.(1)在方程①6(x+2)−(x+4)=23;①9x−3=0;①2x−3=0中,不等式组{2x−1>x+13(x−2)−x≤4的“相依方程”是________;(填序号)(2)若关于x的方程3x−k=6是不等式组{3x+12>xx−1 2≥2x+13−1的“相依方程”,求k的取值范围;(3)若关于x的方程x−3m2=−2是关于x的不等式组{x+1>mx−m≤2m+1的“相依方程”,且此时不等式组有5个整数解,试求m的取值范围.。
期末专项训练----不等式与不等式组(2)
期末专项训练----不等式与不等式组(2)一、填空题(每空2分,共28分) 1、不等式621<-x 的负整数解是2、若2,2a a 则-<_______a 2-;不等式b ax >解集是ab x <,则a 取值范围是3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了 道题。
4、不等式组⎩⎨⎧≤〉+201x x 的解集是 。
5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是-1+1-26、若代数式1-x-22 的值不大于1+3x3的值,那么x 的取值范围是_______________________。
7、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。
9、若0,0><b a ,则点 ()21+-b a , 在第象限 。
10、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是_______________。
11、在方程组a y x y x a y x 则已知中,0,0,62<>⎩⎨⎧=-=+的取值范围是____________________ 12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。
某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。
则该学生第二次购书实际付款 元。
12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。
二、选择题(每小题3分,共30分)1、若∣-a ∣=-a 则有(A) a ≥ 0 (B) a ≤ 0 (C) a ≥-1 (D) -1≤a ≤02、不等式组⎩⎨⎧-≤-->xx x 28132的最小整数解是( )A .-1B .0C .24、在∆ABC 中,AB=14,BC=2x ,AC=3x ,则x 的取值范围是( )A 、x >2.8B 、2.8<x <14C 、x <14D 、7<x <145、下列不等式组中,无解的是( )2x+3<03x+2>0⎧⎨⎩ (B) 3x+2<02x+3>0⎧⎨⎩ (C) 3x+2>02x+3>0⎧⎨⎩ (D) 2x+3<03x+2<0⎧⎨⎩ 6、如果0<x<1则1x ,x,x 2 这三个数的大小关系可表示为( )(A)x< 1x < x 2 (B)x <x 2< 1x (C) 1x <x<x 2(D) x 2<x<1x7、在平面直角坐标系中,点(-1,3m 2+1)一定在( )A .第一象限. B.第二象限. C.第三象限.D.第四象限 8、如图2,天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)的取值范围,在数轴上可表示为( )9、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所CD示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大....的顺序排列为( ) A 、○□△ B 、○△□ C 、□○△D 、△□○10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( ) A .6折 B .7折 C .8折 D .9折三、解答题(1~2共10分,3~4共12分,5~6共20分)1、解不等式组⎪⎩⎪⎨⎧+<+≤-.413,13)1(2x xx x2、求不等式组5131131132x x x x -<+⎧⎪++⎨≤+⎪⎩的整数解3、已知方程组32121x y m x y m +=+⎧⎨+=-⎩,m 为何值时,x >y?4、乘某城市的一种出租车起步价是10元(即行驶路程在5km 以内都需付车费10元),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计)。
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)
初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
不等式与不等式组单元测试题(含答案)
不等式与不等式组单元测试题一、填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。
7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。
8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。
在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题(每小题2分,共20分)11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<-13、如图1,设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为 A 、 ○□△ B 、 ○△□C 、 □○△D 、 △□○图114、如图2天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是(.1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 A. a>4 B. a>2 C. a=2 D.a ≥20、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是 .4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分) 0 0 1 2 B 0 A A 图2 0 12 A 2 1C 1 D21、解下不等式(或不等式组)并在数轴上表示解集。
《不等式与不等式组》精编测试题及参考答案(能力)
《不等式与不等式组》精编测试题(能力)一、选择题1.设x ,y ,z 是实数,正确的是( ) A .若x =y ,则x+z =y ﹣z B .若x =y ,则xz =yzC .若x >y ,则zx >zyD .若x >y ,则x z>y z2不等式组{x−12≤xx −2<4(x +1)的所有正整数解的和是( )A .4B .5C .6D .73.如果关于x 的不等式(1﹣a )x >a ﹣1的解集是x <﹣1,那么a 的取值范围是( ) A .a ≤1B .a ≥1C .a >1D .a <04.如果不等式组{x 3<1−x−36x <m的解集是x <3,那么m 的取值范围是( ) A .m <78B .m ≥78C .m <3D .m ≥35.若关于x ,y 的方程组{2x +3y =m −22x −3y =5m的解是一对负数,则|2m+1|﹣|﹣6m+2|的值是( ) A .8m ﹣1B .-8m+1C .6D .16.定义新运算:a ⊕b =1﹣ab ,则不等式组{x ⊕2≤3−13⊕x <73的整数解的个数是( ) A .4 B .5 C .6 D .77.若关于x 的不等式组{2x +3≥11x −a <0恰有2个整数解,则实数a 的取值范围是( )A .5<a <6B .5<a ≤6C .5≤a <6D .5≤a ≤6 8.已知关于x 、y 的二元一次方程组{3x +2y =−a −1x −29y =a +139的解满足x ≥y ,且关于s 的不等式组{s >a−73s ≤1恰好有4个整数解,那么所有符合条件的整数a 的个数为( ) A .4个B .3个C .2个D .1个9.关于x 的方程3(k ﹣2﹣x )=3﹣5x 的解为非负数,且关于x 的不等式组{x −2(x −1)≥32k+x3≤x无解,k 是整数,则符合条件k 的和为( )A .5B .2C .4D .610.关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组{x −2(x −1)≤32k+x3≥x有解,则符合条件的整数k 的值的和为( )A .5B .4C .3D .211.把一堆苹果分给几个孩子,如果每人分3个苹果,那么多8个苹果.如果前面每人分5个苹果,那么最后一人得到的苹果不足3个,孩子的个数( ) A .3 B .4C .5D .612.某超市从批发市场以5元/千克的价格购进200千克蔬菜,运输过程中质量损失5%,超市计划销售这批蔬菜至少获得15%的利润,不计其他费用.若这批蔬菜的售价要在进价的基础上提高x%,则x 满足的不等关系为( ) A .200(1﹣5%)×5(1+x%)≥200×5×(1+15%) B .200(1﹣5%)×5(1+x%)≥200×5×(1﹣15%) C .200(1+5%)×5(1﹣x%)≥200×5×(1+15%)D .200(1﹣5%)×5(1+x%)≤200×5×(1+15%) 二、填空题13.不等式组{1−x ≤3x +2<6的最大整数解是_________.14.定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.如果[x+12]=﹣3,那么x 的取值范围是____________.15.关于x ,y 的二元一次方程组{ax +y =93x −y =1的解为正整数(x ,y 均为正整数)且关于t的不等式组{13(2t +24)≥9,1+t <2(12a +1)无解,则所有满足条件的整数a 的个数为_______. 16.定义:如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.若方程10﹣x =x 、9+x =3x+1都是关于x 的不等式组{x +m <2x x −3≤m 的相伴方程,则m 的取值范围为_______________. 17.已知2x−13+1≥x −5−3x 2,则代数式|2-x|-|x+3|最大值与最小值的差是_______.三、解决问题 18.(1)解不等式2x−13−5x+12≥1,并把它的解集在数轴上表示出来.(2)解不等式组{2x +3>3xx+33−x−16≥1219.某汽车公司销售A ,B 两种型号的汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)销售一台A 型、一台B 型汽车的利润各是多少万元?(2)公司准备用300万元资金采购A ,B 两种汽车,有多少种采购方案?(3)公司准备用不超过300万,采购A ,B 两种汽车共22台,问最少需要采购A 型汽车多少台?20.某地区为筹备一项庆典,计划搭配A ,B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉50盆,乙种花卉30盆;搭配一个B 种造型需甲种花卉40盆,乙种花卉60盆,且搭配一个A 种造型的花卉成本是270元,搭配一个B 种造型的花卉成本是360元. (1)甲、乙两种花卉每盆各多少元?(2)若用现有的2295盆甲种花卉和2190盆乙种花卉进行搭配,则有哪几种搭配方案? (3)在(2)的搭配方案中花卉成本最低的方案是哪一种?最低成本是多少元?21.某校计划给每个教室配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?22.为落实促经济政策,某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年2月份的工资情况信息:元?(2)若职工丙今年3月份的工资不低于7000元,那么丙该月至少应销售多少件产品?参考答案一、选择题BCCDA BBCDC DA二、填空题13. 314. ﹣7≤x<﹣515. 216. 2≤m<417. 10411三、解决问题18(1)x ≤﹣1 (2)﹣4≤x <319(1)设销售一台A 型汽车的利润是x 万元,销售一台B 型汽车的利润是y 万元。
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)一、选择题(本大题共6个小题,每小题3分,共18分.)1.已知实数a ,b ,若a >b ,则下列结论正确的是( ).A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a >3b2.不等式3(x -1)≤5-x 的非负整数解有( ).A .1个B .2个C .3个D .4个 3.关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( ). A .14 B .7 C .-2 D .2 4.不等式组⎩⎪⎨⎪⎧2x +13-3x +22>1,3-x ≥2的解集在数轴上表示正确的是( ).5.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围为( ).A .m =3B .m >3C .m <3D .m ≥36.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( ). A .4条 B .5条 C .6条 D .7条二、填空题(本大题共6小题,每小题3分,共18分)7.不等式组⎩⎪⎨⎪⎧x ≤3x +2,3x -2(x -1)<4的解集为________.8.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.9.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x <13的解集为________.10.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是________.11.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为________.12.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题 (本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.14.解不等式4x -13-x >1,并把它的解集在数轴上表示出来.15.解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并将它的解集在数轴上表示出来.16.x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?17.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.四、(本大题共3小题,每小题8分,共24分).18.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3a +9,x -y =5a +1的解都为正数,求a 的取值范围.19.旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?20.已知关于x 的不等式组⎩⎪⎨⎪⎧-x -1≥-2x +1,12(x -2a )+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.五、(本大题共2小题,每小题9分,共18分).21.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.22.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).六、(本大题共12分)23. 为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A 、B 两类学校进行扩建,根据预算,扩建2所A 类学校和3所B 类学校共需资金7800万元,扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划扩建A 、B 两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案一、选择题(本大题共6个小题,每小题3分,共18分.)1. D ; 2. C ; 3. D ; 4. B ; 5. D.; 6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.-1≤x <2; 8. 0; 9. x >-1; 10. a >-1;11. x >32;12.131或26或5或45三、解答题 (本大题共5小题,每小题6分,共30分.)13.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(2)解不等式①得x <8, 解不等式②得x >1.所以不等式组的解集为1<x <8.14.解:去分母,得4x -1-3x >3.移项、合并同类项,得x >4.在数轴上表示不等式的解集如图所示:15.解:⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12.②由①得-2x ≥-2,即x ≤1. 由②得4x -2<5x +5,即x >-7. 所以原不等式组的解集为-7<x ≤1. 在数轴上表示不等式组的解集为:16.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x , 解得-52≤x ≤1∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.17.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6,得m =-1,∴m 2-2m -11=-8.四、(本大题共3小题,每小题8分,共24分).18.解:解方程组,得⎩⎪⎨⎪⎧x =4a +5,y =-a +4.∵解都为正数,∴⎩⎪⎨⎪⎧4a +5>0,-a +4>0. 解得-54<a <4.19.解:设旅游者可走x 千米.根据题意,得x 18+3+x 18-3≤4,解得x ≤35. 答:旅游者最远可走35千米. 20.解:⎩⎪⎨⎪⎧-x -1≥-2x +1,①12(x -2a )+12x <0.② 解不等式①,得x ≥2. 解不等式②,得x <a .故当a >2时,不等式组的解集为2≤x <a ;当a <2时,不等式组无解.五、(本大题共2小题,每小题9分,共18分).21.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .∵原不等式组有三个整数解, ∴0≤4+a <1, ∴-4≤a <-3.22.解:(1)设这个月有x 天晴天,由题意得:30x +5(30-x )=550, 解得x =16.(4分) 答:这个月有16天晴天.(2)设需要y 年可以收回成本,由题意得: (550-150)·(0.52+0.45)·12y ≥40000, 解得y ≥8172291.∵y 是整数,∴至少需要9年才能收回成本.六、(本大题共12分)23.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得:⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400, 解得⎩⎪⎨⎪⎧x =1200,y =1800.答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元. (2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得:⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5 ∵a 取整数, ∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.。
七年级数学不等式练习题及参考答案【人教版】
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
初中数学--不等式与不等式组练习题
初中数学 不等式与不等式组练习一、填空题1. 不等式325x +≥的解集是.2. 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是3. 不等式23x x >-的解集为 .4. 把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .5.不等式组40320x x ->⎧⎨+>⎩的解集是 .6. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .7. 甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.不等式5(1)31x x -<+的解集是 .9. 不等式5(1)31x x -<+的解集是 .10. 不等式组103x x +>⎧⎨>-⎩,的解集是 .11. 不等式组6020x x -<⎧⎨->⎩的解是 .12. 不等式组210x ox -≤⎧⎨>⎩的解是 13. 不等式组23732x x +>⎧⎨->-⎩,的解集是 .14. 如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)15. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .16. 不等式组6020x x -<⎧⎨->⎩的解是 .17. 某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 . 18.关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .19.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.20. 如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .21. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .22. 若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 23. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .24.函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤25. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个二、选择题 26. 不等式组2131x x -<⎧⎨≥-⎩ 的解集是A.2x <B.1-≥xC.12x -≤< D .无解27. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm28.不等式260x -<的解集是( )A .3x >B .3x <C .3x >-D .3x <-29.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤30. 不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )31. 不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )32. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )-10 12A -11 2B .-11 2C .-11 2D .1 2 A .B .1 2C .1 2 D .1 233. 不等式﹣2x <4的解集是 ( )A .x >﹣2 B.x <﹣2 C. x >2 D. x <234. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )35. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩36. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <37. 如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<38. 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.yOxB A-1 0 1 2 A .-1 0 1 2 B .-1 0 1 2 C .D .39. 若01x <<,则21x x x,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<< 40. 不等式组⎪⎩⎪⎨⎧≤<-15112x xx 的解集在数轴上表示正确的是 ( )41. 不等式26x ≤的解集为( )A .3x ≥B . 3x ≤C . 13x ≥D . 13x ≤42. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .43.不等式组103x x +>⎧⎨>-⎩,的解集是 .44. 不等式2x ≥的解集在数轴上表示为( )45. 不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<1 1- 02 3A .1 1- 02 3B .1 1- 02 3C .1 1- 02 3D .46. 若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <47. 不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,248. 一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )49. 若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba >C . b a -<-D . bc ac <50. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm51. 不等式325x +≥的解集是.52. 不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解53. 不等式组13x x ⎧-⎪⎨⎪⎩<≤,的解集在数轴上可以表示为( )A .B .C .D .54. 如果ab <0,那么下列判断正确的是( ).ABCDA .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 55. 不等式组260,58x x x +>⎧⎨+⎩≤ 的解集在下列数轴上表示正确的是( )56. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .57. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩58. 已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是 ( )59. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <60. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-B . 3 1 0 2 4 5D .3 1 0 24 5A .3 1 0 24 5C . 3 1 0 2 4 5C .32x y +>+D .33x y >61. 据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤62. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 63. 不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )64. 不等式组⎪⎩⎪⎨⎧≤<-15112x x x 的解集在数轴上表示正确的是 ( )65. 不等十足⎩⎨⎧--≥-81312 x x 的解集在数轴上可表示为 ( )A-3 10 BC-3 10 D-1 366. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为()67. 不等式20x -≤的解集在数轴上表示正确的是( )A .B .C .D .68.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,xx >的解集在数轴上表示正确的是( )69.不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为()A .B . C. D .ABCDABCD2023年整理——小学备考资料70. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个三、解答题71. 解下列不等式组,并把解集在数轴上表示出来.⎩⎨⎧≥+-<- x x x )2(33)1(2)1(0272. 解不等式组3(2)8,1.23x x x x ++⎧⎪-⎨⎪⎩<≤73. 解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.74. 解不等式:13x -1<0,并把它的解集在数轴上表示出来;75. (1)化简:2211x x x x +-÷; (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤76. 解不等式:5x –12≤2(4x -3)77. 解不等式组⎩⎨⎧->+<-.)1(215,02x x x78.解不等式组:303(1)21x x x +>⎧⎨--⎩,①≤.②79. 解不等式:322x x -≥-80. 解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩≥81. 解不等式组20537x x x -<⎧⎨+≤+⎩;并写出它的整数解。
第九章《不等式与不等式组》综合测试题
_ D_ C _ B _ A第九章 不等式与不等式组61.满足不等式45)31(22≤--x 的整数是( ) A .-1,0,1,2,3 B. 0,1,2,3 C .0,1 D. -3,-2,-1,0,12.同时使不等式x x 52)1(3-+- 与x x 237121-≤-成立的所有整数积是( ) A .12 B. 3 C. 7 D. 24 3. 已知x 和y 满足1,243 y x y x -=+,则 ( )A .76=x B. 71-=y C. 76 x D.71- y4. 已知a<b<0,下列不等式中一定成立的是 ( )A.a 1<b 1 B. ab >1. C. 3a>2b. D. 2a >ab.5、不等式组的整数解的和是 ( )A.1 B.2 C.0 D.-26. 若为非负数,则x 的取值范围是( )A.x ≥1 B.x ≥-1/2 C.x >1 D.x >-1/27.下列各式中是一元一次不等式的是( )A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x ≥0 8.若│a │>-a,则a 的取值范围是( ) A.a>0 B.a ≥0 C.a<0 D.自然数9. 不等式组53x x ≤⎧⎨>⎩的解集在数轴上表示,正确的是( ) xAB CxD10.设.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为( )11.用恰当的不等号表示下列关系: ①a 的5倍与8的和比b 的3倍小:______________; ②x 比y 大4:______________. 12.不等式3(x+1)≥5x-3的正整数解是_________; 13.若a<1,则不等式(a-1)x>1的解集为___. 14.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______.15.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.16.2001年某省体育事业成绩显著,据统计,•在有关大赛中获是奖牌数如下表所示(单位:枚),如果只获得1枚奖牌的选手有57•人,•那么荣获3•枚奖牌的选手最多有______人. 17.解下列不等式(组)(每小题3分,共6分)(1)5(x+2)≥1-2(x-1) (2) 2731205y y y +>-⎧⎪-⎨≥⎪⎩(3) 1)1(22<---x x ,. (4) ⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325,并求其整数解.18. 关于x 的不等式a-2x<-1的解集如图所示.求a.19. (1)若x<-3,,求|3+x|的值; (2)若2<x<4,求|x-1|+|x-5|.20. x 取哪些正整数时,不等式x+3>6与2x-1<10都成立?21.已知多项式a2-5a-7减去多项式a2-11a+9的差等于不等式5-4x<0的最小正整数解,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式与不等式组》测试卷
一.选择题
1、下列各式中,是一元一次不等式的是( ) A、5+4>8 B、12-x C、x 2≤5 D、
x x
31
-≥0 2、若b a ,则下列不等式中正确的是( ) A、b a +-+-33 B、0 b a - C、b a 3
1
31
D、b a 22-- 3、不等式组
⎩⎨
⎧2
2
x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集 4、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个 5、下图所表示的不等式组的解集为( )
-2
A 、x 3
B 、32 x -
C 、 2- x
D 、32 x -
6.不等式ax <b 的解集是x <b
a ,那么a 的取值范围是( )
A 、a ≤0
B 、a <0
C 、a ≥0
D 、a >0 7.若a >b 且c 为实数.则( )
A .ac >bc
B 、ac <bc
C . ac 2>b c 2D. ac 2≥b c 2
8.已知关于x 的不等式(1-a)x >3的解集为x<3
1-a ,则a 的取值范围是( )
A .a >0
B .a >1
C .a <0
D .a <1
二.填空题 9、“x 的一半与2的差不大于1-”所对应的不等式是
10、不等号填空:若a<b<0 ,则12-a 12-b ,a 1 b 1,5a - 5
b
-。
11、当a ______ 时,1+a 大于2
12不等式03 +-x 的最大整数解是
13、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量
x 的范围是
14 如果关于 x 的不等式初(a -1)x<a+5和2x <4的解集相同,则a 的值为_________.
若关于x 的不等式组x+4x
>+13
2x+m<0
⎧
⎪⎨⎪⎩的集为x<2,则m 的取值范围是______ 15.若不等式组2x-3a<7a
6b-3x<5a ⎧⎨
⎩
的解集是5<x <22时, a=____, b=_______.
16.满足不等式组2m+10
10-m>7≥⎧⎨
⎩
的整数m 的值有____个.
三.解下列不等式(组),并把它们的解集在数轴上表示出来。
(17)312-x ≤
643-x (18)、 ⎪⎪⎩⎪⎪⎨⎧--≥+++22
53
15
6
32x x x x
(19)、243325()()x x +≤+ (20)、 2221
3
+≥
-x x
21)、 211841x x x x ->++<-⎧⎨⎩ 22)、 x x x x --≥+>-⎧⎨⎪
⎩
⎪3241231()
四、解不等式组(10×2=20)
23、代数式2131--x 的值不大于3
21x
-的值,求x 的范围。
24 求不等式y+13 -y-12 ≥y-1
6 的正整数解
25、关于y x ,的方程组⎩
⎨⎧-=-+=+131
m y x m y x 的解满足x >y ,求m 的最小整数值。
五、实际问题
26.若干学生分住宿舍,每间4人余20人;每间住8人有一间不空也不满,则宿舍有多少间?学生多少人
27、某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A,B两种产品共50件,已知生产一件A产品需要甲原料9kg,乙原料3kg,生产一件B产品需要甲原料4kg,乙原料10kg.(1)设生产X件A种产品,写出X应满足的不等式组。
(2)有哪几种符合的生产方案?
(3)若生产一件A产品可获利700元,生产一件B产品可获利1200元,那么采用哪种生产方案可使生产A、B两种产品的总获利最大?最大利润是多少?
28、某化肥厂 2002年12月在制定2003年某种化肥的
生产计划时,已有如下哪:①生产该种化肥的工人
不能超过200人;②每个主人全年工时不多于2100
个;③预计2003年可销售80000袋;④生产一袋化肥需工时4个;⑤每袋化肥需原料20千克;⑥库存原料800吨,本月需用200吨,2003年可补充1200吨.根据以上数据确定生产化肥袋数的范围。