大孔吸附树脂技术

合集下载

大孔树脂吸附法名词解释

大孔树脂吸附法名词解释

大孔树脂吸附法名词解释Title: An Explanation of Macroporous Resin Adsorption Method大孔树脂吸附法名词解释大孔树脂吸附法是一种用于分离和提取物质的技术方法。

该方法通过利用大孔树脂对溶液中目标物质的吸附特性,将其从溶液中有效地分离出来。

下面对大孔树脂吸附法中的关键术语进行解释。

1. 大孔树脂 (Macroporous Resin):大孔树脂是一种具有大孔径和高比表面积的高分子吸附材料。

它具有良好的化学稳定性和可重复使用性。

大孔树脂的大孔径可以提供更大的吸附表面积,从而提高吸附效果。

2. 吸附 (Adsorption):吸附是指物质在固体表面上沉积或附着的过程。

在大孔树脂吸附法中,溶液中的目标物质与大孔树脂表面发生作用,将目标物质附着到树脂的孔道内部。

3. 目标物质 (Target Substance):目标物质是指在溶液中需要被分离和提取的特定物质。

它可以是有机物、无机物、金属离子或其他化学物质。

4. 吸附剂 (Adsorbent):吸附剂是指在吸附过程中用于吸附目标物质的材料。

在大孔树脂吸附法中,大孔树脂起到吸附剂的作用,通过其孔道结构和大表面积,吸附目标物质。

5. 吸附剂再生 (Regeneration of Adsorbent):吸附剂再生是指将吸附剂中吸附的目标物质从吸附剂表面解吸或去除的过程。

大孔树脂可以通过物理或化学方法进行再生,使其恢复到吸附前的状态,以便继续使用。

大孔树脂吸附法在分离和提取领域具有广泛的应用。

它可以用于工业生产中的废水处理、药物提取、食品加工以及环境监测等方面。

该方法具有操作简单、吸附效果好、物质回收高的特点,因此受到了越来越多研究人员和工程师的关注和应用。

2. 大孔树脂吸附技术

2. 大孔树脂吸附技术
选择原则首先应考虑目标分子中的某些基团与树脂的 功能基之间有特殊的作用,从而实现与其它物质分 离。如负载金属Al的树脂(ADS-11)与黄酮分子可 发生络合作用;ADS-31的-OH基与含酯基、胺基的 化合物形成氢键可用于分离生物碱、倍半萜内酯类 等天然产物;ADS-7、D280、D301R带有极性较强 的胺基,不仅可吸附酸性物质,还对具有共轭双键 的天然色素有较强的亲和力,脱色效果很好。
⑴ 应用范围广。表现在其一:许多活性物质 对PH较为敏感,易受酸碱作用而失活,限制 了离子交换法的应用,而大孔树脂整个过程 PH不变;其二:对存在大量无机盐的发酵液, 离子交换树脂无法使用,大孔树脂却能从中 得到抗菌素等物质。
⑵ 分离性能优良,使用方便
分离选择性好,且脱色能力强,不亚于活性 炭。大孔树脂一般系小球状,直径在0.2~ 0.8mm之间,因此流体阻力小于粉状活性炭, 使用方便。
c. 洗脱剂用量考察:连续考察1BV、2BV、 ┄BV时指标成分含量,至流尽为止,计算 洗脱率。
所有因素最好采用正交设计实验方法研究。
18
• (5)树脂的再生 再生方法:乙醇洗脱至无色;若仍有色, 可用稀酸或稀碱(0.1~1N氢氧化钠或盐酸) 洗脱,最后水洗;若柱上方有沉积物,可 用水或醇反洗。但当吸附量下降30%以上 时该树脂不宜再用。
“相似相吸”原则,极性较大的化合物一般 适用于中极性的树脂上分离;极性小的化合 物适用于非极性的树脂上分离。
8
⑵ 吸附质的分子大小与树脂孔径的关系
一般分10nm、20nm、30nm三组选择,大孔径 可吸附大分子物质。孔径应大于吸附质分子的 4~5倍,当树脂的孔径小于吸附质分子的尺寸 时就不能进行吸附(平均孔径1.3nm可吸附分 子量小于350的物质)。在适当孔径下,应有 较大的比表面积。

大孔吸附树脂方法

大孔吸附树脂方法

大孔吸附树脂方法
大孔吸附树脂方法是一种将大分子物质从溶液中吸附和分离的方法。

它利用大孔吸附树脂的特性,通过吸附作用将目标分子从溶液中富集,然后通过洗脱将目标分子从吸附树脂上解吸出来。

大孔吸附树脂通常具有高表面积和大孔隙体积,可以容纳较大的目标分子。

其工作原理是基于吸附剂和目标分子之间的相互作用力,如静电吸附、范德华力、离子交换等。

吸附树脂可以选择性地吸附目标物质,而不吸附其他成分,从而实现目标分子的分离纯化。

大孔吸附树脂方法的步骤一般包括:
1. 树脂预处理:将吸附树脂浸泡或冲洗以去除杂质和残余物质。

2. 样品预处理:对待测样品进行预处理,如去除颗粒、蛋白质沉淀等。

3. 吸附:将样品与吸附树脂接触,使目标分子与吸附树脂发生吸附作用,并将其富集在树脂上。

4. 洗脱:通过改变洗脱液的条件,如改变温度、pH、离子浓度等,使目标分子从吸附树脂上解吸出来。

5. 纯化收集:将洗脱液中的目标分子收集下来,以获得纯净的目标物。

大孔吸附树脂方法在生物制药、食品、环境等领域中具有广泛的应用。

它可以用于分离和纯化蛋白质、抗体、病毒颗粒、多肽、核酸等大分子物质。

大孔合成吸附树脂介绍

大孔合成吸附树脂介绍

大孔合成吸附树脂介绍><: 提纯介质大孔树脂吸附技术是上世纪七十年代发展起来的一种新工艺。

这是一种纯化精制药的有效方法,其工艺程序是药液通过大孔树脂吸附,其中的有效成分吸附在树脂上,再经洗脱回收,除掉药液中杂质。

当然,根据药液成分和提取物的不同,可选择不同型号的树脂。

非极性吸附树脂在吸附药液中成分时,主要依靠物理结构(如比表面、孔径等)起作用,不同的树脂有不同的针对性。

其操作的基本程度大多是:提取液-通过大孔树脂-吸附上有效成分的树脂-洗脱-洗脱液回收-洗脱液干燥-半成品。

该技术目前已广泛应用于新药的开发和生产中,主要用于分离和提纯。

1.(1)适合中等程度的水溶性化合物:中药、天然色素、从发酵液中提取抗生素(青霉素、先锋霉素、螺旋霉素)、蛋白质(胰岛、肽系抗生素)、功能性食品添加剂(维生素)等。

(2)聚苯乙烯合成吸附树脂:吸附含有π电子的合化物,如含有苯环和共轭双键的化合物。

(3)甲基丙烯酸甲酯类吸附剂:吸附含羧基、酯基、氨基、酰胺基等与H可结合的官能团的化合物。

合成吸附树脂的选择标准必须以其吸附能力、吸附速度、选择性、树脂寿命等为主要决定因素,其中树脂的微孔结构影响最大,因为它决定了树脂吸附能力的高低。

此外,在有机溶剂中的膨胀程度、耐压性能和比重也是考滤选用的重要因素。

(1)水溶性较高的化合物应采用离子交换或分子尺寸排除模式提取。

(2)水不溶化合物应使用溶剂提取或正相色谱等提取。

2.(1)同一类药采用大孔树脂提纯后,药效得到显著提高。

这一结论已经通过药效学试验和临床观察得以证实。

该工艺一次完成了除杂和浓缩两道工序,如人参茎叶中也含人参皂甙,可以提取出来作为药用,但含量低,用一般方法提取麻烦,而用大孔树脂吸附技术提纯后,人参皂甙含量可达70%以上,提取方法简便。

(2)减小产品的吸潮性。

传统工艺制备的中成药大部分都有较强的吸潮性,是中药生产及贮藏中长期存在的难题。

经大孔树脂吸附技术处理后,有效地去除了水煎液中大量的糖类、无机盐、黏液质等吸潮成分,有利于多种中药剂型的生产、增强产品的稳定性。

大孔吸附树脂分离技术

大孔吸附树脂分离技术

化工分离工程课程论文摘要大孔吸附树脂是20世纪60年代发展起来的继离子交换树脂后的分离新技术之一,已在环保、食品、医药等领域得到了广泛的应用。

通过参考国内外的一些关于大孔吸附树脂的文献和书籍,对大孔吸附树脂的分离原理,最新研究进展和应用情况以及影响因素进行了总结。

并且列举了一些在中药分离纯化中的应用,表现出了其优越性,有着广阔的应用前景。

关键词:大孔吸附树脂;柱层析;分离原理;工业应用大孔吸附树脂分离技术1.大孔吸附树脂分离技术简介1.1大孔吸附树脂的简介和基本产品大孔吸附树脂是一类不含交换基团且有大孔结构的高分子吸附树脂,是一种不溶于酸、碱及各种有机溶剂的有机高分子聚合物,具有良好的大孔网状结构和较大的比表面积,可以通过物理吸附从水溶液中有选择地吸附有机物。

是20世纪60年代发展起来的继离子交换树脂后的分离新技术之一,已在环保、食品、医药等领域得到了广泛的应用。

根据其骨架材料的不同可分为极性、中性和非极性3 种类型[1]美国的Kunin 教授发明了大孔网状聚合物吸附,并于1966 年研制成功了第一个大网格吸附剂,此后大孔吸附树脂材料成为一个崭新的技术领域,受到欧美及日本等国的高度重视,研制开发了一批类型不同的、性能良好的吸附树脂,并形成了商品供应。

目前,美、英、法、德及日本等国均有专业公司研究生产【1】。

我国在这方面也在逐步发展,也有很多性能优良的产品问世。

表1-1 常用国产大孔树脂的型号和主要特性【2】树脂极性结构粒径范围(mm) 比表面积(m2/g)平均孔径(nm)用途S-8 极性交联聚苯乙烯型0.3~1.25 100~120 28~30 有机物提取分离AB-8 弱极性0.3~1.25 480~520 13~14 有机物提取,甜菊糖、银杏叶黄铜提取X-5 非极性0.3~1.25 500~600 29~30 抗生素、中草药提取NKA-2 极性0.3~1.25 160~200 145~155 酚类、有机物去除NKA-9 极性0.3~1.25 250~290 15~16.5 胆红素去除,生物碱分离、黄酮类提取H103 非极性0.3~0.6 1000~85~95 抗生素提取分离,去除酚类,1100氯化物D-101非极性苯乙烯型0.3~1.25480~52013~14中草药中皂甙、黄酮、内酯、萜类及天然色素的提取HPD100 非极性 苯乙烯型 0.3~1.2 650 90 天然物提取分离,如人参皂苷、三七皂苷HPD400 中极性 苯乙烯型 0.3~1.2 550 83 中药复方提取、氨基酸、蛋白质提纯HPD600 极性 苯乙烯型 0.3~1.2 550 85 银杏黄酮、甜菊苷、茶多酚、黄芪苷ADS-5 非极性 500~600 20~25 分离天然产物中的苷类、生物碱、黄酮等ADS-7 强极性 含氨基 200 提取分离糖苷,对甜菊苷、人参皂苷、绞股蓝皂苷等具高选择性,去除色素ADS-8 中极性 450~550 25.0 分离生物碱,如喜树碱、苦参碱ADS-17 中极性 124 高选择分离银杏黄酮苷和银杏内酯表1-2 国外HP 、SP 系类大孔树脂的型号和主要特性【2】树脂极性结构粒径范围 (mm)比表面积 (m 2/g) 平均孔径 (nm)用途HP-20 非极性 聚苯乙烯 0.2~0.6 600 46 皂苷、黄酮、萜类、天然色素、蛋白质 (相对分子质量〉1000)HP-207 非极性 聚苯乙烯 0.2~0.6 630 10.5 HP2M G 中极性甲基丙烯酸酯 0.2~0.647017 SP825 非极性 聚苯乙烯 0.2~0.6 1000 5.7 生物碱、黄酮、内酯、酚性苷(相对分子质量〉1000)SP850 非极性 聚苯乙烯 0.2~0.6 1000 3.8 SP70非极性 聚苯乙烯0.2~0.68007.0SP700 非极性聚苯乙烯0.2~0.6 1200 9.3XAD-1 非极性苯乙烯100 20 分离甘草类黄酮、甘草酸、叶绿素XAD-2 非极性苯乙烯330 9 人参皂苷提取,去除色素XAD-4 非极性苯乙烯750 5 麻黄碱提取,除去小分子非极性物XAD-6 中极性丙烯酸酯498 6.3 分离麻黄碱XAD-9 极性亚砜250 8 挥发性香料成分分离XAD-11强极性氧化氮类170 21 提取分离合欢皂苷XAD-1 600 0.40 800 0.15 提取小分子抗生素和植物有效成分XAD-1 180 0.53 700 0.40 提取大分子抗生素、维生素、多肽XAD-7 HP 0.56 500 0.45 提取多肽和植物色素、多酚类物质1.1大孔吸附树脂的分类1.1.1按极性大小分类1. 非极性大孔吸附树脂如苯乙烯、二乙烯苯聚合物,也称为芳香族吸附剂。

大孔吸附树脂分离技术

大孔吸附树脂分离技术

比表面积
➢比表面积=表面积/质量
单位m2/g
➢树脂颗粒的外表面积很小,一般在0.1 m2/g左右,但
内部孔洞的表面积很大,可达500-1000 m2/g ,这是树
脂良好吸附的基础。
二、吸附原理
快写 笔记
➢大孔吸附树脂是吸附性和分子筛性原理相结合 的分离材料。
➢它的吸附性是由于范德华引力或产生氢键的结 果。分子筛性是由于其本身多孔性结构所决定的。
恒流泵
A 前面
B 上面
装置的连接
操作流程 药液 水
洗脱剂 再生剂
分段收集 检测器/过程控制器
树脂→预处理→上样→吸附→洗脱→收集洗脱液→回收、浓 缩→干燥→成品
操作步骤①——树脂的预处理
➢预处理的目的:为了保证制剂最后用药安全,提高树 脂洁净度。树脂中含有残留的未聚合单体,致孔剂, 分散剂和防腐剂对人体有害。 ➢主要步骤 ①用水除去水溶性杂质 ②用有机溶剂除去脂溶性杂质 ③再用吸附介质除去残留的其它溶剂,以免影响树脂 的吸附量
同者合并。
极性MR:极性较强的溶剂洗脱能力强
酸性化合物:碱解吸
流速:流速过快,载样量少;分离碱效性化果合差物;:酸速解度吸慢,载样
量大,分离效果好,实验周期长。一般1.5BV/h为佳。
操作步骤⑤——再生
• 再生的目的:除去洗脱后残留的强吸附性杂质,以免 影响下一次使用过程中对于分离成分的吸附。
• 简单再生的方法:一般是用无水乙醇或95%乙醇洗脱 至无色后,树脂柱即已再生。然后用大量水洗去醇, 可用于相同植物成分的分离。
将柱中水放至接近柱床平面,将样品液以一定的流速 加到柱的上端进行吸附,一边从柱中放出原有溶剂。 注意控制流速。
操作步骤④——解吸(洗脱)

制药分离工程 第七章 大孔树脂吸附技术(50张)

制药分离工程 第七章 大孔树脂吸附技术(50张)
2.料液初始浓度 ——宜高不宜低,但高到一定上限就影响不明显了
3.料液pH ——通常由溶质的酸碱度来判断,如酸性溶质宜偏酸性
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
三、吸附工艺条件的筛选、优化、确定 一切以实际的实验研究结果作为依据!
预处理合格的常用判定标准: ——至加数倍水于乙醇溶液中不显浑浊 ——或:处理液在200-400nm无紫外吸收峰
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
一、基本工艺流程 2.大孔吸附树脂的前处理 前处理工艺流程:
(1)在吸附柱中盛入一半体积的乙醇/丙酮 (2)投入一定量树脂,使液面高出树脂表面约30cm (3)自然浸泡24h以上 (4)用大量乙醇以2BV/h流速洗脱树脂,并浸泡4-6小时 (5)再用大量乙醇以2BV/h流速洗脱树脂 (6)流出液中加入2BV蒸馏水不显白色浑浊、且200-400nm内无乙 醇之外的其他吸收峰为止
作答
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
✓ 多用于从大量样品中浓集微量物质 ✓ 工业脱色、环境保护、药物分析、抗生素等的分离提纯、
中药成分的提取精制等领域
第七章 大孔树脂吸附技术
第三节 大孔吸附树脂的分离操作与装置
一、基本工艺流程 1.大孔吸附树脂的选择
——根据树脂本身的物性、被吸附质本身的物性来预选择 如极性对极性(水溶性)、非极性对非极性(脂溶性)
多选题 1分
此题未设置答案,请点击右侧设置按钮
关于大孔吸附树脂的选用,通常通过实验结果来 选择和确定,一般关注的指标有哪些?
A 有无离子型功能基团 B 有无极性 C 孔大小、多少 D 比表面积
E 吸附容量 F 吸附快慢 G 能否解吸 H 机械强度

大孔树脂吸附法

大孔树脂吸附法

大孔树脂吸附法
大孔树脂吸附法是一种广泛应用于环境保护和化学工艺中的吸附技术。

大孔树脂是一种具有较大孔径和良好孔隙结构的高分子材料,可以在一定程度上选择性地吸附目标物质。

大孔树脂吸附法的原理是利用大孔树脂对目标物质的亲和性进行吸附,将目标物质从复杂的混合物中分离出来。

在实际应用中,通常将需要分离的混合物均质化后与大孔树脂接触,通过调节温度、pH 值、流速等条件来实现目标物质与大孔树脂的相互作用。

大孔树脂吸附法具有操作简单、选择性强、适用范围广等优点,可以用于处理废水、空气、固体废物等环境污染物的去除和化学品的纯化和分离。

同时,大孔树脂还可以与其他材料结合使用,例如与纳米材料、活性炭等材料相结合,提高吸附效率和选择性。

总之,大孔树脂吸附法是一种十分有前途的环保技术,具有广泛的应用前景和发展空间。

大孔吸附树脂技术

大孔吸附树脂技术

若因某些原因确实需用二类溶剂,则应对相应 的溶剂进行限量检查,制订合理的限量标准。
总之,限度的规定,应是在树脂生产工艺 成熟、质量稳定的基础上,以前处理合格的树 脂为样品,配合安全试验,积累数据,确定适 宜的限度。
三、 大孔吸附树脂吸附分离技术要求
在运用大孔树脂进行分离精制工艺时,其大 致操作步骤为:树脂预处理→树脂上柱→药液上 柱→树脂的解吸→树脂的清洗、再生。由于每一 个操作单元都会影响到树脂的分离效果,因此对 树脂的精制工艺和分离技术的要求就相对较高。
不同于以往使用的离子交换树脂,大孔吸附树 脂为吸附性和筛选性原理相结合的分离材料。由 于其本身具有吸附性,能吸附液体中的物质,故 称之为吸附剂。树脂吸附的实质是一种物体高度 分散或表面分子受作用力不均等而产生的表面吸 附现象。大孔树脂的吸附力是由于范德华力或产 生氢键的结果。其中,范德华力是一种分子间作 用力,包括定向力、色散力、诱导力等。同时由 于树脂的多孔性结构使其对分子大小不同的物质 具有筛选作用。因此,有机化合物根据吸附力的 不同及分子量的大小,在树脂的吸附机理和筛分 原理作用下实现分离。
(2)使用说明书
说明书内容包括:①所用树脂性能简介、主 要添加剂种类与名称;②未聚合单体、交联剂、 主要添加剂种类与名称;③树脂安全性动物实验 资料,包括树脂及其粉碎物(XX目)、预处理前后 洗脱溶剂浓缩液等样品的规范化急性、长期毒性 试验结果,或其他能证明其安全性的资料;④使 用注意事项,根据树脂的物理化学性能及其影响 吸附的因素,明确指出新树脂的预处理、上柱吸 附、洗脱、再生、贮存等正确操作方法,及可能 出现异常情况的处理方法,以保障树脂的正常使 用;⑤树脂有效使用期的参考值;⑥生产厂家及 生产许可证合法证件。
2. 质量评价

大孔吸附树脂色谱分离原理是

大孔吸附树脂色谱分离原理是

大孔吸附树脂色谱分离原理是
大孔吸附树脂色谱分离是一种基于吸附作用的分离技术,其原理如下:
1. 吸附作用:大孔吸附树脂具有丰富的微孔和大孔结构,能够吸附目标物质。

在色谱分离过程中,待分离混合物通过树脂柱时,目标物质会与树脂表面的活性位点相互作用而被吸附。

2. 选择性:大孔吸附树脂对不同物质具有不同的吸附能力,这取决于物质的化学性质、分子量、极性等因素。

通过选择合适的树脂和洗脱条件,可以实现对混合物中不同成分的选择性分离。

3. 洗脱过程:当混合物通过树脂柱后,使用适当的洗脱剂(通常是有机溶剂或水溶液)进行洗脱。

洗脱剂会与被吸附的物质竞争活性位点,从而将目标物质从树脂上解吸下来。

4. 分离效果:由于不同物质在树脂上的吸附能力不同,洗脱过程中它们会以不同的速度从树脂上解吸下来,从而实现分离。

通过控制洗脱条件(如洗脱剂的种类、浓度、流速等),可以优化分离效果。

大孔吸附树脂色谱分离具有操作简便、分离效率高、选择性好等优点,广泛应用于生物大分子、天然产物、药物等领域的分离和纯化。

大孔吸附树脂的技术

大孔吸附树脂的技术

(2)使用说明书
说明书内容包括:①所用树脂性能简介、主 要添加剂种类与名称;②未聚合单体、交联剂、 主要添加剂种类与名称;③树脂安全性动物实验 资料,包括树脂及其粉碎物 (XX 目 ) 、预处理前后 洗脱溶剂浓缩液等样品的规范化急性、长期毒性 试验结果,或其他能证明其安全性的资料;④使 用注意事项,根据树脂的物理化学性能及其影响 吸附的因素,明确指出新树脂的预处理、上柱吸 附、洗脱、再生、贮存等正确操作方法,及可能 出现异常情况的处理方法,以保障树脂的正常使 用;⑤树脂有效使用期的参考值;⑥生产厂家及 生产许可证合法证件。
三、 大孔吸附树脂的质量要求和质量评价 1. 质量要求 树脂自身的规格标准与质量要求对中药提取 液的纯化效果和安全性起着决定性作用,因此, 在购买大孔树脂时,应向树脂提供方索取资料, 以便充分了解各种树脂的结构、性能和适用范围。 (1)大孔吸附树脂规格标准 标准内容应包括名称、 牌(型 )号、结构 (包括交联剂 )、外观、极性,以及 粒径范围、含水量、湿密度(真密度、视密度)、干 密度(表观密度、骨架密度)、比表面、平均孔径、 孔隙率、孔容等物理参数,还包括未聚合单体、 交联剂、致孔剂等添加剂残留量限度等参数,写 明主要用途,并说明该规格标准的级别与相关标 准文号等。
(2)安全性检查
苯乙烯型大孔树脂已经过一段时间的使用考 察,且其稳定性较高,可暂不要求进行动物安全 性考察。
非苯乙烯型大孔树脂使用时间相对较短,稳 定性低于苯乙烯型大孔树脂,一般情况下应进行 动物安全性实验,并根据树脂残留物可能产生的 毒理反应,在做药物成品的毒理学实验时,适当 延长观察时间,增加观察项目与指标,如神经系 统、骨髓、肝脏功能等生化指标;同时对定型产 品抽样进行安全性动物实验,以保证产品的安全 性符合药用要求。

第七章大孔吸附树脂课件

第七章大孔吸附树脂课件
二、大孔树脂色谱分离操作步骤
4、洗脱
非极性大孔树脂
2024/10/9
25
第二节 大孔吸附树脂柱色谱技术
二、大孔树脂色谱分离操作步骤
考察终点判断:
①上柱(吸附)终点的判断:泄漏(穿透)曲线的考察。 ②水洗终点的判断:TLC检识、理化检识及水洗成分的测定。 ③解吸终点的判断:洗脱曲线的考察。
2024/10/9
三、大孔树脂色谱柱分离效果的影响因素
1、大孔吸附树脂性质的影响
❖ 根据所分离化合物的大致结构特征来确定,一般物质是以分子状态 被吸附 :
(1)
吸附性要适中
(2) 吸附剂分子的孔径要足够大,一般孔径是溶质分子的6倍。
决定性因素
2024/10/9
29
第二节 大孔吸附树脂柱色谱技术
三、大孔树脂色谱柱分离效果的影响因素
行吸附; ❖ 碱性化合物在碱性溶液中进
行吸附较为合适; ❖ 中性化合物可在近中性的情
况下被吸附。
31
第二节 大孔吸附树脂柱色谱技术
三、大孔树脂色谱柱分离效果的影响因素
4、上样溶液浓度的影响 随着被吸附物浓度增加
吸附量也随之增加.但上样 溶液浓度增加有一定限度, 不能超过树脂的吸附容量。 如果上样溶液浓度偏高, 则吸附量会显著减少。
1、大孔吸附树脂性质的影响
❖ 根据所分离化合物的大致结构特征来确定,一般物质是以分子 状态被吸附 : 极性大小是一个相对概念,根据分子中极性基团(如-OH,
C=O)与非极性基团(如烷基、苯环、环烷等)的数量和大小 来确定;
对于未知化合物可通过一定预试验及TLC或PC大致确定。
2024/10/9
30
第二节 大孔吸附树脂柱色谱技术
快,几乎不要活化能

大孔树脂吸附原理

大孔树脂吸附原理

大孔树脂吸附原理
大孔树脂是一种常用的吸附材料,其吸附原理主要包括物理吸附和化学吸附两种。

物理吸附是指吸附剂与被吸附物之间的作用力主要是范德华力,这种吸附是可逆的,随着温度的升高或压力的降低,吸附量会减少。

而化学吸附是指吸附剂与被吸附物之间发生了化学键的形成,这种吸附是不可逆的,需要通过化学手段才能解吸。

大孔树脂的吸附原理主要是通过其大孔结构来实现的。

大孔结构可以提供更大的表面积和更多的吸附位点,从而增加吸附物与吸附剂之间的接触面积,提高吸附效率。

此外,大孔结构还可以减小质传阻力,使得吸附物能够更快速地扩散到吸附位点上,从而加快吸附速率。

在大孔树脂中,吸附作用是通过吸附位点上的化学官能团来实现的。

这些化学官能团可以与被吸附物发生化学反应,形成化学键,实现化学吸附。

同时,这些化学官能团也可以通过范德华力与被吸附物进行物理吸附。

因此,大孔树脂既具有物理吸附的特点,又具有化学吸附的特点,具有较高的吸附能力和选择性。

除了大孔结构和化学官能团,大孔树脂的吸附原理还与吸附物的性质有关。

一般来说,大孔树脂对分子量较大、极性较强的物质具有较好的吸附能力。

这是因为这些物质在大孔树脂中更容易找到合适的吸附位点,并且与化学官能团发生化学反应的可能性更大。

总的来说,大孔树脂的吸附原理是通过其大孔结构和化学官能团实现的。

大孔结构提供了更大的表面积和更多的吸附位点,化学官能团可以与吸附物发生化学反应或物理吸附,从而实现高效的吸附。

了解大孔树脂的吸附原理有助于我们更好地选择和应用大孔树脂,提高吸附效率,满足不同的工业需求。

大孔吸附树脂技术的研究进展幻灯片

大孔吸附树脂技术的研究进展幻灯片

1、大孔吸附树脂技术的基本原理
根据树脂的表面性质,大孔吸附树脂可以分为非极性、中极性 和极性三类。非极性吸附树脂是由偶极距很小的单体聚合而成,不 含任何功能基团,孔表的疏水性较强,可通过与小分子内的疏水部 分的作用吸附溶液中的有机物,最适用于从极性溶剂(如水)中吸附 非极性物质。中极性吸附树脂含有酯基,其表面兼有疏水和亲水部 分,既可由极性溶剂中吸附非极性物质,也可以从非极性溶剂中吸 附极性物质。极性树脂含有酰胺基、氰基、酚羟基等极性功能基, 它们通过静电相互作用吸附极性物质。根据树脂孔径、比表面积、 树脂结构、极性差异,大孔吸附树脂又分为许多类型,且分离效果 受被分离物极性、分子体积、溶液值、洗脱液的种类等因素制约,
③上样液的温度 由于有效成分在大孔树脂上的吸附是 通过分子间作用力,属于物理吸附。温度升高,一方面有 效成分在树脂上的吸附作用降低,另一方面,有效成分在 溶液中的溶解度增大。综合结果温度升高有效成分在大孔 树脂上的吸附速度和吸附量降低。所以在吸附阶段,应该 降低温度;反之,在解吸洗脱阶段,应该升高温度。 ④上样液与树脂的比例 大孔树脂的用量要足量,使中药 成分能充分吸附。一般树脂与药材用量比应不低于1∶0.6。 树脂的吸附率先随上样量的增加而增加,达到一定值后基 本不再变化。
由于大孔吸附树脂在中药制剂领域的应用时间较短,许多 应用规律尚未完全清楚,需要在工作中根据实际情况不断探索、 不断积累。
谢谢!
③可有效去除重金属,既保证了患者的用药安全,同时也解 决了中药重金属超标的难题,为中药进人国际市场创造了条 件。 ④具有较好安全性。吸附树脂是一类高度交联的、具有三维 网状结构的高分子聚合物,不溶于任何溶剂,在常温下十分 稳定,因此在使用过程中不会有任何物质释放出来。至于在 生产过程中残留的某些杂质可以在使用前彻底清洗出来,完 全能够达到药用标准。目前日本己有生产“药用标准”的、 性能良好的大孔树脂。

大孔树脂吸附原理及应用

大孔树脂吸附原理及应用

大孔树脂吸附原理及应用大孔树脂是一种具有高吸附性能的材料,它的吸附原理以及应用广泛。

本文将从大孔树脂的基本特点出发,详细介绍大孔树脂的吸附原理及其应用。

大孔树脂主要特点:1.喉道直径较大:大孔树脂的喉道直径通常在1-100纳米之间,相比于微孔树脂的喉道直径通常在2纳米以下,大孔树脂的孔径更大,具有更高的吸附性能。

2.孔容量较大:由于大孔树脂拥有更多的孔隙结构,使得其孔容量较大,能够吸附更多的目标物质。

3.吸附速度快:由于大孔树脂的孔径较大,使得目标物质能够更快地进入树脂的内部,从而提高了吸附速度。

大孔树脂的吸附原理:大孔树脂的吸附原理主要包括静电吸附、化学吸附以及物理吸附。

静电吸附是大孔树脂的主要吸附形式,它是由于树脂中的电荷与目标物质的电荷之间的相互作用而产生的。

当目标物质通过树脂孔隙时,树脂表面带有电荷的官能团与目标物质之间发生静电吸附。

化学吸附是指大孔树脂与目标物质之间发生化学反应,从而形成化学键而实现吸附。

物理吸附是指大孔树脂与目标物质之间的范德华力作用,从而实现吸附。

这三种吸附形式可能同时存在,各有各的特点。

大孔树脂的应用:1.分离纯化:大孔树脂可以用于分离纯化目标物质,例如生物制药领域中的蛋白质纯化,通过大孔树脂的吸附作用,可以有效地分离目标蛋白质。

2.废水处理:大孔树脂可以用于废水处理中的吸附去除,例如吸附去除有机物、重金属离子等。

它具有较高的吸附容量和吸附速度,可以有效地去除废水中的污染物。

3.气体吸附:大孔树脂可以用于气体的吸附,例如二氧化碳的吸附分离和储存。

由于大孔树脂具有较大的孔径和孔容量,可以有效地吸附二氧化碳,并实现其分离和储存。

4.药物传递系统:大孔树脂可以用于制备药物传递系统,例如制备药物缓释控制器,通过药物在大孔树脂中的吸附和释放,实现药物的缓慢释放和控制释放。

5.萃取分离:大孔树脂可以用于分离和富集目标物质,例如在环境监测中,用大孔树脂吸附土壤或水中的污染物,然后进行分析检测。

大孔树脂吸附原理

大孔树脂吸附原理

大孔树脂吸附原理大孔树脂是一种常用的吸附材料,其吸附原理主要包括物理吸附和化学吸附两种。

物理吸附是指吸附剂与被吸附物之间由于范德华力、静电力等引起的吸附作用,而化学吸附则是指吸附剂与被吸附物之间发生化学反应而形成的吸附作用。

大孔树脂的吸附原理在工业生产和实验室研究中都有着广泛的应用,下面将详细介绍大孔树脂的吸附原理及其应用。

首先,大孔树脂的物理吸附原理是基于吸附剂表面的孔隙结构和化学成分。

大孔树脂具有较大的孔径和孔体积,这使得被吸附物分子可以在吸附剂表面形成多种吸附状态,从而实现对各种分子的吸附。

此外,大孔树脂的化学成分也会对吸附行为产生影响,例如含有亲水性基团的大孔树脂对极性物质有较好的吸附性能,而含有疏水性基团的大孔树脂则对非极性物质有较好的吸附性能。

其次,大孔树脂的化学吸附原理是基于吸附剂表面的化学活性基团与被吸附物分子之间的化学作用。

大孔树脂表面通常含有各种官能团,例如羧基、氨基、羟基等,这些官能团能够与被吸附物分子发生化学反应,形成化学键或离子键,从而实现对被吸附物的选择性吸附。

化学吸附通常具有较高的吸附能力和选择性,因此在一些特定的分离和纯化过程中得到了广泛的应用。

大孔树脂的吸附原理不仅在工业生产中有着重要的应用,同时也在实验室研究中发挥着重要作用。

在工业生产中,大孔树脂常用于分离、纯化、浓缩和固定化等工艺,例如在制药、食品、化工等行业中,大孔树脂被广泛应用于蛋白质纯化、药物分离、色素固定化等过程中。

在实验室研究中,大孔树脂也常用于柱层析、批式吸附和固定化酶等实验操作中,为科研人员提供了便利的实验手段。

总之,大孔树脂的吸附原理包括物理吸附和化学吸附两种,其应用涵盖了工业生产和实验室研究的多个领域。

通过对大孔树脂吸附原理的深入了解,可以更好地指导其在实际应用中的选择和操作,从而实现更高效、更经济的生产和研究目的。

希望本文的介绍能够对大孔树脂的应用和研究提供一定的参考和帮助。

大孔树脂吸附技术

大孔树脂吸附技术

大孔树脂吸附技术
大孔树脂吸附技术是一种利用大孔树脂材料进行物质吸附的技术。

大孔树脂是一种具有较大孔径(一般在50-1000Å)的吸附树脂材料,具有较高的比表面积和孔容量。

大孔树脂吸附技术一般采用固定床或流动床的方式进行操作。

在吸附过程中,待吸附物质通过溶液或气体的方式进入大孔树脂颗粒的孔道内,与树脂表面上的活性位点发生作用,将目标物质吸附到树脂中。

吸附后,通过改变条件(如温度、pH值等),可以实现目标物质的脱附,使树脂得以重复使用。

大孔树脂吸附技术在许多领域都得到了广泛应用。

例如,它可以用于水处理领域,用于去除水中的重金属离子、有机物等污染物质;在制药工业中,可以用于纯化和分离生物分子;在化工工艺中,可以用于分离混合物中的成分等。

大孔树脂吸附技术的优点包括操作简单、选择性强、吸附能力高、再生性好等。

同时,由于大孔树脂具有大孔径特征,能够更容易地吸附大分子物质,因此在大分子分离方面具有较大的优势。

总的来说,大孔树脂吸附技术是一种高效的分离、纯化和去除污染物质的技术,具有广泛应用前景。

大孔树脂的应用及技术要求

大孔树脂的应用及技术要求
24
树脂预处理
大孔树脂HP-20
第一步 第二步 第三步 第四步 水洗 95%乙醇洗 水洗 95%乙醇洗 反复多次 3BV 反复多次 5BV
第五步 水洗脱 反复多次



回收
检查
检查:取第五步水洗脱液100ml,水浴蒸干后,取1~2ml加乙醇溶解, 滴加水到乙醇溶液中,溶液中无白色浑浊现象。 •检查主要针对树脂中残留交联剂、制孔剂是否洗脱完全。
25
2、装柱与药液的上柱吸附
药液上柱前的预处理
为避免大孔树脂被污染堵塞,药液上柱前一般 需经过滤处理,除去较多的悬浮颗粒杂质,保 证树脂的使用顺利。
泄漏曲线与吸附容量
树脂吸附容量=泄漏点前上柱样品体积(ml) × 样品浓度(mg.L-1 )
26
3、上柱工艺条件的筛选
上样溶液的pH值
根据化合物结构特点,灵活改变溶液pH值, 可使提纯工作达到理想效果 MR对中药成份的吸附遵循类似物易吸附类似 物的原理,通常,酸性成分在酸液中能充分吸 附,碱性成分则在碱性条件下能被较好地吸附, 中性成分可在中性的条件下被吸附。
23.028
20
0.5
25
ቤተ መጻሕፍቲ ባይዱ
1
N orm .
1.5
FID1 A, (SHUZHI\C2082811.D)
2
3.5BV
2.5
m in
25
20
15
10
5
0
3
0
3.5
10
20
30
5.558
6.63.85410
6.239
9.000
9.496
9.869
10.690
15.466 15.139 11117665.1..1.64793.569723864117.51074.373
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大孔吸附树脂技术2007年06月06日星期三02:50 P.M.大孔吸附树脂技术以大孔吸附树脂为吸附剂,利用其对不同成分的选择性吸附和筛选作用,通过选用适宜的吸附和解吸条件借以分离、提纯某一或某一类有机化合物的技术。

该技术多用于工业废水的处理、维生素和抗生素的提纯、化学制品的脱色、医院临床化验和中草药化学成分的研究。

它具有吸附快,解吸率高、吸附容量大、洗脱率高、树脂再生简便等优点。

大孔吸附树脂它是一种具有大孔结构的有机高分子共聚体,是一类人工合成的有机高聚物吸附剂。

因其具多孔性结构而具筛选性,又通过表面吸附、表面电性或形成氢键而具吸附性。

一般为球形颗粒状,粒度多为20-60目。

大孔树脂有非极性(HPD-100,HPD-300,D-101,X-5,H103)、弱极性(AB-8,DA-201,HPD-400)、极性(NKA-9,S-8,HPD-500)之分。

大孔吸附树脂理化性质稳定,一般不溶于酸碱及有机溶媒,在水和有机溶剂中可以吸收溶剂而膨胀。

大孔吸附树脂技术的基本装置恒流泵吸附原理根据类似物吸附类似物的原则,一般非极性树脂宜于从极性溶剂中吸附非极性有机物质,相反强极性树脂宜于从非极性溶剂中吸附极性溶质,而中等极性吸附树脂,不但能从非水介质中吸附极性物质,也能从极性溶液中吸附非极性物质。

操作步骤1)树脂的预处理预处理的目的:为了保证制剂最后用药安全。

树脂中含有残留的未聚合单体,致孔剂,分散剂和防腐剂对人体有害。

预处理的方法:乙醇浸泡24h→用乙醇洗至流出液与水1:5不浑浊→用水洗至无醇味→5%HCl通过树脂柱,浸泡2-4h→水洗至中性→2%NaOH通过树脂柱,浸泡2-4h→水洗至中性,备用。

2)上样将样品溶于少量水中,以一定的流速加到柱的上端进行吸附。

上样液以澄清为好,上样前要配合一定的处理工作,如上样液的预先沉淀、滤过处理,pH调节,使部分杂质在处理过程中除去,以免堵塞树脂床或在洗脱中混入成品。

上样方法主要有湿法和干法两种。

3)洗脱先用水清洗以除去树脂表面或部还残留的许多非极性或水溶性大的强极性杂(多糖或无机盐),然后用所选洗脱剂在一定的温度下以一定的流速进行洗脱。

4)再生再生的目的:除去洗脱后残留的强吸附性杂质,以免影响下一次使用过程中对于分离成分的吸附。

再生的方法:95%乙醇洗脱至无色,再用2%盐酸浸泡,用水洗至中性,再用2%NaOH浸泡,再用水洗至中性。

注意:再生后树脂可反复进行使用,若停止不用时间过长,可用大于10%的NaCl溶液浸泡,以免细菌在树脂中繁殖。

一般纯化某一品种的树脂,当其吸附量下降30%以上不宜再使用。

吸附树脂的筛选要达到最佳的分离纯化效果,必须正确有效的选用树脂。

树脂的选用应从树脂对欲吸附成分的吸附量和解析率实验结果综合考虑。

1)吸附量的测定静态吸附法:准确称取经预处理的树脂各适量,置适宜的具塞玻璃器皿中,紧密加入一定浓度的欲分离纯化的中药提取物的水溶液适量,置恒温振荡器上振荡,震动速度一定,定时测定药液中药物成分的浓度,直至吸附达到平衡。

计算吸附量Q.Q=(C0-Cr)·V/W动态吸附法:将等量已预处理的树脂各适量,装入树脂吸附柱中,药液以一定的流速通过树脂床,测定流出液的药物浓度,直至达到吸附平衡。

计算各树脂的比上柱量(S),然后用去离子水清洗树脂床中未被吸附的非吸附性杂质,计算树脂的比吸附量(A)。

S=(M上-M残)/M A=(M上-M残-M水洗)/M静态法较动态法简单,可控性强,但动态法更能真实反映实际操作的情况。

2)解析率的测定由于树脂极性不同,吸附作用力强弱不同,解吸难易也不同,若吸附过强,解析太难,解析率过低,产品回收率低,损失太大,即使吸附量再大,也无实际意义。

静态法:取充分吸附的各种树脂,分别精密加入解吸剂,解吸平衡后,滤过,测定滤液中吸附成分的浓度。

根据吸附量计算解吸率。

动态法:将解吸剂以一定的速度通过树脂床,同时配合适当的检测方法以确定解析终点,然后测定解吸液中药物的浓度。

注意:解吸效果的评价不能只以解吸率的大小来衡量,而应结合产品的纯度和比洗脱量对所选用的树脂和解吸剂作比较全面的评价。

吸附条件的确定柱子的粗细,上样液的浓度,pH值,上样液吸附的速度,温度都会影响大孔树脂的吸附能力,现分别介绍:玻璃柱粗细在分离、纯化过程中,玻璃柱子的粗细影响分离结果,当柱子太细,有机溶剂洗脱时,树脂易结块,柱子壁上有很多气泡,使得流速越来越慢、到最后流速几乎为零,所以选用柱子时不能选用太细的玻璃柱。

1)吸附液的浓度吸附液的浓度对大孔树脂的分离纯化影响很大。

对于一定量树脂,浓度太低,尽管吸附效率高,但是不能完全发挥树脂的作用,浪费树脂且生产效率低;浓度太大,树脂的吸附容量增加,但同时泄漏较多,造成了药液的浪费。

所以在生产过程中,为了提高生产效率且不造成浪费,单柱吸附时,上柱液含生药量以在泄漏点附近为宜;若多柱串联吸附上柱液含生药量以接近饱和点为宜。

泄漏点的测定方法:将药液按少量多次的原则,在确定的吸附条件下以一定的流速分次通过树脂床,每次收集流出液,按法分析药物组分,若在某一时段收集的流出液中在分析方法误差所允许的条件下,测得该药物组分,则从开始到此时所上样的药液体积总和就是树脂在该吸附条件下对这一药物组分的泄漏点。

2)吸附液的pH值在大孔树脂的吸附过程中,药液的pH影响也尤为重要。

根据化合物结构的特点调整原液的pH值,可以达到较好的吸附效果。

树脂对某种物质的吸附,特别是对生物碱和黄酮类物质的吸附,很大程度上受它的解离程度的影响。

对非极性吸附树脂来讲,酸性物质在酸性条件下,以分子形式存在,易被树脂吸附,而在碱性环境下,以离子形式存在,物质不易被吸附。

因此,原液pH会影响树脂吸附性能。

3)药液上样吸附的速度药液上样吸附的速度对树脂的吸附能力也有一定的影响。

随着上样液流速的加大,从柱中泄漏出的液体也在不断加大,树脂吸附量在减小。

流速过快时,树脂与被吸附物质分子间来不及充分接触,致使分子不能充分扩散到树脂表面,就随着上样液一起泄露出去,所以造成了随着流速的增加,吸附量下降,泄漏量增大的现象。

在实际生产操作中,从尽量缩短吸附时间和增大吸附量的角度出发,应根据不同的吸附柱选择最佳的流速。

一般上样时控制流速在20mL/min为宜。

4)吸附温度吸附温度对树脂的吸附有一定的影响,当吸附时间相同时,温度越高,吸附率越高,说明吸附越快,在实际生产中适当升高温度可缩短吸附达饱和的时间,提高效率。

解吸条件的确定(1)洗脱剂的确定通常所选的解吸剂应对溶质有较大的溶解度,这样可以得到高浓度的洗脱液。

将选用的不同洗脱溶剂,以一定的流速通过树脂床进行解吸,分段收集解吸液,测定浓度,绘制解析曲线。

一般解吸曲线越尖锐,不拖尾,解吸率越高。

(2)解吸剂pH的确定根据实际情况,用稀酸或稀碱溶液调节解吸液的pH值,以一定的流速进行解吸,比较不同pH值的解吸效果,确定解吸液的pH。

3)解吸速度的确定一般流速越慢,解吸率越高,解吸效果好。

但解吸速率的选择,还应结合生产周期,综合考虑生产效率和产品纯度,权衡利弊。

一般洗脱时控制流速在10mL/min较为合适。

4)解吸温度的确定在不同的温度下,比较解吸效果。

一般温度升高,有利于解吸,但温度过高,有可能使一些吸附性过强的杂质成分解吸而混入成品中,影响产品的纯度。

同时温度的选择也应考虑节能和减少设备腐蚀等因素。

X-5树脂纯化乌头总碱的研究本课题的目的是制备乌头总生物碱透皮吸收制剂。

为了提高产品质量,减少使用剂量,本实验通过静态吸附实验筛选出吸附容量相近的两种树脂,AB-8和X-5,以川乌总碱和新乌头碱的含量为指标,考察川乌提取液在AB-8和X-5型大孔树脂中的吸附及洗脱条件,以优选出大孔大孔吸附树脂技术的应用树脂分离川乌提取液中乌头总生物碱和新乌头碱的工艺条件,为其新药研制奠定一定的基础。

在此只对x-5纯化乌头总碱和新乌头碱方面的研究作一介绍。

1吸附条件的考察1.1吸附等温曲线将上柱样品液分别稀释成不同浓度的溶液,分别取10mL稀释液,加入到2gX-5型大孔树脂柱上,以2~4BV/h的流速重吸附2次,吸附10h,收集吸附残液,测定吸附残液中的指标成分含量,计算两种指标的吸附容量。

结果见图1 和图2。

n 图1新乌头碱的吸附等温曲线图2 乌头总碱的吸附等温曲线从图1和图2中可以看出,随着药液质量浓度的增加,X-5树脂的吸附容量逐渐增加。

试验中发现药液质量浓度越大,溶液颜色越深,药液上柱时越易结块阻塞树脂柱,且吸附的杂质含量也逐渐增大,另外质量浓度增大后其吸附残液中的两指标含量也增加,因此,本实验选择1 g生药/mL(0.2 mg新乌头碱/mL,5 mg总碱/mL)的药液含量为最佳含量,大孔树脂对乌头总碱和新乌头碱吸附率达95%以上。

1.2吸附动力学曲线取1 g生药/mL(0.2 mg新乌头碱/mL,5 mg总碱/mL)药液10 mL,加入到2 gX-5型大孔树脂柱上,以2~4 BV·h-1的流速重吸附2次,分别计算吸附0.5,1,2,3,4,6,8,10 h不同时间乌头总碱和新乌头碱的吸附容量,绘制吸附动力学曲线,见图3和图4。

FIGURE图3新乌头碱的吸附动力学曲线图4乌头总碱的吸附动力学曲线1.3药液pH值的考察取1g生药/mL(0.2 mg新乌头碱/mL,5 mg总碱/mL)药液10 mL,用1mol·L-1的HCl或1mol·L-1的NaOH调pH分别为2,4,6,8,10,12,加入到2 gX-5型大孔树脂柱上,以2~4 BV·h-1的流速重吸附2次,吸附6 h,计算两种指标的吸附容量。

结果见图5和图6。

FIGURE图5药液pH值对树脂吸附新乌头碱的影响图6药液pH值对树脂吸附乌头总碱的影响最佳吸附条件综上所述,X-5树脂吸附两指标成分的最佳条件为样品液含量为1 g生药/ mL(0.2 mg新乌头碱/mL,5 mg总碱/mL),pH 12,吸附时间为6 h。

2洗脱条件的考察2.1 洗脱液浓度的考察将已吸附好的树脂先用10 BV的蒸馏水以2-4 BV·h-1的流速洗脱,再用8 BV的15%,25%,35%,45%,55%,65%,75%,85%,95%乙醇洗脱,收集洗脱液,测定洗脱液中的指标成分含量,计算洗脱率。

结果见图7和图8。

图7乙醇浓度对洗脱新乌头碱的影响图8乙醇浓度对洗脱乌头总碱的影响2. 2 洗脱液pH值的考察将已吸附好的树脂先用10 BV的蒸馏水以2~4 BV·h-1的流速洗脱,再用8 BV用1 mol·L-1的HCl或1 mol·L-1的NaOH调pH分别为2,4,6,8,10,12的95%乙醇洗脱,收集洗脱液,测定洗脱液中的指标成分含量,计算洗脱率。

相关文档
最新文档