大学物理课后选择与作业答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 恒定磁场

7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )

(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=

分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比

因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量

为( )

(A )B r 2π2 (B ) B r 2π

(C )αB r cos π22 (D ) αB r cos π2

分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).

7 -3 下列说法正确的是( )

(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过

(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零

(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。因而正确答案为(B ).

7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )

(A ) ⎰

⎰⋅=⋅21L L d d l B l B ,21P P B B =

(B ) ⎰⎰

⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰

⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰

⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).

*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )

(A )()r I μr π2/1-- (B ) ()r I μr π2/1-

(C ) r I μr π2/- (D ) r μI r π2/

分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).

7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.

分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为

矩形平面的总磁通量

解 由上述分析可得矩形平面的总磁通量

7 -16 已知10 mm 2

裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.

分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.

解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有 在导线内r <R , 2222πππR

r r R I I ==∑,因而 在导线外r >R ,I I =∑,因而

磁感强度分布曲线如图所示.

(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得 7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两

侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?

分析 血流稳定时,有

由上式可以解得血流的速度.

解 依照分析

7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .

分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力. 解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为

故合力的大小为

合力的方向朝左,指向直导线.

第八章 电磁感应 电磁场

8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )

(A ) 线圈中无感应电流

(B ) 线圈中感应电流为顺时针方向

(C ) 线圈中感应电流为逆时针方向

(D ) 线圈中感应电流方向无法确定

分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).

8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )

(A ) 铜环中有感应电流,木环中无感应电流

相关文档
最新文档