数学分布 泊松分布 二项分布 正态分布 均匀分布 指数分布 +生存分析+贝叶斯概率公式+全概率公式

合集下载

二项分布正态分布泊松分布的区别和联系

二项分布正态分布泊松分布的区别和联系

二项分布正态分布泊松分布的区别和联系大家好,今天我们来聊聊二项分布、正态分布和泊松分布,这三个家伙可都是概率论里的“大腕儿”,虽然有时候让人头疼,但是它们在现实生活中可是无处不在哦!咱们就从它们的“区别和联系”这个角度来探讨一下吧。

咱们来看看二项分布。

二项分布呢,就像是一个抽奖活动,你不知道会抽到什么奖品,但是你知道每次抽奖只有两个选项:中奖或者不中奖。

而且呢,每次抽奖的概率都是一样的。

这个概率就是二项分布的概率参数,也就是成功的概率。

那么,如果我们知道这个概率是多少,比如说成功的概率是0.5,那么我们就可以算出在10次抽奖中中奖的次数是多少了。

当然啦,如果你想更了解二项分布,还可以了解一下它的期望值、方差等等概念。

接下来,咱们说说正态分布。

正态分布呢,就像是一个正常的人长相一样,它的形状是对称的,中间高两边低。

而且呢,正态分布在统计学里的地位可是非常重要的哦!因为它可以用来描述很多自然现象,比如人的身高、考试成绩等等。

而且呢,正态分布还有一个很酷的特点,就是它的均值和方差是可以自己设定的哦!这就意味着,我们可以根据实际情况来调整正态分布的形状,以便更好地描述我们关心的数据。

当然啦,正态分布在实际应用中还有很多其他的应用,比如假设检验、置信区间等等。

咱们来说说泊松分布。

泊松分布呢,就像是一个钟表一样,它的时间间隔是固定的,而且每个时间点的事件发生次数也是固定的。

这个概念听起来有点儿像二项分布,但是它们之间还是有很多区别的。

比如说,泊松分布的时间间隔是固定的,而二项分布没有这个限制;泊松分布的事件发生次数也是固定的,而二项分布则没有这个要求。

泊松分布还涉及到一个重要的概念——单位时间面积。

这个概念听起来有点儿专业,其实就是指在一个固定的时间段内,某个事件发生的总面积是多少。

泊松分布在实际应用中有很多用途,比如计算电话呼叫次数、交通事故发生次数等等。

好了,今天我们就先聊到这里吧。

希望大家能够通过对二项分布、正态分布和泊松分布的学习,更好地理解这些概率论里的概念。

几种重要的分布课件

几种重要的分布课件
几种重要的分布课件
contents
目录
• 正态分布 • 泊松分布 • 二项分布 • 指数分布 • 均匀分布
01
正态分布
定义与特性
定义
正态分布是一种连续概率分布,其概 率密度函数呈钟形,即“钟形曲线” 。
特性
正态分布具有对称性、单峰性和有限 性。它的期望值和方差决定了分布的 形状,而期望值和方差相等的特性被 称为“高斯”或“正态”分布。
计算步骤
首先确定泊松分布的参数λ,然后 使用上述公式计算随机事件发生 的概率。
应用场景
泊松分布在统计学、概率论、保险学、金融等领域有广泛应 用。例如,在保险行业中,泊松分布常用于计算一定时间段 内发生特定事件的概率,如车辆事故次数、保险索赔次数等 。
在生物学和医学领域,泊松分布也常用于描述某些离散事件 的发生概率,如遗传学中的基因突变次数、医学诊断中的失 误次数等。
应用场景
寿命分析
金融领域
在寿命分析中,指数分布常用于描述 电子元件、机器零件等寿命的分布。
在金融领域,指数分布也常用于描述 资产收益率、股票价格等随机变量的 概率分布。
等待时间
在排队论中,指数分布用于描述顾客 等待时间、电话呼叫等待时间等随机 变量的概率分布。
05
均匀分布
定义与特性
定义
均匀分布是一种概率分布,表示随机变 量在一定区间内取值的可能性是相等的 。
特性
指数分布具有无记忆性、无后效性等 特性,常用于描述寿命、等待时间等 随机变量的概率分布。
计算方法
概率密度函数
$f(x) = lambda e^{-lambda x}$,其中 $lambda$是分布的参数。
期望值
$E(X) = frac{1}{lambda}$。

数据分析-分布类别

数据分析-分布类别

数据分析-分布类别数据分析是一门应用统计学和信息技术手段来对数据进行分析、解释和预测的学科。

数据分析可以帮助我们发现数据中的规律和趋势,从而支持决策和解决问题。

在数据分析中,分布是一种重要的统计概念。

分布描述了数据的频率分布情况,可以用来揭示数据的集中趋势和离散程度。

本文将从不同类型的分布入手,讨论它们的特点和应用。

首先,我们来讨论常见的离散分布。

离散分布主要用于描述离散型数据的频率分布情况。

其中最常见的是二项分布和泊松分布。

二项分布是描述二分类试验的结果,比如抛硬币、投骰子等。

它的特点是结果只能是成功或失败,并且每次试验的成功概率相同。

泊松分布则常用于描述单位时间内事件发生次数的概率分布,比如一天内接到的电话数量、网站每小时的访问量等。

离散分布的研究可以帮助我们预测和规划未来的事件发生。

接下来,我们讨论连续分布。

连续分布用于描述连续型数据的概率分布情况。

最常见的连续分布是正态分布。

正态分布是自然界和社会现象中最常见的一种分布,例如身高、体重、考试成绩等。

正态分布的特点是呈钟形曲线,均值和标准差可以完全决定分布的形态。

正态分布的研究可以帮助我们了解各种现象的普遍规律。

除了常见的分布类型,还有其他一些特殊的分布。

例如,指数分布用于描述连续事件的间隔时间,如等待的时间、失效的时间等。

对数正态分布用于描述正态分布取对数后的分布情况,例如收入、房价等。

这些特殊的分布在实际问题中也有重要的应用,可以帮助我们更好地理解和分析现象。

在实际应用中,分布的分析对于数据的合理解读和判断至关重要。

通过对某一现象的分布分析,我们可以了解其集中趋势、离散程度、对称性等特征。

在决策和解决问题时,我们可以根据分布的特点采取相应的措施。

例如,对于一个右偏分布(即正态分布的尾部向右延伸),我们可以采取措施加强对极端值的防范和管理。

因此,掌握各种分布的特点和应用,对于数据分析工作至关重要。

最后,我们需要注意数据分析中对于分布的合理假设和验证。

二项分布、泊松分布、均匀分布、指数分布、正态分布

二项分布、泊松分布、均匀分布、指数分布、正态分布

二项分布、泊松分布、均匀分布、指数分布、正态分

二项分布是离散概率分布的一种,适用于只有两种可能结果(成功和失败)的独立重复试验。

每次试验成功的概率为p,失败的概率为1-p。

试验的次数为n。

二项分布表示了在n次独立重复试验中,成功次数为k的概率分布。

泊松分布:
泊松分布是在一段固定时间或空间中,随机事件发生的次数的概率分布。

它适用于事件发生率较低,但时间或空间较大的情况。

泊松分布的参数λ表示单位时间或单位空间中事件的平均发生率。

泊松分布的概率质量函数是离散的,表示了事件发生次数为k的概率。

均匀分布:
均匀分布是连续概率分布的一种,也称为矩形分布。

在一个定义在[a, b]区间上的随机变量的情况下,均匀分布概率密度函数使得[a, b]区间上每个区间的长度相等,且概率密度函数在该区间上是常数。

均匀分布的概率密度函数是恒定的,且在[a, b]区间外为零。

指数分布:
指数分布是连续概率分布的一种。

它适用于描述独立随机事件的等待时间,当事件发生的概率是恒定的。

指数分布的概率密度函数呈指数形式下降,并且在x 轴上永不为零。

指数分布的参数λ表示单位时间内事件发生的平均次数。

正态分布:
正态分布是连续概率分布的一种,也称为高斯分布。

它是最常见的概率分布之一,常被用于描述自然界中许多现象的分布情况,如身高、体重等。

正态分布的概率密度函数呈钟形曲线,均值和标准差是正态分布的参数。

正态分布具有许多重要的性质,如对称性、中心极限定理等。

概率论常用分布的概念及应用

概率论常用分布的概念及应用

一、前言随着医学模式的转变,护理工作不再仅仅局限于疾病的治疗,更注重于患者的身心健康和人文关怀。

为提高护理服务质量,我院于近日开展了人文护理查房活动。

本次查房旨在强化护理人员人文素养,提升患者满意度,现将查房总结如下。

二、查房内容1. 患者需求评估查房过程中,护理人员深入病房,对患者的需求进行评估。

通过观察、询问、沟通等方式,了解患者的基本情况、心理状态、生活习惯等,为制定个性化的护理方案提供依据。

2. 人文关怀措施针对患者的需求,护理人员采取了一系列人文关怀措施,如:(1)耐心倾听:与患者进行有效沟通,了解患者的痛苦和需求,给予心理支持。

(2)尊重患者:尊重患者的隐私和信仰,关心患者的日常生活,营造温馨的病房氛围。

(3)健康教育:普及疾病知识,提高患者对疾病的认识,增强患者战胜疾病的信心。

(4)心理疏导:关注患者的心理状态,进行心理疏导,缓解患者的焦虑、恐惧等负面情绪。

3. 护理团队协作查房过程中,护理人员相互配合,共同为患者提供优质的护理服务。

通过团队合作,提高护理质量,降低护理风险。

三、查房成果1. 提升患者满意度通过人文护理查房,患者感受到我院护理人员的关爱,满意度得到显著提升。

2. 增强护理人员人文素养查房过程中,护理人员不断学习、交流,提高自身人文素养,为患者提供更加优质的护理服务。

3. 促进护理团队建设人文护理查房有助于加强护理团队之间的沟通与协作,提高护理团队的整体素质。

四、总结与展望本次人文护理查房活动取得圆满成功,为我院护理工作注入了新的活力。

在今后的工作中,我们将继续深化人文护理理念,不断提高护理服务质量,为患者提供更加优质的护理服务。

具体措施如下:1. 加强护理人员人文教育,提高护理人员人文素养。

2. 完善人文护理制度,将人文关怀融入护理工作全过程。

3. 定期开展人文护理查房,持续改进护理服务质量。

4. 加强与患者的沟通与交流,关注患者需求,提高患者满意度。

总之,人文护理查房活动是我院护理工作的一次有益尝试,我们将以此为契机,不断提升护理服务质量,为患者提供更加优质的护理服务。

二项分布正态分布泊松分布的区别和联系

二项分布正态分布泊松分布的区别和联系

二项分布正态分布泊松分布的区别和联系1. 引言嘿,大家好!今天我们来聊聊三位数学界的明星:二项分布、正态分布和泊松分布。

这三位在统计学中可是占据了一席之地,像一顿丰盛的盛宴,各有各的特色。

无论你是学霸还是小白,都能从中找到乐趣。

好了,咱们就开始这段有趣的旅程吧!2. 二项分布2.1 概述先来聊聊二项分布。

想象一下,你在抛硬币,每次都有两个结果:正面或反面,简单吧?这就是二项分布的基本思想。

二项分布其实是关于在固定次数的独立实验中,某个事件发生的次数的概率分布。

比如,你抛十次硬币,想知道正面朝上几次的概率,这时候二项分布就派上用场了。

2.2 公式与应用二项分布的公式其实不复杂:P(X=k) = C(n, k) * p^k * (1p)^(nk)。

听起来复杂?其实就是告诉你,C(n, k)是组合数,p是成功的概率,n是实验次数。

应用场景可多了,像调查满意度、投票结果等等,统统能用到它。

3. 正态分布3.1 概述接下来,我们来聊聊正态分布。

说到正态分布,很多人第一反应就是“钟形曲线”。

对,就是这个意思!正态分布常常用来描述自然现象,比如身高、体重等,大家聚在平均值附近,像是一群小鸟围着大树。

大树就是平均值,小鸟就是数据,越远离大树的小鸟,数量就越少。

3.2 特性与应用正态分布的神奇之处在于它有两个参数:平均值和标准差。

平均值决定了“大树”的位置,而标准差则决定了“小鸟”的分布范围。

它在各个领域都能见到,比如心理测试、质量控制等,简直是统计学的万金油!4. 泊松分布4.1 概述最后,我们来说说泊松分布。

泊松分布有点像二项分布的兄弟,但它处理的事情有点不同。

泊松分布主要关注在一个固定的时间或空间内,某个事件发生的次数。

比如说,某个时间段内接到的电话数量,听起来很实用吧?4.2 公式与应用泊松分布的公式是P(X=k) = (λ^k * e^(λ)) / k!,其中λ是平均发生率,k是发生次数。

是不是觉得有点复杂?但它的应用场景相当广泛,比如交通事故、客户到店数量等,完全可以帮助我们更好地做出预测。

概率论常见的几种分布

概率论常见的几种分布

概率论常见的几种分布常见的几种概率分布概率论是研究随机现象的数学理论,其中涉及到许多常见的概率分布。

概率分布描述了随机变量在不同取值上的概率分布情况。

本文将介绍几种常见的概率分布,包括均匀分布、正态分布、泊松分布和指数分布。

一、均匀分布均匀分布是最简单的概率分布之一,也被称为矩形分布。

在均匀分布中,随机变量在一定的取值范围内的概率是相等的。

例如,抛一枚公正的硬币,正面朝上和反面朝上的概率都是1/2。

均匀分布通常用于模拟随机数发生器的输出,或者在一定范围内随机选择一个数值。

二、正态分布正态分布是最重要的概率分布之一,也被称为高斯分布。

在正态分布中,随机变量在取值范围内的概率密度函数呈钟形曲线状。

正态分布具有许多重要的性质,例如均值、标准差等。

正态分布在自然界和社会科学中广泛应用,例如身高、体重、考试成绩等都符合正态分布。

三、泊松分布泊松分布描述了单位时间或空间内事件发生的次数的概率分布情况。

泊松分布的特点是,事件之间相互独立且平均发生率恒定。

泊松分布通常用于描述稀有事件的发生情况,例如单位时间内的电话呼叫次数、单位面积内的交通事故次数等。

四、指数分布指数分布描述了连续随机变量首次达到某一值的时间间隔的概率分布情况。

指数分布的特点是,事件之间相互独立且事件发生的概率与时间间隔成反比。

指数分布通常用于模拟随机事件的发生时间间隔,例如单位时间内的电话呼叫间隔、单位距离内的交通事故间隔等。

除了上述几种常见的概率分布外,还有许多其他概率分布,例如二项分布、伽玛分布、贝塔分布等。

每种概率分布都有其特定的应用场景和数学性质,对于不同的问题可以选择适合的概率分布进行建模和分析。

总结起来,概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。

这些分布在各自的领域有着广泛的应用,可以帮助我们理解和解决许多随机现象和问题。

对于研究概率论和统计学的人来说,熟悉这些常见的概率分布是非常重要的。

常见的数学分布

常见的数学分布

常见的数学分布
常见的数学分布
一. 离散分布
1. 伯努利分布
伯努利分布是研究单个成功/失败事件(二元变量)概率的基本
概率分布,只有两种结果,成功/失败,因此伯努利分布也称为二项
分布。

2. 贝叶斯分布
贝叶斯分布主要用于分析估计连续变量,它是基于贝叶斯概率理论,关于一个未知参数的不确定性状况,以后新的观测信号被观测后,这种参数的不确定性会发生变化。

3. 几何分布
几何分布是离散概率分布的一种,主要用于研究成功/失败事件
发生次数的概率分布,即最少要经历多少次失败才能够获得一次成功。

4. 泊松分布
泊松分布是一种离散概率分布,属于参数为λ的二项分布,也叫泊松二项分布,用来描述一段时间内事件发生次数的概率分布,是一种常用的概率分布。

二. 连续分布
1. 正态分布
正态分布是连续概率分布的一种,也叫高斯分布,是最常用的一类概率分布,可以用来描述不同变量的概率分布情况,它的曲线呈现
出钟形,最大值位于均值处。

2. 对数正态分布
对数正态分布又叫做极大似然估计分布,属于一种连续概率分布,可以用来描述变量值的概率分布情况,表现为对数公式,又称为对数正态分布。

3. t 分布
t 分布是一种特殊的正态分布,也叫做学生的 t 分布,它可以
用来描述变量值的概率分布情况,它的曲线呈现出椭圆形。

4. 卡方分布
卡方分布是一种连续概率分布,常用于统计学分析中,它可以用来描述自由度为 k 的某个统计量的概率分布,其图形呈现出单峰形状。

常见概率分布

常见概率分布

常见概率分布概率分布是概率论的一个重要概念,用于描述一个随机变量可能取得的所有值及其对应的概率分布情况。

常见的概率分布包括均匀分布、二项分布、泊松分布、正态分布等。

本文将对这些常见的概率分布进行介绍和讨论。

一、均匀分布均匀分布是最简单且最常见的概率分布之一。

在一个有限区间内,每个取值的概率都是相等的。

均匀分布的概率密度函数可以表示为:f(x) = 1 / (b - a),其中a ≤ x ≤ b其中 a 和 b 分别表示区间的起始值和终止值。

均匀分布通常用于在一个确定的范围内随机选择一个值的情况,例如随机抽奖或随机选取一个数。

二、二项分布二项分布是描述多次独立重复试验中成功次数的分布。

每次试验只有两个可能结果,通常分别表示为成功(记为 S)和失败(记为 F)两种情况。

二项分布的概率函数可以表示为:P(x) = C(n, x) * p^x * (1-p)^(n-x)其中 n 表示试验次数,x 表示成功的次数,p 表示每次试验成功的概率。

三、泊松分布泊松分布适用于描述单位时间或单位面积内某事件发生的次数的概率分布。

泊松分布的概率函数可以表示为:P(x) = (e^(-λ) * λ^x) / x!其中λ 表示单位时间或单位面积内事件的平均发生率,x 表示事件发生的次数。

泊松分布常用于描述稀有事件的发生情况,例如单位时间内交通事故的发生次数、单位面积内电子元件的故障数等。

四、正态分布正态分布,又称高斯分布,是自然界中最常见的分布之一。

正态分布具有钟形曲线,均值和标准差决定了分布的位置和形态。

正态分布的概率密度函数可以表示为:f(x) = (1 / (σ * √(2π))) * e^(-((x - μ)^2 / (2σ^2)))其中μ 表示分布的均值,σ 表示分布的标准差。

正态分布广泛应用于统计学和自然科学中,通常用于描述一群数值型数据的分布情况,例如身高、体重、考试分数等。

除了上述四种常见的概率分布外,还存在许多其他常见的概率分布,如指数分布、伽玛分布、贝塔分布等。

统计学常用分布

统计学常用分布

统计学常用分布一、引言在统计学中,分布是描述数据变化规律和概率的重要工具。

不同的数据类型和问题背景需要采用不同的分布来描述。

本篇文章将介绍统计学中常用的几种分布,包括正态分布、二项分布与泊松分布、指数分布与对数正态分布、卡方分布与t分布等。

二、正态分布正态分布是最常见的连续概率分布之一,它在自然现象、工程技术和社会科学等领域都有广泛的应用。

正态分布的曲线呈钟形,数据值集中在均值附近,随着远离均值,概率逐渐减小。

正态分布在统计学中具有重要地位,许多统计方法和模型都以正态分布为基础。

三、二项分布与泊松分布1.二项分布:二项分布是用来描述伯努利试验中的随机事件的概率分布,其中每次试验只有两种可能的结果,并且每次试验都是独立的。

二项分布适用于计数数据,尤其在生物实验和可靠性工程等领域有广泛应用。

2.泊松分布:泊松分布是二项分布在伯努利试验次数趋于无穷时的极限形式,常用于描述单位时间内随机事件的次数。

泊松分布在概率论和统计学中具有重要地位,广泛应用于保险、通信和生物医学等领域。

四、指数分布与对数正态分布1.指数分布:指数分布描述的是随机事件之间的独立间隔时间或者随机变量的概率分布。

指数分布常用于描述寿命测试和等待时间等问题,例如电话呼叫的间隔时间和电子元件的寿命等。

2.对数正态分布:对数正态分布在统计学中用于描述那些其自然对数呈正态分布的随机变量。

许多生物学、经济学和社会科学中的数据都服从对数正态分布,例如人的身高、体重以及股票价格等。

五、卡方分布与t分布1.卡方分布:卡方分布在统计学中主要用于描述离散型概率分布。

卡方分布是通过对两个独立的随机变量进行平方和运算得到的,常用于拟合检验和置信区间的计算。

2.t分布:t分布在统计学中广泛应用于样本数据的参数估计和假设检验。

相比于正态分布,t分布在数据量较小或参数偏离正态性时具有更好的稳定性。

t分布在金融、生物医学和可靠性工程等领域有广泛应用。

六、结论在统计学中,不同的数据类型和问题背景需要采用不同的分布来描述。

几种常见的概率分布及应用

几种常见的概率分布及应用

几种常见的概率分布及应用常见的概率分布有很多种,在统计学和概率论中,这些分布被广泛应用于各种领域,包括自然科学、工程、经济和社会科学等。

下面是几种常见的概率分布及其应用:1. 均匀分布(Uniform Distribution):均匀分布是最简单的概率分布之一,它的概率密度函数在一个给定的区间内是常数。

这种分布广泛应用于统计推断、模拟和随机数生成等领域。

2. 二项分布(Binomial Distribution):二项分布适用于具有两个可能结果的离散试验,如抛硬币、打靶等。

在二项分布中,每个试验都是独立的,并且具有相同的概率。

二项分布在实验研究和贝叶斯统计等领域有广泛的应用。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间或空间内稀有事件发生次数的概率分布。

它在复杂事件模型、风险评估和可靠性分析等领域有广泛的应用。

4. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布之一,也被称为高斯分布。

它具有对称的钟形曲线,广泛应用于自然科学、社会科学和工程等领域。

正态分布在统计推断、回归分析、贝叶斯统计等方面发挥着重要作用。

5. 指数分布(Exponential Distribution):指数分布适用于描述事件发生之间的时间间隔的概率分布。

它在可靠性工程、队列论、生存分析等领域有广泛的应用。

6. γ分布(Gamma Distribution):γ分布是一类连续概率分布,用于描述正数随机变量的分布,如等待时间、寿命和利润等。

它在贝叶斯统计、过程控制和金融分析等领域被广泛使用。

7. t分布(T-Distribution):t分布是一种用于小样本情况下的概率分布,它类似于正态分布,但考虑了样本容量较小的情况。

t分布在统计推断和假设检验等方面有广泛的应用。

8. χ²分布(Chi-Square Distribution):χ²分布是一种用于度量变量之间的独立性和相关性的概率分布。

常用数据分布、二项分布,伯努利分布,正态分布

常用数据分布、二项分布,伯努利分布,正态分布

常用数据分布、二项分布,伯努利分布,正态分布数据分布数据分布是—种形象的数据描述方式,用各种统计图形将数据的分布形态形象地展现在图形上,指的是数据分概率分布或频数分布,即单个值在整个数据集中的分布。

基本概念1、随机变量:随机变量是随机事件在数量上的表现,按取值分类分为离散型随机变量和连续型随机变量。

例如随机在两男两女中抽取两个人,要求一男一女,有可能出现(男1 , 女1) 、(男1, 女2) 、(男2, 女1) 、(男2, 女2) I 我们关心的是—个男—个女,而并不关心是哪个男的配对哪个女的。

离散型随机变量:在一定区间内变星的取值为无数个或可数个,例如商品个数,人口总数等,主要包括:柏怒利随机变量、二项随机变量、几何随机变晕、泊松随机变星。

连续型随机变量在一定区间内变量的取值为无数个,数值无法进行一一列举,如血红蛋白的测定值等,主要包括:均匀随机变量、指数随机变量、伽马随机变量、正态随机变量。

2、古典概率:指事件中结果种类是确定的,且结果发生概率都相同,这种事件发生的概率被称古典概率,例如抛硬币和掷骰子等。

3、条件概率:指时间A在时间B已经发生的条件下所发生的的概率,例如掷骰子时第一次掷到1第二次掷到2的概率就是条件概率。

4、离散变量:指变量值可以按照—定顺序进行列举,通常以整数位取值的变量,例如:人口数、商品数等。

5、连续变量:指在一定区间中可以任意取值的变量,数值连续不断,可无限分隔,例如:生产零件的规格,身高体重等。

6、期望值:指在一个离散型随机变量试验中,每次可能出现的结果的概率乘以其结果的总和,不同于常识中的期望值,统计学中的期望值,也许和每—个结果都不相同离散变量分布1、二项分布:指在每次试验中只有两种可能的结果,例如:市场调研员询问消费者对某种洗发用品是否满意,其结果也只有两个,即满意与不满意;拨打朋友手机的结果,即接通与没接通。

如果某个事件或活动的结果多千两个,但只关心其中一个,也可以视为只有两个结果。

几种重要的概率分布

几种重要的概率分布
X - 2
若干重要的概率分布
从正态分布演绎出来的分布: 6、标准正态分布: 如果随机变量X的概率密度函数如下,则随机变量X服从于 标准正态分布:
f ( x)
记为:X~N(0,1)
1 e 2
x2 2
若干重要的概率分布
7、 2 分布: 设随机变量X~N(0,1)分布,(X1,X2,X3,…,Xn)为X 2 的随机样本,则如下统计量服从于自由度为n的 分布:
若干重要的概率分布
1、贝努利分布(二点分布,0-1分布): 如果变量X有如下分布:P(X=1)=p, P(X=0)=1-p 则称变量X服从两点分布,记为:X~B(1,p)
2、二项分布: 如果变量X表示n重Bernoulli试验中“成功”事件发生 的次数,且有如下分布:
P( X k ) Cn k pk (1 p)nk k 0,1, 2,..., n
当n比较大时(一般大于30),p值比较小时(如小于0.1),二项分 布接近于泊松分布。 例:已知某电视机 厂产品不合格率为 0.005,试求400台电 视机中恰有2台不合格 的概率 依据二项分布:p=0.005,n=400,则:
2 P X 2 C400 0.0052 1 0.005 400 2
2、二项分布: 变量X表示有:X~B(n,p) 则:E(X)=np ;D (X) =np(1-p)
3、泊松分布
P 如果变量X的概率为:X k
则: E (X) =λ , D (X) =λ
k
k!
e
若干概率分布的期望和方差
4、正态分布 若:X~N(µ σ2) ,
则:E(X) =µ ; D (X)=σ2
X i 2 X12 X 22 X n 2

数学分布生存分析贝叶斯概率公式全概率公式

数学分布生存分析贝叶斯概率公式全概率公式

数学分布生存分析贝叶斯概率公式全概率公式数学分布,也称为概率分布函数,是用来描述随机变量的取值和概率之间的关系的数学函数。

常见的数学分布包括泊松分布、二项分布、正态分布、均匀分布和指数分布。

其中,泊松分布用于描述单位时间内事件发生的次数,二项分布用于描述二项试验中成功的次数,正态分布用于描述连续随机变量的分布,均匀分布用于描述随机变量在一个区间内取值的均匀分布情况,指数分布用于描述连续随机变量的分布。

生存分析是一种统计方法,用于研究个体在给定时间段内生存的概率。

生存分析主要应用于生物学、医学、工程等领域,用于研究个体在不同条件下生存时间的差异和影响因素。

生存分析中常用的方法包括生存曲线、生存函数、风险比等。

贝叶斯概率公式是概率论中的一个重要公式,用于计算在给定先验概率的情况下,后验概率的条件概率。

在贝叶斯概率中,先验概率是基于以往的经验或知识得出的概率,后验概率是在观察到一些证据之后更新的概率。

贝叶斯概率公式为:P(A,B)=P(B,A)*P(A)/P(B)其中,P(A,B)表示在B发生的条件下,A发生的概率,P(B,A)表示在A发生的条件下,B发生的概率,P(A)和P(B)分别表示A和B的边缘概率。

全概率公式是概率论中的另一个重要公式,用于计算一个事件的概率,通过将该事件分解成多个互斥事件的并集来计算。

P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)其中,P(A)表示事件A发生的概率,P(A,Bi)表示在条件Bi下,事件A发生的概率,P(Bi)表示事件Bi发生的概率。

以上是对数学分布、生存分析、贝叶斯概率公式和全概率公式的简要介绍。

每种概念都非常庞大,各自包含了更多的理论和具体应用,可以进一步深入学习和探索。

二项分布正态分布泊松分布的区别和联系

二项分布正态分布泊松分布的区别和联系

二项分布正态分布泊松分布的区别和联系哎呀,今天我们来聊聊二项分布、正态分布和泊松分布,这三个家伙可是统计学里的“三大天王”,它们之间有什么区别和联系呢?别急,我这个话痨会给你讲得明明白白的!我们来看看二项分布。

二项分布是用来描述在n次独立的伯努利试验中,成功的次数X服从二项分布的概率分布。

它的数学公式是:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)是组合数,表示从n个里面选k个的组合数;p是成功的概率;n是试验次数。

二项分布有两个参数,分别是成功概率p和试验次数n。

它的好处是简单易懂,但是缺点也很明显,就是只能描述离散的事件。

接下来,我们来看看正态分布。

正态分布是一种特殊的连续型概率分布,它的曲线像一个钟形,左右对称,中间最高点,两边逐渐下降。

正态分布在统计学里有很多应用,比如说描述人的身高、体重、智商等等。

正态分布的数学公式是:f(x) = (1/σ√(2π)) * exp(-(x-μ)^2 / (2σ^2))其中,f(x)是概率密度函数;μ是均值;σ是标准差。

正态分布的优点是能够描述连续型的事件,而且形状特别好看,像一个微笑的脸。

但是它也有缺点,就是对于极端值比较敏感,也就是说,如果数据离均值太远,那么正态分布就会变得平平无奇。

我们来看看泊松分布。

泊松分布是用来描述在一段时间内,某个事件发生的次数X 服从泊松分布的概率分布。

它的数学公式是:P(X=k) = λ * e^(-λ) * t^k / k!其中,λ是事件发生的平均速率;t是时间长度;k是事件发生的次数。

泊松分布的优点是能够描述稀有事件的发生,比如说车祸、抢劫等等。

而且它的形状也很特别,像一个钟形,只不过左右对称的部分被压扁了。

但是泊松分布也有缺点,就是只能描述离散的时间段内的事件,而且当λ比较大时,计算起来会比较麻烦。

好啦,今天我们就讲到这里了。

二项分布、正态分布和泊松分布虽然各有优缺点,但是它们都是统计学里的“大将”,在实际问题中都有广泛的应用。

数学分布泊松分布二项分布正态分布均匀分布指数分布生存分析贝叶斯概率公式全概率公式

数学分布泊松分布二项分布正态分布均匀分布指数分布生存分析贝叶斯概率公式全概率公式

数学期望:随机变量最基本的数学特征之一。

它反映随机变量平均取值的大小。

又称期望或均值。

它是简单算术平均的一种推广。

例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0, 1, 2, 3,其中取0 的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0X 0.01 + 1X 0.9+ 2X 0.06+ 3X 0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。

也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。

可以简单的理解为求一个概率性事件的平均状况。

各种数学分布的方差是:1、一个完全符合分布的样本2、这个样本的方差概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。

比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。

下图为概率密度函数图(F(x)应为f(x),表示概率密度):2、抽样分布抽样分布只与自由度,即样本含量(抽样样本含量)有关二项分布(binomial distribution ):例子抛硬币1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定伯努利试验)离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、 F 分布J很事件A出现的辄率为恥则蛊刃次独立渕验中, 事件A恰好出现比次的概率务:P(X = k) = C^k(l-7r)nk3、P(X=O), P(X=1), P(X=3), .... .所有可能的概率共同组成了一个分布,即二项分布某毒物的50%致死剂拭后5只动物妊亡数的二项分布(0=5, ^0,5 )泊松分布(possion distribution:1、一个单位内(时间、面积、空间)某稀有事件2、此事件发生K次的概率3、P(X=0), P(X=1), P(X=3),•所有可能的概率共同组成了一个分布,即泊松分布0.2P(X)().10.() HI 川l!h0 4 8 0 4 8 12对泊松流,在任意时间间隔(0/)内,事件 (如交通事故)出现的次数服从参数为入t的泊松分布・入称为泊松流的强度.二项分布与泊松分布的关系:二、二项分布与泊松分布历史上,泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入的.近数十年來,泊松分和日益显示其重要性,成为概率论中最重要的几个分布之一.在实际中,许多随机现象服从或近似服从泊松分布’二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、n种可能的结果2、每个可能的概率相等(1/n)连续型均匀分布:1、可能的结果是连续的2、每个可能的概率相等()连续型均匀分布概率密度函数如下图:1 _ _________p-a----- --------------------- ka P x指数分布(exponential distribution:用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

概率论与数理分析:2.4 几种常用的分布

概率论与数理分析:2.4 几种常用的分布

则称X服从参数为p的(0,1)分布或两点分布.
X0
1
pk 1 p
p
只有两个结果的实验可以用服从(0-1)分
布的随机变量来描述.如
一门课程的考试是“及格”还是“不及格”
刚出生的新生儿是“男”还是“女”
产品检验的结果是“合格”还是“不合格”
2.二项(Binomial)分布
定义 设试验E只有两个可能结果A和 A,且
0! 1!
0.997
4.几何分布
定义 设试验E只有两个可能的结果A和 A,
且 P ( A) p, P ( A ) 1 p, (0 p 1).
将试验独立重复进行,直到事件A发生为止. 以X表示所需试验的次数,则X 是一随机变量,
它的可能取的值是1,2,3,…
P X k 1 p k 1 p, (k 1, 2, )
C
m M
C
nm NM
C
n N
(m 0,1,2,,min{M, n}
这里n N, m M, M N,则称X服从超几何分布.
说明:超几何分布在关于废品率的计件检 验中常用 到.
例如, 从装有 a 个白球,b 个红球的袋中
不放回地任取 n 个球, 其中恰有k 个白球的
概率为
C
k a
C
nk b
/
C
C
k 5
0
.7
k
1 0.7 5k
, (k
0,1, 2, 3, 4, 5)
PX 0 0.0024, PX 2 0.1323, PX 4 0.3602,
PX 1 0.0284, PX 3 0.3087, PX 5 0.1680.
例4.2 从某大学到火车站途中有6个交通岗, 假设在各个交通岗是否遇到红灯相互独立, 并且遇到红灯的概率都是1/3. (1)设X为汽车行驶途中遇到的红灯数,求X的 分布律. (2)求汽车行驶途中至少遇到5次红灯的概率.

泊松分布 二项分布 正态分布

泊松分布 二项分布 正态分布

泊松分布二项分布正态分布泊松分布、二项分布和正态分布是概率论中常用的三种分布模型。

它们在统计学、生物学、金融学等领域中有着广泛的应用。

本文将分别介绍这三种分布的概念、特点和应用。

一、泊松分布泊松分布是一种离散型的概率分布,用来描述在一定时间或空间范围内事件发生的次数的概率分布。

泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ为单位时间或单位空间内事件的平均发生率,k为事件发生的次数。

泊松分布的期望值和方差均为λ。

泊松分布的应用非常广泛。

例如,在电话交换机中,用于描述单位时间内电话呼叫的数量;在生物学中,用于描述单位面积内个体的分布密度;在金融学中,用于描述单位时间内某种事件的发生次数,如股市中的涨跌幅度。

二、二项分布二项分布是一种离散型的概率分布,用来描述在n次独立重复试验中成功次数的概率分布。

二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n为试验次数,k为成功次数,p为每次试验成功的概率。

C(n,k)为组合数,表示从n次试验中选择k次成功的组合数。

二项分布的期望值为np,方差为np(1-p)。

当n足够大时,二项分布逼近于正态分布。

二项分布的应用非常广泛。

例如,在质量控制中,用于描述在一批产品中不合格品的数量;在投资中,用于描述投资组合中不同资产的涨跌情况;在医学研究中,用于描述药物治疗的成功率。

三、正态分布正态分布是一种连续型的概率分布,也称为高斯分布。

它具有钟形对称曲线,常用于描述自然界和社会现象中的各种变量。

正态分布的概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))其中,μ为均值,σ为标准差。

正态分布的均值、中位数和众数均相等。

正态分布的特点是其均值和方差能够完全描述其形态。

当数据服从正态分布时,均值、中位数和众数相等,且呈现出对称的钟形曲线。

几种常见的概率分布

几种常见的概率分布

几种常见的概率分布一、 离散型概率分布1. 二项分布n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的平均数: (Y)np X E μ==方差与标准差:2(1)X np P σ=-;X σ=特例:(0-1)分布若随机变量X 的分布律为1(x k)p (1p)k k p -==- k=0,1;0<p<1,则称X 服从参数p 的(0-1)分布2. 泊松分布泊松分布是一种用来描述一定的空间和时间里稀有事件发生次数的概率分布泊松分布变量x 只取零和正整数:0、1、2…..其概率函数为:(x)!x p e x μμ-=泊松分布的平均数:(x)E μμ==泊松分布的方差和标准差:2σμ=、σ=3. 超几何分布 P(X=k)=k n k M N M n N C C C -- 记X~(N ,M ,n ) P=M N期望:E(X)=np方差:D(X)=np(1-p)1N n N -- 适用范围:多次完全相同并且相互独立的重复试验,如果在有限总体中不重复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票二、 连续型概率分布1. 均匀分布若随机变量X 具有概率密度函数(x)f =则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b)在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为0F(x),1x a x a a x b b a b x ⎧<⎪-⎪=≤<⎨-⎪≤⎪⎩2指数分布若随机变量X 具有概率密度函数,0(x)0,0x e x f x λλ-⎧≥=⎨<⎩ 其中0λ> 是常数,则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为1,0(x)0,0x e x F x λ-⎧-≥=⎨<⎩3.正态分布正态随机变量X 的概率密度函数的形式如下:22(x )2(x),f x μδ--=-∞<<∞式中,μ 为随机变量X 的均值;2δ 为随机变量X 的方差。

常用的概率分布类型及其特征

常用的概率分布类型及其特征

常用的概率分布类型及其特征概率分布是用来描述随机变量的取值的概率的函数。

不同的概率分布具有不同的特征和应用范围。

以下是常用的概率分布类型及其特征。

1. 伯努利分布(Bernoulli Distribution):伯努利分布是最简单的概率分布之一,它描述了只有两个可能结果的离散随机变量的概率分布。

例如,抛一枚硬币的结果可以是正面或反面。

伯努利分布的特征是它的均值和方差分别等于成功的概率(p)和失败的概率(1-p)。

2. 二项分布(Binomial Distribution):二项分布是一种描述离散随机变量成功次数的概率分布。

它描述了在n次独立试验中成功的次数。

例如,投掷一枚硬币n次,成功的次数即为正面出现的次数。

二项分布的特征是它的均值等于试验次数乘以成功概率,方差等于试验次数乘以成功概率乘以失败概率。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间内独立事件发生的次数的概率分布。

例如,在一小时内到达一些公共汽车站的乘客数。

泊松分布的特征是它的均值和方差相等,并且与单位时间内事件发生的频率(λ)相关。

4. 正态分布(Normal Distribution):正态分布是最常见的概率分布之一,它以钟形曲线表示。

正态分布适用于连续变量,例如身高、体重等。

正态分布的特征是它的均值和方差决定了曲线的位置和形状。

均值决定了曲线的中心,而方差决定了曲线的宽窄。

5. 卡方分布(Chi-Square Distribution):卡方分布适用于描述随机变量和它的平方之和的概率分布。

它在统计推断中经常用于检验统计模型的拟合优度。

卡方分布的特征是它的自由度决定了分布的形状。

6. t分布(Student's t-Distribution):t分布适用于样本容量较小,总体标准差未知的情况。

t分布的特征是它的形状比正态分布更扁平,更厚尾。

7. F分布(F-Distribution):F分布适用于进行方差分析等统计推断问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学期望:随机变量最基本的数学特征之一。

它反映随机变量平均取值的大小。

又称期望或均值。

它是简单算术平均的一种推广。

例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为,取1的概率为,取2的概率为,取3的概率为,它的数学期望为0×+1×+2×+3×等于,即此城市一个家庭平均有小孩个,用数学式子表示为:E(X)=。

也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为个。

可以简单的理解为求一个概率性事件的平均状况。

各种数学分布的方差是:
1、一个完全符合分布的样本
2、这个样本的方差
概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。

比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。

下图为概率密度函数图(F(x)应为f(x),表示概率密度):
离散型分布:二项分布、泊松分布
连续型分布:指数分布、正态分布、X2分布、t分布、F分布
二项分布(binomial distribution):例子抛硬币
1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试
验)
2、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即二项分

泊松分布(possion distribution):
1、一个单位内(时间、面积、空间)某稀有事件
2、此事件发生K次的概率
3、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即泊松分

二项分布与泊松分布的关系:
二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布
均匀分布(uniform distribution):
分为连续型均匀分布和离散型均匀分布
离散型均匀分布:
1、n种可能的结果
2、每个可能的概率相等(1/n)
连续型均匀分布:
1、可能的结果是连续的
2、每个可能的概率相等()
连续型均匀分布概率密度函数如下图:
指数分布(exponential distribution):
用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

指数分布常用于各种“寿命”分布的近似。

1、连续型分布,每个点的概率:
2、无记忆性。

已经使用了s小时的元件,它能再使用t小时的概率,与一个从未使用过的元件使用t小时的概率相同。

即它对已经使用过的s小时没有记忆。

指数分布的概率密度函数如下图:
正态分布(normal distribution):
又称高斯分布。

1、描述一个群体的某个指标。

2、这个指标是连续的。

3、每个特定指标在整个群体中都有一个概率()。

4、所有指标概率共同组成了一个分布,这个分布就是正态分布。

正态分布的概率密度函数如下图:
中心极限定理:
不论总体的分布形式如何(正态或非正态),只要样本(抽样样本)含量n足够大时,样本均数的分布就近似正态分布,且均数与总体均数相等,标准差为(总体标准差)/(n 的开方)。

中心极限定理使得t分布、F分布和X2分布在抽样样本含量很大时不需要对总体样本是否正态有要求。

t分布(student t distribution):
1、t分布是以0为中心的一簇曲线,每个自由度决定一个曲线
2、自由度是一个抽样小样本中的具体观测值的个数(抽样样本含量)-1
3、总体样本呈正态分布(抽样样本含量较小时,要求总体样本呈正态分布,如果抽
样样本含量很大(eg. n >= 100),由中心极限定理可知抽样样本均数也近似正态分布,因而“差值”的概率也呈正态分布,而t分布的每一条曲线实际上都是正态分布曲线)
4、从一个总体样本中抽取很多个小样本———抽样
5、每个小样本都有一个均值
6、每个小样本的均值与总体样本均值有一个差值,这个差值用t估计
7、可能有多个小样本的差值估计都是t,t出现的次数占所有小样本的比例可以用一个概率衡量
8、所有t值的概率组成一个分布,就是t分布的一个曲线
9、另外做一个抽样,每个小样本包含的观测值不同,则形成t分布的另外一个曲线
10、自由度越大,则曲线越接近于标准正态分布
11、t分布只与自由度相关
t分布的概率密度函数如下图(v为自由度):
X2分布(chi square distribution):
1、X2分布也是一簇曲线,每个自由度决定一个曲线
2、自由度是一个抽样小样本中的具体观测值的个数(抽样样本含量)-1
2、总体样本呈正态分布(抽样样本含量(n)较小时,要求总体样本呈正态分布)
3、从总体样本中抽取n个观测值:z
1,z
2
,z
3
……———抽样
4、将它们平方后求和,这个和用一个新变量表示,即X2
5、重复抽样并获得多个X2:X
12,X
2
2,X
3
2,X
4
2………
6、可能有多次抽样的X2值相同,同一个X2值的抽样次数占总次数的比例可以用一个概率表示
7、所有的概率值共同组成一个分布,就是X2分布的一条曲线
8、另外做一次,只要从总体中选取观测值数目n不同,得到的就是另外一条曲线
10、自由度越大,则曲线越接近于标准正态分布
11、X2分布只与自由度相关
X2分布的概率密度函数如下图(n在这里为自由度):
F分布(F-distribution):
1、F分布也是一簇曲线,每对自由度决定一个曲线
2、自由度是一个抽样小样本中的具体观测值的个数(抽样样本含量)-1
2、两总体样本方差比的分布
3、总体样本呈正态分布(抽样样本含量(n)较小时,要求总体样本呈正态分布)
4、从总体样本中抽取两个样本,两个样中的观测值数目可相同也可不同,分别记为n
1
和n 2
5、分别计算出X 2:X 1,X 2
6、构建一个新变量F :
7、重复抽取样本,计算多个F 值:F 1,F 2,F 3……..
8、可能有多次抽样的F 值相同,同一个F 值的抽样次数占总次数的比例可以用一个概率表示
9、所有的概率值共同组成一个分布,就是F 分布的一条曲线
10、另外做一次,只要从总体中选取观测值数目n 不同,得到的就是另外一条曲线
10、两个自由度越大,则曲线越接近于标准正态分布
11、F 分布只与自由度相关
F 分布的概率密度函数如下图(m ,n 在这里为自由度):
【在推估总体平均值时,基于样本平均数的抽样分布】—— t 分布
【在用样本方差来推估总体方差时,必须知道样本方差的抽样分布】— X 2分布
【比较两个总体的方差是否相等时,必须知道样本方差的联合抽样分布】— F 分布 生存分析(survival analysis ):
1、多种影响慢性疾病的因素(不同手术方法、不同药物………)
2、随访一群患者
3、一段时间后统计生存和死亡
3、最终给出的结果是一个评价各种因素对生存时间的影响(生存时间、生存率有无差异) 贝叶斯公式(bayes formula ):
1、 描述两个条件概率之间的关系———P(Bi|A)与P(A|Bi),A 为事件,Bi 为一个划分
2、 P(Bi|A)=P(A|Bi)*P(Bi)/P(A) 或者
3、 看图理解
全概率公式(full probability formula ):
1、描述一个特定事件的概率与条件概率间的关系
2、 P(A)=P(A|B1)*P(B1) + P(A|B2)*P(B2) + ... + P(A|Bn)*P(Bn)
3、 看图理解。

相关文档
最新文档