基于强跟踪滤波器的电力系统频率测量算法

第41卷第7期电力系统保护与控制Vol.41 No.7 2013年4月1日Power System Protection and Control Apr.1, 2013

基于强跟踪滤波器的电力系统频率测量算法

赵仁德1,马 帅1,2,李海舰1,吴晓波1

(1.中国石油大学(华东)信控学院,山东 青岛 266555;2.莱芜供电公司,山东 莱芜 271100)

摘要:频率在电力系统保护与控制、电能质量监测等领域都起到了关键作用。建立了谐波和噪声干扰下的电压信号的复数状态空间描述,提出了基于强跟踪滤波器(Strong Tracking Filter, STF)的电力系统频率测量算法。解决了扩展复数卡尔曼滤波(Extended Complex Kalman filter, ECKF)算法在算法收敛后,系统状态发生突变的情况下需要重置误差协方差阵来重新跟踪这些变化的问题,进一步提高了其动态跟踪速度。通过与鲁棒型扩展复数卡尔曼滤波(Robust Extended Complex Kalman Filter, RECKF)算法的对比仿真表明,STF测频算法在迅速跟踪电压频率、幅值和相位变化的同时又能够保持较低的跟踪误差。

关键词:频率测量;强跟踪滤波器;状态空间描述;复数扩展卡尔曼滤波

Strong tracking filter based frequency-measuring algorithm for power system

ZHAO Ren-de1, MA Shuai1, 2, LI Hai-jian1, WU Xiao-bo1

(1. College of Information and Control Engineering, China University of Petroleum, Qingdao 266555, China;

2. Laiwu Electric Power Corporation, Laiwu 271100, China)

Abstract: Frequency plays an important role in power system protection and control, power quality monitoring and other fields. The complex state space description of the voltage signal under harmonics and noise is established, then the strong tracking filter (STF) based frequency-measuring algorithm for power system is proposed. It is not necessary to reset the error covariance matrix for STF as it is for extended complex Kalman filter (ECKF) algorithm to track the sudden state mutation of power system after initial convergence, thus significantly improving its tracking speed. Results of comparative simulation studies of the proposed algorithm with robust extended complex kalman filter (RECKF) algorithm show that the STF-based algorithm is able to quickly track the frequency, amplitude and phase changes while maintaining a considerably low tracking error.

This work is supported by the Fundamental Research Funds for the Central Universities (No. 10CX04036A).

Key words: frequency-measuring; strong tracking filter; state space description; extended complex Kalman filter

中图分类号:TM74 文献标识码:A 文章编号:1674-3415(2013)07-0085-06

0 引言

频率在电力系统保护与控制、分布式发电系统并网,以及电能质量监测等应用领域都起到了关键作用。频率大小不但反映了供电设备与负载之间是否保持动态能量平衡,而且是电力系统其他参数(例如电压幅值、相位等)估计的前提。然而由于电力电子装置的广泛应用,电力系统中引入了大量谐波和噪声干扰。因此,需要在谐波和噪声干扰下准确测量电力系统频率。

基金项目:中央高校基本科研业务费专项资金资助(10CX04036A)

目前国内外学者已提出多种方法来测量电力系统的瞬时频率[1]。过零检测法[1-3]原理简单,但对谐波和噪声干扰敏感。基于离散傅里叶变换(Discrete Fourier Transform, DFT)的测频算法[4-7]在电力系统中广泛应用,但在电网频率不是额定工频时会产生频谱泄露和栅栏效应,测频结果不准确,改进的插值DFT测频算法[8-9]能提供比较准确的频率测量值,但实时性差,同时其计算量限制了其应用。最小均方误差法[10]、牛顿递归算法[11]、自适应陷波滤波法[12-13]、多频跟踪法[14]、正交分量滤波法[15]等方法也被广泛用于频率测量。这些方法各有特点,并被广泛应用于不同的领域当中,但在高噪声和谐波干扰条件下,多数不能兼顾稳态输出精度和动态响应

相关文档
最新文档