演示文稿中职数学集合的运算
合集下载
集合的基本运算PPT精品课件
作业布置
1.教材P12 A组6,7,8 B组3 2 补.P={a2,a+2,-3}, Q={a-2,2a+1,a2+1},P ∩Q={-3}, 求a.
感受大自然之美
美景欣赏
视频欣赏《江山如画》
思考:1、你认为大自然美在 哪里? 2、美丽的大自然对我们的 身心成长有哪些益处?
春山淡冶而如笑
例5.设集合A={-4,2m-1,m2},B={9,m-5,1-m}, 又A∩B={9},
求实数m的值.
课堂练习
教材P11练习T1~3.
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题;
4. 注意对字母要进行讨论 .
什么是自然美?
注意:自然美并不是不经任何 人工改造的
交流亭
鉴赏自然美,要注意距 离、角度、时间。
鉴赏自然美,要发挥 人们的想象力。
说一说:这对我们鉴赏自然风景有什 么启示?
鉴赏自然美,要注意距离。
还要发挥人的想象力。
童子拜观音
课堂小结:大自然的美到处都有,对于我们 不是缺少美,而是缺少发现美的眼睛。让我 们走进大自然,在感受大自然无尽的美中更 加亲近大自然,更加热爱大自然。
请同学们欣赏美景,再次体会大自 然之美,以及如何欣赏大自然之美
A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于
集合B的所有元素组成的集合叫
做A与B的交集.
记作 A∩B 读作 A交 B
A
B
即 A∩B={x |x∈A,且x∈B}
A∩B
集合的基本运算课件(共11张PPT)
解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径
高教版中职数学(基础模块)上册1.3《集合的运算》ppt课件2
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
2019/7/31
最新中小学教学课件
10
thank
you!
2019/7/31
最新中小学教学课件
11
没有获得金奖的学生的集合为Q={赵云, 冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰
张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
2019/7/31
最新中小学教学课件
10
thank
you!
2019/7/31
最新中小学教学课件
11
没有获得金奖的学生的集合为Q={赵云, 冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰
张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
集合的基本运算课件ppt.ppt
解:(1)在有理数范围内只有一个解2,即:
x Q x 2x2 3 0 2
(2)在实数范围内有三个解2,3, ,3 即:
x R x x2 3 0 2, 3, 3
补集例题
例.设U={x|x是小于9的正整数},A={1,2,3}, B={3,4,5,6},求 A, B.
解:根据题意可知:
7.你会求解下列问题吗? 集合A={x|-2≤x<1}. (1)若B={x|x>m},A⊆B,则m的取值范围 是 m<-. 2 (2)若B={x|x<m},A⊆B,则m的取值范围 是 m≥1 . (3)若B={x|x<m-5或x≥2m-1},A∩B= ∅,则m的取值范围是 1≤m≤3 .
[例3] 已知A={(x,y)|4x+y=6},B={(x, y)|3x+2y=7},则A∩B=________.
说明:两个集合求交集,结果还是一个集合,是由集合A与 B 的公共元素组成的集合.
Venn图表示:
AB
A∩B
B
A∩B
A
B
A∩B=
交集性质
①AA= ;
②A=
;
③AB=A A____B
(1) 设 A = {1 , 2} , B = {2 , 3 , 4} , 则 A∩B = {2}.
(2)设A={x|x<1},B={x|x>2},则A∩B= ∅.
2: A A A
3: A
4: AB A B A
5:B A AB A
6 : A A B, B A B
7 : (A B) C A (B C)
1: A B B A
2: A A A
3: A A
4: AB A B A
5:B A AB A
x Q x 2x2 3 0 2
(2)在实数范围内有三个解2,3, ,3 即:
x R x x2 3 0 2, 3, 3
补集例题
例.设U={x|x是小于9的正整数},A={1,2,3}, B={3,4,5,6},求 A, B.
解:根据题意可知:
7.你会求解下列问题吗? 集合A={x|-2≤x<1}. (1)若B={x|x>m},A⊆B,则m的取值范围 是 m<-. 2 (2)若B={x|x<m},A⊆B,则m的取值范围 是 m≥1 . (3)若B={x|x<m-5或x≥2m-1},A∩B= ∅,则m的取值范围是 1≤m≤3 .
[例3] 已知A={(x,y)|4x+y=6},B={(x, y)|3x+2y=7},则A∩B=________.
说明:两个集合求交集,结果还是一个集合,是由集合A与 B 的公共元素组成的集合.
Venn图表示:
AB
A∩B
B
A∩B
A
B
A∩B=
交集性质
①AA= ;
②A=
;
③AB=A A____B
(1) 设 A = {1 , 2} , B = {2 , 3 , 4} , 则 A∩B = {2}.
(2)设A={x|x<1},B={x|x>2},则A∩B= ∅.
2: A A A
3: A
4: AB A B A
5:B A AB A
6 : A A B, B A B
7 : (A B) C A (B C)
1: A B B A
2: A A A
3: A A
4: AB A B A
5:B A AB A
中职数学1.3 集合的运算课件
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
1.3 集合的运算
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
1.书面作业:完成课后习题和学习与训练;
2.查漏补缺:根据个人情况对课题学习复习与回顾;
3.拓展作业:阅读教材扩展延伸内容.
再见
2.设集合A={(x,y)|x-2y=1}, 集合B={(x,y)|x+2y=3}, 求A∩B.
3.设集合A ={x |x>-1}, 集合A ={x |x≤-2}, 求A∩B.
1.3.2
并集
1.3.2 并集
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
前面的同学登记表中,设集合T={1,3,5,6,7,8}.
共青团员组成的集合为
N={1,3,5,7,8} .
那么, 集合M 与集合N 有
什么关系?
为研究方便,用序号代表学生.例如,“1”代表学生“李瑞凯”.
1.3.1 交集
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
一般地,对于给定的集合A与集合B,由既属于集合A又
属于集合B的所有元素组成的集合,称为集合A与集合B
1.3 集合的运算
1.3 集合的运算
实数之间可以进行运算,如5+2=7,
4-3=1, 3×7=21.
类比这些运算,集合之间是否也可以
进行运算呢?
1.3.1
交集
1.3.1 交集
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
某班第一小组8位学生的登记表:
女生组成的集合为
M={5,6,7,8} ,
情境导入 探索新知
高教版(2021)中职数学基础模块上册《集合的运算》课件
知,A∪B=R.
1.3 集合的运算
1.3.3
补
集
一、知识回顾
1.设集合A={1,2,3,4},集合B={0,2,4,6},求A∩B,A∪B.
2.设集合A={x|-2<x≤3},集合B={x|0<x<4},求A∩B,A∪B.
二、学习新知
1.全集
如果某些集合是一个给定集合的子集,那么这个给定的集合称
4.设全集U=R,集合A={x|x>1},求∁UA.
【解】把集合A在数轴上表示出来,观察图形可知,∁UA={x|x≤1}.
5.设全集U=R,集合A={x|-3<x≤2},求∁A.
【解】 把集合A在数轴上表示出来,观察图形可知,∁A={x|x≤-3或
x>2}.
6.设全集U={小于10的自然数},集合A={1,3,5},集合
为
,通常用字母
表示.
2.补集
一般地,如果集合A是全集U的一个子集,则由全集U中不属于
集合A的所有元素组成的集合称为集合A在全集U中的
记作
即∁UA=
.
.
*当全集U为实数集R时,集合A的补集∁UA可以简写为∁A.
,
3.由补集的定义可以推知,对于任意集合A,有
(1)A∩∁UA=
;
(3)∁U(∁UA)
A.
【解】 ∁UA={1,3,7,8}.
2.设全集U=R,集合A={x|1≤x<3},求∁UA.
【解】把集合A在数轴上表示出来,观察图形可知,∁UA={x|x<1或
x≥3}.
3.设全集U={x∈N|x<5},集合A={0},求∁UA.
Hale Waihona Puke 【解】由题可知U={0,1,2,3,4},则∁UA={1,2,3,4}.
1.3 集合的运算
1.3.3
补
集
一、知识回顾
1.设集合A={1,2,3,4},集合B={0,2,4,6},求A∩B,A∪B.
2.设集合A={x|-2<x≤3},集合B={x|0<x<4},求A∩B,A∪B.
二、学习新知
1.全集
如果某些集合是一个给定集合的子集,那么这个给定的集合称
4.设全集U=R,集合A={x|x>1},求∁UA.
【解】把集合A在数轴上表示出来,观察图形可知,∁UA={x|x≤1}.
5.设全集U=R,集合A={x|-3<x≤2},求∁A.
【解】 把集合A在数轴上表示出来,观察图形可知,∁A={x|x≤-3或
x>2}.
6.设全集U={小于10的自然数},集合A={1,3,5},集合
为
,通常用字母
表示.
2.补集
一般地,如果集合A是全集U的一个子集,则由全集U中不属于
集合A的所有元素组成的集合称为集合A在全集U中的
记作
即∁UA=
.
.
*当全集U为实数集R时,集合A的补集∁UA可以简写为∁A.
,
3.由补集的定义可以推知,对于任意集合A,有
(1)A∩∁UA=
;
(3)∁U(∁UA)
A.
【解】 ∁UA={1,3,7,8}.
2.设全集U=R,集合A={x|1≤x<3},求∁UA.
【解】把集合A在数轴上表示出来,观察图形可知,∁UA={x|x<1或
x≥3}.
3.设全集U={x∈N|x<5},集合A={0},求∁UA.
Hale Waihona Puke 【解】由题可知U={0,1,2,3,4},则∁UA={1,2,3,4}.
语文版中职数学基础模块上册1.4《集合的运算》ppt课件1
定义
一般的,如果一个集合含有 我们所研究问题中涉及的所有元
素,那么就称这个集合为全集.
全集常用U表示.
补集
设U是全集,A是U的一个子集, 则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
记作 CU A 即 CU A {x x U ,且x A}
A
CU A) Φ
C U (C U A ) A CU A A
例题讲解
例1 设全集 U={0,1,2,3,4,5,6,7},A={1,3,5}
B={2,4,7},求CUA,CUB.
解:根据题意可知,U={1,2,3,4,5,6,7,0}, 所以 CUA={0,2,4,6,7} CUB={0,1,3,5,6} .
例题
B
集合的交
根据交集的定义和图示,填写交集的性质.
=
(1) A ∩ B
B∩A;
=
(2) ( A ∩ B )∩ C
A ∩( B ∩ C );
(3) A ∩ A =
;A
(4) A ∩ = A =∩
;
想一想: 如果 A B ,那么 A ∩ B =
.A
集合的交
例1 已知:A = {-2,0,3 ,5,8},B = { -1,0,3,5 },
解:A∩B = {x | x 是菱形}∩{x | x 是矩形} = {x | x 是正方形}.
正
菱形
方 形
矩形
观察下列三个集合:U={本班全体同学} A={本班所有男同学}B={本班所有女同学}
问:这三个集合之间有何关系?
显然,集合U中除去集合 A(B)之外就是集合B(A).
可以用韦恩图表示
A
U
B
中职1.4.1集合的基本运算(并集与交集)PPT教学课件
2020/12/10
16
例6 设A={x x2+4x=0}, bbbbbcB={x x2+2(a+1)x+a2-1=0},
(1) 若A∩B=B,求a的值.
(2) 若A∪B=B,求a的值.
2020/12/10
17
探究
(A∩B)∩C = A∩( B∩C )
A∩B∩C (A∪B)∪C= A∪( B∪C )
A∪B∪C
2020/12/10
18
PPT教学课件
谢谢观看
Thank You For Watching
19
2020/12/10
2
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
2020/12/10
3
定义
一般地,由属于集合A或属于集合 B的所有元素组成的集合,叫做A
与B的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
2020/12/10
1
中心为了选拔参加全省中职生职业技能 大赛选手,先在学校进行选拔.该校汽修 1402班42名同学中有14人参加了英语口 语比赛,有10人参加计算机程序设计比赛, 有5人两项比赛都参加了,若设
集合A={参加英语口语演讲比赛的同学} 集合B={参加计算机程序设计比赛的同学} 那么该班参加校内职业技能比赛的同学的集合是 集合C={参加校职业技能比赛的同学} 显然,集合C是由属于集合A和集合B的所有元素组成的集合
⑹ 若A∪B=A,则A B.
反之,亦然.
2020/12/10
11
例题讲解
例1 设A={x x是等腰三角形},
中职数学基础模块上册《集合的运算》pptPPT课件
教材 P 16 ,练习A 组第 1~4 题.
A
茄子 虾 土豆 芹菜
B
观察得出:集合 C 是由既属于集合 A,又属于集合 B 的所有 公 共 元素组成的.
集合的交
交集:给定两个集合 A,B,由既属于 A 又属 于B 的所 有公共元素构成的集合,叫做 A,B 的交集.
记作 A ∩ B , 读作 “ A 交 B ”.
请用阴影表示出 “ A∩B ”
AB
BA
A (B)
AB
集合的交
根据交集的定义和图示,填写交集的性质. (1) A ∩ B = B ∩ A ; (2) ( A ∩ B )∩ C = A ∩( B ∩ C ); (3) A ∩ A = A ; (4) A ∩ = ∩ A = ;
想一想: 如果 A B ,那么 A ∩ B = A .
AB
AB
A
A(B)
3.并集的性质
集合的并
(1) A ∪ B = B ∪ A ;
(2) ( A ∪ B ) ∪ C = A ∪( B ∪ C );
(3) A ∪ A = A ;
(4) A ∪ = ∪ A = A .
想一想: 如果 A B ,那么 A ∪ B = B .
例2 (2) 已知 A = {x | x 是奇数}, B = {x | x 是偶数}, Z = {x | x 是整数},
求 A ∩ B.
解:A∩B = {(x,y) | 4 x+y = 6 }
∩{(x,y) | 3 x+2 y = 7 }
=+2 y = 7
= {(1,2)}.
(1,2)
O
x
3 x+2 y = 7
4 x+y = 6
1. 学生读书、反思. 2. 教师点评,学生填表:
中职数学1.3集合的运算)课件
交集的性质
性质2:任意集合A与空集的 交集是空集
性质1:空集是任何集合的 交集
定义:两个集合A和B的交集 是指同时属于A和B的元素组 成的集合
性质3:任意集合A与自身的 交集是A本身
性质4:两个集合的交集与 它们的对称差是相同的
性质5:如果集合A和集合B 没有交集,则它们的对称差
等于它们自身
交集的运算方法
交集在计算机科学中的应用:交集操作可以用于找出两个集合中共有的元素,例如在网 络安全领域中,可以使用交集操作找出两个网络之间的共同点,以便进行攻击防御。
差集在计算机科学中的应用:差集操作可以用于找出属于一个集合而不属于另一个集合的 元素,Байду номын сангаас如在数据挖掘中,可以使用差集操作找出某个特定群体与其他群体之间的差异。
集合的概念及定义
集合的概念:集合是具有某种特定属性的事物的总体,事物称为集合的 元素。 集合的定义:集合是由一个或多个确定的元素所构成的整体。
集合的表示方法:用大括号{}将元素括起来表示一个集合。
集合的分类:根据元素的不同,集合可分为有限集、无限集和空集。
集合的运算定义
交集:从两个集合中选取相 同的元素组成一个新的集合
集合运算的应用实例
第七章
集合运算在数学中的应用
集合运算的基本概念和性质
集合运算在数学中的具体应用
集合运算在解决实际问题中的 应用
集合运算与其他数学知识的联 系
集合运算在计算机科学中的应用
并集在计算机科学中的应用:并集操作可以用于处理计算机中的多个集合,例如在数据库 查询中,可以使用并集操作将多个查询结果合并成一个结果集。
集合的补集运算
第五章
补集的定义
补集的定义:由所有不属于集合A的元素组成的集合称为A的补集,记作 CuA。
中职数学集合ppt课件
在概率论中的应用
概率论的概述
概率论是研究随机现象的数学分支,主要研究随机事件、随机变量、随机过程等 概念,以及它们之间的相互关系和数学模型。概率论的基本概念包括概率、随机 变量、分布函数、期望值、方差等。
Hale Waihona Puke 在概率论中的应用01
利用集合表示随机事件
在概率论中,随机事件通常可以用集合来表示。例如,掷一枚骰子出现
集合的表示方法
总结词
集合可以用大括号、列举法、描述法等方式来表示。
详细描述
大括号表示法,如A={1,2,3},表示集合A包含元素1、2、3。列举法,如 B={a,b,c},表示集合B包含元素a、b、c。描述法,如C={x|x>3},表示集合C包 含所有大于3的元素x。
集合的分类
总结词
根据不同的分类标准,集合可以分为不同的类型。
在函数中的应用
函数的概述
函数是数学中的基本概念之一,它描述了两个数集之间的一种对应关系。函数f的定义为:对于数集A中的每一个x,按照某种 对应关系f,数集B中唯一确定的一个数y与之对应。函数的表示方法有多种,如解析式法、表格法和图象法。
在函数中的应用
利用集合表示函数的定义域和值 域
函数的定义域和值域都可以看作是某个集合。例如,函 数y=f(x)的定义域可以表示为某个实数集A,值域可以表 示为另一个实数集B。
详细描述
根据元素个数是否有限,集合可以分为有限集和无限集。有限集包含有限个元素,无限 集包含无限个元素。根据元素是否互异,集合可以分为离散集和连续集。离散集的元素 是互异的,连续集的元素可以重复。根据元素的确定性,集合可以分为确定性集和随机
集。确定性集的元素是确定的,随机集的元素是随机的。
(最新整理)高教版中职数学(基础模块)上册1.3《集合的运算》ppt课件1
(最新整理)高教版中职数学(基础模块)上册1.3《集合的运算》ppt课件1
2021/7/26
1
第一章 集 合
1.3 集合的运算
高2教021社/7/26
2
创设情景 兴趣导入
问题1 某班有团员34名,非团员11名,那么该班有多少名同学?
问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇; 第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班 第一学年的三好学生有哪些同学?
高教社
2021/7/26
18
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良
王明 曹勇 王亮 李冰
P
何晓慧
张军
观察得出:集合 Q 是由属于集合 U,但不属于集合 P
高教社
的所有元素组成的.
2021/7/26
19
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
A B
高教社
2021/7/26
6
例题讲解
例1:设A={x︱x>-2},B={x︱x<3},求A∩B.
-2
3
解:A∩B= {x︱x>-2} ∩{x︱x<3}={x︱-2<x<3}
例2:设A={x︱x是等腰三角形},B={x︱x是直角三角形},求A∩B.
解: A∩B= {x︱x是等腰三角形} ∩{x︱x是直角三角形}={x︱x是等腰 直角三角形}
交集并集
运算特点
概念记法
高教社
综合应用
作 业
高教社
阅读 教材章节1.3 书写 学习与训练1.3 实践 举出交集和并集的生活事例
2021/7/26
1
第一章 集 合
1.3 集合的运算
高2教021社/7/26
2
创设情景 兴趣导入
问题1 某班有团员34名,非团员11名,那么该班有多少名同学?
问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇; 第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班 第一学年的三好学生有哪些同学?
高教社
2021/7/26
18
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良
王明 曹勇 王亮 李冰
P
何晓慧
张军
观察得出:集合 Q 是由属于集合 U,但不属于集合 P
高教社
的所有元素组成的.
2021/7/26
19
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
A B
高教社
2021/7/26
6
例题讲解
例1:设A={x︱x>-2},B={x︱x<3},求A∩B.
-2
3
解:A∩B= {x︱x>-2} ∩{x︱x<3}={x︱-2<x<3}
例2:设A={x︱x是等腰三角形},B={x︱x是直角三角形},求A∩B.
解: A∩B= {x︱x是等腰三角形} ∩{x︱x是直角三角形}={x︱x是等腰 直角三角形}
交集并集
运算特点
概念记法
高教社
综合应用
作 业
高教社
阅读 教材章节1.3 书写 学习与训练1.3 实践 举出交集和并集的生活事例
集合的基本运算(完整)ppt课件
精选ppt
17
7.你会求解下列问题吗? 集合A={x|-2≤x<1}. (1)若B={x|x>m},A⊆B,则m的取值范围 是 m<-. 2 (2)若B={x|x<m},A⊆B,则m的取值范围 是 m≥1 . (3)若B={x|x<m-5或x≥2m-1},A∩B= ∅,则m的取值范围是 1≤m≤3 .
• [正解] A={y∈R|y≥1},B=R,故A∩B= {y∈R|y≥1},正确答案为D.
精选ppt
33
4.(09·广东理)已知全集U=R,集合M={x| -2≤x-1≤2}和N={x|x=2k-1,k=1,2,…} 的关系的韦恩(Venn)图如图所示,则阴影部 分所示的集合的元素共有( )
A.3个 C.1个
并集的相关性质: 1:ABBA并集的交换律
2:AAA
3:AA
4 :A B A B A
5 :B A A B A
6 :A A B ,B A B
7 :(A B ) C A (B C )并集的结合律
8 :A B A A B A B A
精选ppt
10
类比引入
思考:
14
(3)设 S={x|2x+1>0},T={x|3x-5<0},则 S∩T= .
A.∅ C.{x|x>53}
B.{x|x<-12}
D
D.{x|-12<x<53}
精选ppt
15
(2010·湖南文,9)已知集合A={1,2,3}, B = {2 , m , 4} , A∩B = {2 , 3} , 则 m = ________.
1.1.3 集合的基本运 算
精选ppt
1
类比引入
中职数学集合的运算
ห้องสมุดไป่ตู้1.集合的交集
2.集合的并集
1.3.3 集合的运算——补集
集 合
集合 集合
集合
某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集 合为P={王明,曹勇,王亮,李冰,张军},那么没有获 得金奖的学生有哪些?
没有获得金奖的学生的集合为Q={赵云 ,冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳 薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰 张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
补集:如果集合A是全集U的子集,那么,由U中不属于
A的所有元素组成的集合叫做A在全集U中的补集
读作 “ A 在U中的补集”.
补集
根据补集的定义和图示,填写补集的性质.
补集
集合的交
课堂小结
1.全集及补集的概念
2.教材第15页 新知识
3.教材第15页 练习1.3.3
2.集合的并集
1.3.3 集合的运算——补集
集 合
集合 集合
集合
某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集 合为P={王明,曹勇,王亮,李冰,张军},那么没有获 得金奖的学生有哪些?
没有获得金奖的学生的集合为Q={赵云 ,冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳 薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰 张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
补集:如果集合A是全集U的子集,那么,由U中不属于
A的所有元素组成的集合叫做A在全集U中的补集
读作 “ A 在U中的补集”.
补集
根据补集的定义和图示,填写补集的性质.
补集
集合的交
课堂小结
1.全集及补集的概念
2.教材第15页 新知识
3.教材第15页 练习1.3.3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补集:如果集合A是全集U的子集,那么,由U中不属于 A的所有元素组成的集合叫做A在全集U中的补集
读作 “ A 在U中的补集”.
补集
根据补集的定义和图示,填写补集的性质.
补集
集合的交
归纳小结 强化思想
交集并集
运算特点
概念记法
高教社
综合应用
作 业
高教社
阅读 教材章节1.3 书写 学习与训练1.3 实践 举出交集和并集的生活事例
锐角三角形 钝角三角形
斜三角形
解: A∪B= {x︱x是锐角三角形} ∪{x︱x是钝角三角形} ={x︱x是斜三角形}
例5 设A={x︱-1<x<2},B={x︱1<x<3},求A∪B. B
A
A∪B
-1
0
12
3
解: A∪B= {x︱-1<x<2} ∪{x︱1<x<3}= {x︱-1<x<3}
思考:A∩B=
创设情景 兴趣导入
观察集合:
A= { 1 , 3 , 5 , 7 } B={2,3,4 ,5} C={1,2,3 ,4,5,7}
各集合的元素之间有什么关系?
A={4,5,6,8}
A
B={3,5,7,8}
B
5,8
A∩B
A
B
4,6 5,8 3,7
A∪B
集 、 什同 么学 是们 并能 集归 吗纳 ?出
b33
c 2
54
d ef
BB
A
A
集合A、B 的所有元素
创 新培养 自我归纳
对于任意的两个集合A与B,都有: (1) A B B A . (2)A ,A A . (3)A A B , B A B . (4)若 B A 则 A B .
例4 设A={x︱x是锐角三角形},B={x︱x是钝角三角形}, 求A∪B.
没有获得金奖的学生的集合为Q={赵云, 冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰
张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
A∩B={ x | x ∈A 且 x ∈B} 3 交用运列算举A是.法∪要和B寻描=找{述两x法|个x表集∈示合A的相或集同合x元在∈素运;B算} 时需要注意什么?
并列运举算法是求将解两时个 要集不合重中不所漏含,的所有的元素进行合并. 描述法求解时要利用好数轴并注意端点的处理.
巩固知识 典型例题
A B {x 0 x≤3}
运用知识 强化练习
练习
1.A={-3,0,1,2}, B={0,1,4,6},求A∩B , A∪B. 2. A={x|-1<x<3},B ={x|-3<x≤2},求A∩B , A∪B.
.
某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集 合为P={王明,曹勇,王亮,李冰,张军},那么没有获 得金奖的学生有哪些?
中职数学集合的运算课件
创设情景 兴趣导入
问题1 某班有团员34名,非团员11名,那么该班有多少名同学?
问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇; 第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班 第一学年的三好学生有哪些同学?
问题3 集合A={锐角三角形};B={钝角三角形};C={斜三角形}. 那么这三个集合之间有什么关系?
例2:设A={x︱x是等腰三角形},B={x︱x是直角三角形},求A∩B.
解: A∩B= {x︱x是等腰三角形} ∩{x︱x是直角三角形}={x︱x是等腰 直角三角形}
动脑思考 探索新知
集合的并集
一般地,对于两个给定的集合A、B,由集合A、B的所有 元素组成的集合叫做集合A与集合B的并集,记作A∪B (读作 “A并B”).
什 么 是 交
交集:一般地,由所有属于集合A且 属于集合B的元素所组成的集合,叫 做A与B的交集,记作A∩B,即 A∩B={x︱x∈A,且x∈B}
A B
例题讲解
例1:设A={x︱x>-2},B={x︱x<3},求A∩B.
-2
3
解:A∩B= {x︱x>-2} ∩{x︱x<3}={x︱-2<x<3}
例5 已知集合A={2,3,5},B={-1,0,1,2} , 求A∪B ,A∩B.
集合A、B 的相同元素
.
集合A、B 的所有元素
巩固知识 典型例题
例6 设A={x|0<x ≤2 },B={x|1<x ≤3},求A∪B ,A∩B.
集合A、B 的相同元素
A B {x 1 x≤2}
集合A、B 的所有元素
A B x x A 或 x B
.
演示说明
巩固知识 典型例题
例4 已知集合A,B,求A∪B. (1) A={1,2},B={2,3}; (2) A={a,b},B={c, d , e , f }; (3) A={1,3,5},B= ;
.
(4) A={2,4},B={1,2,3,4}.
1a1 A
{x︱1<x<2}
运用知识 强化练习
教材练习1.3.2
1.设 A 1,0,1, 2 , B 0, 2, 4,6 ,求 A B . 2.设 A x | 2 x 2 , B x | 0 x 4 ,求 A B .
.
理论升华 整体建构
1 交集和并集有什么区别?(含义和符号 )
2 集合交运算和并运算各自的特点是什么?
读作 “ A 在U中的补集”.
补集
根据补集的定义和图示,填写补集的性质.
补集
集合的交
归纳小结 强化思想
交集并集
运算特点
概念记法
高教社
综合应用
作 业
高教社
阅读 教材章节1.3 书写 学习与训练1.3 实践 举出交集和并集的生活事例
锐角三角形 钝角三角形
斜三角形
解: A∪B= {x︱x是锐角三角形} ∪{x︱x是钝角三角形} ={x︱x是斜三角形}
例5 设A={x︱-1<x<2},B={x︱1<x<3},求A∪B. B
A
A∪B
-1
0
12
3
解: A∪B= {x︱-1<x<2} ∪{x︱1<x<3}= {x︱-1<x<3}
思考:A∩B=
创设情景 兴趣导入
观察集合:
A= { 1 , 3 , 5 , 7 } B={2,3,4 ,5} C={1,2,3 ,4,5,7}
各集合的元素之间有什么关系?
A={4,5,6,8}
A
B={3,5,7,8}
B
5,8
A∩B
A
B
4,6 5,8 3,7
A∪B
集 、 什同 么学 是们 并能 集归 吗纳 ?出
b33
c 2
54
d ef
BB
A
A
集合A、B 的所有元素
创 新培养 自我归纳
对于任意的两个集合A与B,都有: (1) A B B A . (2)A ,A A . (3)A A B , B A B . (4)若 B A 则 A B .
例4 设A={x︱x是锐角三角形},B={x︱x是钝角三角形}, 求A∪B.
没有获得金奖的学生的集合为Q={赵云, 冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰
张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
A∩B={ x | x ∈A 且 x ∈B} 3 交用运列算举A是.法∪要和B寻描=找{述两x法|个x表集∈示合A的相或集同合x元在∈素运;B算} 时需要注意什么?
并列运举算法是求将解两时个 要集不合重中不所漏含,的所有的元素进行合并. 描述法求解时要利用好数轴并注意端点的处理.
巩固知识 典型例题
A B {x 0 x≤3}
运用知识 强化练习
练习
1.A={-3,0,1,2}, B={0,1,4,6},求A∩B , A∪B. 2. A={x|-1<x<3},B ={x|-3<x≤2},求A∩B , A∪B.
.
某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集 合为P={王明,曹勇,王亮,李冰,张军},那么没有获 得金奖的学生有哪些?
中职数学集合的运算课件
创设情景 兴趣导入
问题1 某班有团员34名,非团员11名,那么该班有多少名同学?
问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇; 第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班 第一学年的三好学生有哪些同学?
问题3 集合A={锐角三角形};B={钝角三角形};C={斜三角形}. 那么这三个集合之间有什么关系?
例2:设A={x︱x是等腰三角形},B={x︱x是直角三角形},求A∩B.
解: A∩B= {x︱x是等腰三角形} ∩{x︱x是直角三角形}={x︱x是等腰 直角三角形}
动脑思考 探索新知
集合的并集
一般地,对于两个给定的集合A、B,由集合A、B的所有 元素组成的集合叫做集合A与集合B的并集,记作A∪B (读作 “A并B”).
什 么 是 交
交集:一般地,由所有属于集合A且 属于集合B的元素所组成的集合,叫 做A与B的交集,记作A∩B,即 A∩B={x︱x∈A,且x∈B}
A B
例题讲解
例1:设A={x︱x>-2},B={x︱x<3},求A∩B.
-2
3
解:A∩B= {x︱x>-2} ∩{x︱x<3}={x︱-2<x<3}
例5 已知集合A={2,3,5},B={-1,0,1,2} , 求A∪B ,A∩B.
集合A、B 的相同元素
.
集合A、B 的所有元素
巩固知识 典型例题
例6 设A={x|0<x ≤2 },B={x|1<x ≤3},求A∪B ,A∩B.
集合A、B 的相同元素
A B {x 1 x≤2}
集合A、B 的所有元素
A B x x A 或 x B
.
演示说明
巩固知识 典型例题
例4 已知集合A,B,求A∪B. (1) A={1,2},B={2,3}; (2) A={a,b},B={c, d , e , f }; (3) A={1,3,5},B= ;
.
(4) A={2,4},B={1,2,3,4}.
1a1 A
{x︱1<x<2}
运用知识 强化练习
教材练习1.3.2
1.设 A 1,0,1, 2 , B 0, 2, 4,6 ,求 A B . 2.设 A x | 2 x 2 , B x | 0 x 4 ,求 A B .
.
理论升华 整体建构
1 交集和并集有什么区别?(含义和符号 )
2 集合交运算和并运算各自的特点是什么?