中职数学集合的运算ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创设情景 兴趣导入
观察集合:
A= { 1 , 3 , 5 , 7 } B={2,3,4 ,5} C={1,2,3 ,4,5,7}
各集合的元素之间有什么关系?
A={4,5,6,8}
A
B={3,5,7,8}
B
5,8
A∩B
A
B
4,6 5,8 3,7
A∪B
集 、 什同 么学 是们 并能 集归 吗纳 ?出
b33
c 2
54
d ef
BB
A
A
集合A、B 的所有元素
创 新培养 自我归纳
对于任意的两个集合A与B,都有: (1) AUB B U A . (2)A U ,AU A . (3)A AUB , B AUB . (4)若 B A 则 AUB .
例4 设A={x︱x是锐角三角形},B={x︱x是钝角三角形}, 求A∪B.
没有获得金奖的学生的集合为Q={赵云, 冯佳,薛香芹,钱忠良,何晓慧}
请观察:集合 Q 中的元素与集合 U,集合 P 中的元素 有什么关系?
U
赵云 冯佳
薛香芹 钱忠良 何晓慧
王明 曹勇 王亮 李冰
张军
P
观察得出:集合 Q 是由属于集合 U,但不属于集合 P 的所有元素组成的.
补集
全集:如果一个集合含有我们所研究的各个集合的全部 元素,在研究过程中,可以将这个集合叫做全集,一般 用U来表示,所研究的各个集合都是这个集合的子集.
补集:如果集合A是全集U的子集,那么,由U中不属于 A的所有元素组成的集合叫做A在全集U中的补集
读作 “ A 在U中的补集”.
补集
根据补集的定义和图示,填写补集的性质.
补集
集合的交
归纳小结 强化思想
交集并集
运算特点
概念记法
高教社
综合应用
作 业
高教社
阅读 教材章节1.3 书写 学习与训练1.3 实践 举出交集和并集的生活事例
锐角三角形 钝角三角形
斜三角形
解: A∪B= {x︱x是锐角三角形} ∪{x︱x是钝角三角形} ={x︱x是斜三角形}
例5 设A={x︱-1<x<2},B={x︱1<x<3},求A∪B. B
A
A∪B
-1
0
12
3
解: A∪B= {x︱-1<x<2} ∪{x︱1<x<3}= {x︱-1<x<3}
思考:A∩B=
A∩B={ x | x ∈A 且 x ∈B} 3 交用运列算举A是.法∪要和B寻描=找{述两x法|个x表集∈示合A的相或集同合x元在∈素运;B算} 时需要注意什么?
并列运举算法是求将解两时个 要集不合重中不所漏含,的所有的元素进行合并. 描述法求解时要利用好数轴并注意端点的处理.
巩固知识 典型例题
例2:设A={x︱x是等腰三角形},B={x︱x是直角三角形},求A∩B.
解: A∩B= {x︱x是等腰三角形} ∩{x︱x是直角三角形}={x︱x是等腰 直角三角形}
动脑思考 探索新知
集合的并集
一般地,对于两个给定的集合A、B,由集合A、B的所有 元素组成的集合叫做集合A与集合B的并集,记作A∪B (读作 “A并B”).
{x︱1<x<2}
运用知识 强化练习Baidu Nhomakorabea
教材练习1.3.2
1.设 A 1,0,1, 2 , B 0, 2, 4,6 ,求 A U B . 2.设 A x | 2 x „ 2 , B x | 0 剟x 4 ,求 A U B .
.
理论升华 整体建构
1 交集和并集有什么区别?(含义和符号 )
2 集合交运算和并运算各自的特点是什么?
什 么 是 交
交集:一般地,由所有属于集合A且 属于集合B的元素所组成的集合,叫 做A与B的交集,记作A∩B,即 A∩B={x︱x∈A,且x∈B}
A B
例题讲解
例1:设A={x︱x>-2},B={x︱x<3},求A∩B.
-2
3
解:A∩B= {x︱x>-2} ∩{x︱x<3}={x︱-2<x<3}
A U B {x 0 x≤3}
运用知识 强化练习
练习
1.A={-3,0,1,2}, B={0,1,4,6},求A∩B , A∪B. 2. A={x|-1<x<3},B ={x|-3<x≤2},求A∩B , A∪B.
.
某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集 合为P={王明,曹勇,王亮,李冰,张军},那么没有获 得金奖的学生有哪些?
中职数学集合的运算课件
高教社
创设情景 兴趣导入
问题1 某班有团员34名,非团员11名,那么该班有多少名同学?
问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇; 第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班 第一学年的三好学生有哪些同学?
问题3 集合A={锐角三角形};B={钝角三角形};C={斜三角形}. 那么这三个集合之间有什么关系?
例5 已知集合A={2,3,5},B={-1,0,1,2} , 求A∪B ,A∩B.
集合A、B 的相同元素
.
集合A、B 的所有元素
巩固知识 典型例题
例6 设A={x|0<x ≤2 },B={x|1<x ≤3},求A∪B ,A∩B.
集合A、B 的相同元素
A I B {x 1 x≤2}
集合A、B 的所有元素
AUB x x A 或 x B
.
演示说明
巩固知识 典型例题
例4 已知集合A,B,求A∪B. (1) A={1,2},B={2,3}; (2) A={a,b},B={c, d , e , f }; (3) A={1,3,5},B= ;
.
(4) A={2,4},B={1,2,3,4}.
1a1 A
相关文档
最新文档