243正多边形与圆课件-
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据正多边形与圆关系的 第一个定理
达标检测:
1、判断题。
①各边都相等的多边形是正多边形。 ( × )
②一个圆有且只有一个内接正多边形。 ( × )
2、证明题。 求证:顺次连结正六边形
A
F
各边中点所得的多
B
E
边形是正六边形。
C
D
7、 ∠AOB叫做正五边形ABCDE的 中心 角, 它的度数是 72度
D
E
C
.O
A
FB
8、图中正六边形ABCDEF的中心角是∠AOB 它的度数是 60度
9、你发现正六边形ABCDEF的半径与边长具有
什么数量关系?为什么?
E
D
F
.O
C
A
B
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
E
它的中心角等于360 60, 6
OBC是等边三角形,从而正 A
六边形的边长等于它的半径.
.. O
D
rR
∴亭子的周长 L=6×4=24(m) B P C
在RtOPC中,OC 4,PC BC 4 2 22
根据勾股定理,可得边 心距r 42 22 2 3
亭子的面积 S 1 Lr 1 24 2 22
3 41.6(m2)
(n 2)•180
正n边形的一个内角的度数是______n______;
360
中心角是______n_____; 正多边形的中心角与外角的大小关系 是__相__等____.
抢答题:
1、O是正△ABC的中心,它是△ABC的 外接
圆与 内切 圆的圆心。
A
2它、是O正B半△叫径A正BC△的ABC的
正多边形和圆
正多边形和圆
E
A
D
B
C
三条边相等,三个角也相等 (60度)。
正多边形:
四条边都相等,四个角也相 等(90度)。
各边相等,各角也相等的多边形叫做正多边形。
正n边形:如果一个正多边形有n条边,
那么这个正多边形叫做正n边形。
想一想:
菱形是正多边形吗?矩形是正多边形吗?为什么?
A
D
B
C
,
外Biblioteka Baidu 圆的半径。
3、OD叫作正△ABC
.O
的 边心距,它是正△ABC
的 内切 圆的半径。 B
D
C
4、正方形ABCD的外接圆圆心O叫做
正方形ABCD的
中心
5、正方形ABCD的内切圆的半径OE叫做
正方形ABCD的 边心距
A
D
.O
B EC
6、⊙O是正五边形ABCDE的外接圆,弦AB的
弦心距OF叫正五边形ABCDE的 边心距 , 它是正五边形ABCDE的 内切 圆的半径。
R
a
AOG BOG 180
n
AGB
设正多边形的边长为a,半径为R,它的周长为L=na.
边心距r R2( a)2 , 2
面积S 1 L • 边心距(r) 1 na • 边心距(r)
2
2
例 有一个亭子它的地基是半径为4m的正六边形,求
地基的周长和面积(精确到0.1平方米).
解:
由于ABCDEF是正六边形,所以 F
4、边数是偶数的正多边形还是中心 对称图形,它的中心就是对称中心。
画正多边形的方法
1.用量角器等分圆 2.尺规作图等分圆
(1)正四、正八边形的尺规作图 (2)正六、正三 、正十二边形的尺规作图
小结:
1、怎样的多边形是正多边形?
各边相等,各角 也相等的多边形
叫做正多边形。
你能举例说明吗?
2、怎样判定一个多边形是正多边形?
弦相等(多边形的边相等) 弧相等—
圆周角相等(多边形的角相等)
—多边形是正多边形
证明:∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A
∴AB=BC=CD=DE=EA
⌒⌒ ⌒
∵BCE=CDA=3AB ∴∠1=∠2
A
1
B2
同理∠2=∠3=∠4=∠5
3
又∵顶点A、B、C、D、E都在⊙O上, C
∴五边形ABCDE是⊙O的内接五边形.
5E
4
D
正多边形的中心:一个正多边形的外接圆的圆心.
正多边形的半径:
E
D
外接圆的半径
. 正多边形的中心角: 正多边形的每一条
F
中心角
O.
半径R
C
边所对的圆心角.
边心距r
正多边形的边心距: 中心到正多边形的一边 的距离.
中心角 360 中心角E
D
n
边心距把△AOB分成 F
..O
C
2个全等的直角三角形