钢管桩设计与验算
钢管桩工程量计算规则

钢管桩工程量计算规则钢管桩是一种常用的地基基础工程材料,广泛应用于建筑、桥梁、码头、港口、油田、市政工程等领域。
为了确保钢管桩工程的顺利进行,需要进行合理的工程量计算,以便确定施工所需的材料和人力资源,并进行施工进度和成本的控制。
以下是钢管桩工程量计算的一般规则。
1.钢管桩的长度计算:钢管桩的长度计算主要根据实际需求和设计要求进行,并考虑到桩身埋入土体的深度以及承载能力的需求。
长度的计算可以根据设计图纸或工程要求,结合土质条件和桩基载荷计算方法进行。
2.钢管桩的直径计算:钢管桩的直径计算一般根据所承受的力和土体条件来确定。
直径的计算可以根据桩基工程的设计要求和土壤条件等因素来进行,也可以根据缓冲带和土壤侵蚀等情况进行调整。
3.钢管桩的数量计算:钢管桩的数量计算主要根据基础设计图纸或者工程规划和桩基定位计算等方法进行。
数量的计算要考虑到桩基的布局、土体条件以及承载能力要求等因素,并结合地质勘探报告进行综合判断。
4.钢管桩的体积计算:钢管桩的体积计算主要通过计算钢管桩的截面积和长度来进行,可以根据设计图纸和相关参数进行计算。
5.钢管桩的重量计算:钢管桩的重量计算可以通过钢管的截面积和长度来计算,并考虑到钢管的厚度、密度和材质等因素,采用体积法或示例法进行计算。
6.钢管桩的表面积计算:钢管桩的表面积计算一般根据钢管的外径和长度来进行,考虑到钢管表面的覆盖层、涂层等因素,可以根据钢管形状和结构进行计算。
7.钢管桩的弯矩计算:钢管桩在受力作用下会产生弯矩,弯矩的计算可以根据桩基的设计和受力情况进行,通常采用弯矩和剪力线法进行计算。
8.钢管桩的侧阻力计算:9.钢管桩的承载力计算:钢管桩的承载力计算是钢管桩工程中最重要的部分,一般可以通过地质勘探数据、桩基承载力设计原理和土壤力学的相关计算方法进行综合计算。
综上所述,钢管桩工程量计算是一个复杂而重要的工作,需要结合实际情况、设计要求和工程规范等因素进行综合考虑,以确保工程的顺利进行。
钢管桩的计算公式

钢管桩的计算公式条件:地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k一、根据结构力学知识,进行桩顶作用效应计算求出每个桩顶的力弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。
二、桩下压承载力计算 (参见《建筑桩基技术规范》)单桩竖向承载力标准值为:p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。
pk q ——极限端阻力标准值,查表5.3.5-2。
j l ——桩周第j 层土的厚度u ——桩身周长p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口钢管桩按下式计算:当5/<d h b 时,d n h b p /16.0=λ当5/≥d h b 时,8.0=p λn 为桩端隔板分割数。
若: K Q R N uk ki /2.12.1=≤则桩基满足竖向承载力要求K ——安全系数,取2.0。
R ——单桩竖向承载力特征值三、 桩上拔承载力计算,即当0<kil N 时p uk kil G T N +≤2/j sjk j j uk l q u T ∑=λuk T ——抗拔极限承载力标准值P G ——桩基自重j λ——抗拔系数,砂土取0.5~0.7,黏性土、粉土取0.7~0.8。
当桩长与桩径之比小于20时取小值。
如满足上式则桩基满足上拔承载力要求四、抗倾覆稳定性验算根据《架空送电线路基础设计技术规范》,土压力系数:)2/45(20βγ+= tg m 空间增大系数:ββζtg d l k )245cos(3210++= 基础的计算宽度:00dk d =ζ土的侧压力系数,粘性土取0.72,粉质粘土和粉土取0.6,砂土取0.38。
倾覆力ki V 的作用点到地面的高度kiki V M h =0 lh 0=η,查表8.1.4得 638.12=μ若极限倾覆力ki f u V r l md V ≥=ημ20,极限倾覆力ki f u M r l md V ≥=μ3则桩基满足抗倾覆稳定性要求五、桩身承载力验算 强度验算:d n ki n ki f W M A N ≤+ 整体稳定性验算:d Eki n ki n ki f N N W M A N ≤-+)8.01(ϕ 22λπEA N E =。
钢管桩承载力理论计算与现场试验结果分析

钢管桩承载力理论计算与现场试验结果分析陈建涛;李俊【摘要】As the pile foundation of the temporary structure of bridge construction, the actual bearing capacity of steel pipe pile is the important mechanical index of the temporary structure stability. In the design and calculation, the complex and relatively inaccurate soil mechanics parameters are often deviation with actual situation, so as the sedimentation of the steel pipe pile has deviation with the design. Through the field test of steel pipe pile, the strained condition of steel pipe pile in the actual rock and soil layer is determined, the rationality of the construction design parameters and feasibility of the construction technology are verified.%钢管桩作为桥梁施工临时结构的桩基础时,其实际的承载力是临时结构的稳定性的重要力学指标,而在设计计算时涉及到复杂而相对不准确的土力学参数,往往与实际情况有所偏差,导致钢管桩沉降与设计有所偏差,通过钢管桩现场试验的方法确定钢管桩在实际岩土层中的受力状态,验证施工设计参数的合理性和施工工艺的可行性.【期刊名称】《价值工程》【年(卷),期】2016(035)003【总页数】2页(P142-143)【关键词】钢管桩;承载力;理论计算【作者】陈建涛;李俊【作者单位】中铁一局勘察设计分公司,西安710054;国网宁夏电力公司中卫供电公司,中卫755000【正文语种】中文【中图分类】TU473.1+1钢管桩具有承载力高、打拔方便、施工灵活、施工效率高、可回收等特点,被广泛应用与施工栈桥、水上平台、临时墩等结构(如图1所示)。
无剪力键钢抱箍+钢管桩组合支架重要部位验算

无剪力键钢抱箍+钢管桩组合支架重要部位验算高速公路已成为国家的重要资源,对于当地经济发展、提高人民生活质量、维护社会稳定等都起到至关重要的作用。
随着我国高速公路建设向山岭地区的偏向发展,山岭地区特有的地质条件对传统现浇桥梁支架技术的挑战越来越严峻,随着无剪力键钢抱箍+钢管桩组合支架的兴起,该支架体系主要部位的验算显得尤为重要。
标签:无剪力键;钢抱箍;钢管桩;验算0 引言现浇支架传统方法往往是采用满堂支架的方式,此方法是将全部荷载经满堂支架直接传递到地基上,而山岭地区桥梁基础地质条件普遍较差,软弱层多且层承载力较低,不足以提供足够的承载力,适用性不强。
为解决以上问题,现大多数选择无落地组合支架,现目前国内对无剪力键高荷载钢抱箍钢管桩+贝雷梁组合高支架现浇施工支架钢抱箍、钢管桩、横梁等主要部位验算还比较薄弱,无系统验算过程。
1 钢管桩的验算1.1 钢管桩设计:先拟定钢管桩数量、规格(外径D、内径和外径之比α)、长度L(长度因数μ)与布置间距,结合上部总荷载,验算单根桩竖向需承受的荷载N。
用单根荷载先校核钢管桩长细比,长细比公式如下:计算长细比与容许长细比比较,若符合要求,用计算长细比查找轴心受压杆件稳定系数,结合钢管桩截面积A与单根荷载N,利用钢管桩的轴向应力计算公式:计算出的轴向应力>钢管桩强度设计值方能使用,否则将重新拟定钢管桩规格,直到满足要求为止。
2 钢抱箍验算根据选定的抱箍规格,受荷载至少在包括壁厚、直径D、周长C、抱箍高度、螺栓直径和长度、螺栓孔数,进行受力验算。
抱箍与墩柱间的最大静摩擦力等于正压力与摩擦系数的乘积:其中:N—抱箍与墩柱的正压力;f—抱箍与墩柱间的静摩擦系数,根据《路桥施工计算手册》表12-16关于摩擦系数的规定对f进行取值;抱箍和墩柱的正压力与螺栓的预紧力是对平衡力,其中:n——抱箍的螺栓总数;F1——每个螺栓的预紧力;钢抱箍螺栓根据采用的Mx高强度螺栓,其预拉力是一定的,取安全系数λ=2。
钢管桩承载力验算(建筑类别)

北延桥钢管桩验算验算部位:选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。
5m范围内钢管桩数量:顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。
横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。
按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。
一、施工单位提供的各项荷载值如下:恒载:1、底模、侧模采用竹胶板覆膜竹胶板自重:0.34kn/m22、顺桥向木枋(5×10)间距30cm自重:0.10kn/m23、横桥向木枋(12×12)间距60cm自重:0.30kn/m24、支架体系(碗扣式)自重:1.74kn/m2(腹板处)自重:1.06kn/m2(底板、翼缘板处)5、平台满铺木枋(15×15)自重:1.20kn/m26、纵联I36C工字钢(间距1.0m)自重:0.712kn/m27、横梁I36C工字钢(双拼)43m宽平台每排钢管桩受横联工字钢自重61.23kn活载:1、施工机具及人员荷载:2.5kn/m22、倾倒混凝土产生的荷载(泵送):4.0kn/m23、混凝土振捣产生的荷载:2.0kn/m2施工荷载吨/m2 桥梁面积(m2)荷载(吨)恒载 底模、侧模 0.034 90 3 顺桥向木枋 0.010 90 1 横桥向木枋 0.030 90 3 碗扣支架 0.117 90 10 平台满铺木枋 0.120 90 11 纵向工字钢 0.071 90 6 横向工字钢 0.068 90 6 活载 施工机具人员 0.250 90 23 倾倒混凝土 0.400 90 36振捣混凝土 0.200 90 18 梁体荷载 荷载(吨) 梁体荷载221 恒载合计 261 活载合计77恒载 1.0 活载1.0组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。
深基坑钢管桩支护方案设计检算

目录1 基坑支护总体概况 (2)1.1支护结构布置 (2)1.2支护参数选定 (3)2 基坑支护稳定性计算 (4)2.1ML19#墩承台基坑支护验算 (4)2.2MR21#墩承台基坑支护验算 (7)3 结论及建议 (10)1 基坑支护总体概况1.1 支护结构布置XXXX立交桥与铁路线路斜交角为80.1度。
上部采用左右分幅箱梁,每幅孔跨布置为2×56mT构,桥梁部分全长112m,其中2×44m为转体施工段。
平面上左右幅桥主墩采用错孔布置,右幅桥主墩承台距陇海铁路防护栏7.56m,左幅桥主墩承台距陇海铁路防护栏7.47m。
承台基坑开挖施工中,为防止边坡失稳,同时为减小对一旁铁路路基影响,故在开挖过程中需对基坑进行支护,如下图所示:图1.1 M R21#墩承台基坑支护平面图(单位:m)图1.2 M L19#墩承台基坑支护平面图(单位:m)图1.3 M R21#墩承台基坑支护立面图(单位:c m)图1.4 M L19#墩承台基坑支护立面图(单位:c m)1.2 支护参数选定1.2.1 支护材料工程量工程项目及材料名称数量长度(m) 重量(kg)ML19#墩12m长Ф600×10mm钢管桩43 12 75078 I32工字钢 2 4.9 565.46I32工字钢 2 27.9 3219.66I32工字钢 2 10.9 1257.86C20护壁砼18.67(m3)MR21#墩12m长Ф600×10mm钢管桩42 12 73332 I32工字钢 2 5 577I32工字钢 2 27 3115.5I32工字钢 2 11 1269.4C20护壁砼15.09(m3)合计12m长Ф600×10mm钢管桩148.4(T)I32工字钢10.005(T)C20护壁砼33.76(m3)ML19#墩基坑开挖:3358.68方,MR21#墩基坑开挖:2782.76方1.2.2 支护土层参数根据设计图纸中设计说明及现场实地勘查,该地区土质主要为失陷性黄土质,属于低液限粉质粘土,经查《公路桥涵地基与基础技术规范》(JTG D63-2007)、《土力学》、《建筑地基与基础设计规范》(GB50011-2010)等相关资料可取以下相关的参考特性值。
钢管桩的计算公式

钢管桩的计算公式条件:地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k一、根据结构力学知识,进行桩顶作用效应计算求出每个桩顶的力弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。
二、桩下压承载力计算 (参见《建筑桩基技术规范》)单桩竖向承载力标准值为:p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。
pk q ——极限端阻力标准值,查表5.3.5-2。
j l ——桩周第j 层土的厚度u ——桩身周长p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口钢管桩按下式计算:当5/<d h b 时,d n h b p /16.0=λ当5/≥d h b 时,8.0=p λn 为桩端隔板分割数。
若: K Q R N uk ki /2.12.1=≤则桩基满足竖向承载力要求K ——安全系数,取2.0。
R ——单桩竖向承载力特征值三、 桩上拔承载力计算,即当0<kil N 时p uk kil G T N +≤2/j sjk j j uk l q u T ∑=λuk T ——抗拔极限承载力标准值P G ——桩基自重j λ——抗拔系数,砂土取0.5~0.7,黏性土、粉土取0.7~0.8。
当桩长与桩径之比小于20时取小值。
如满足上式则桩基满足上拔承载力要求四、抗倾覆稳定性验算根据《架空送电线路基础设计技术规范》,土压力系数:)2/45(20βγ+= tg m 空间增大系数:ββζtg d l k )245cos(3210++= 基础的计算宽度:00dk d =ζ土的侧压力系数,粘性土取0.72,粉质粘土和粉土取0.6,砂土取0.38。
倾覆力ki V 的作用点到地面的高度kiki V M h =0 lh 0=η,查表8.1.4得 638.12=μ若极限倾覆力ki f u V r l md V ≥=ημ20,极限倾覆力ki f u M r l md V ≥=μ3则桩基满足抗倾覆稳定性要求五、桩身承载力验算 强度验算:d n ki n ki f W M A N ≤+ 整体稳定性验算:d Eki n ki n ki f N N W M A N ≤-+)8.01(ϕ 22λπEA N E =。
深基坑钢管桩支护方案检算

目录1 基坑支护总体概况 (2)1.1支护结构布置 (2)1.2支护参数选定 (3)2 基坑支护稳定性计算 (4)2.1ML19#墩承台基坑支护验算 (4)2.2MR21#墩承台基坑支护验算 (7)3 结论及建议 (10)1 基坑支护总体概况1.1 支护结构布置XXXX立交桥与铁路线路斜交角为80.1度。
上部采用左右分幅箱梁,每幅孔跨布置为2×56mT构,桥梁部分全长112m,其中2×44m为转体施工段。
平面上左右幅桥主墩采用错孔布置,右幅桥主墩承台距陇海铁路防护栏7.56m,左幅桥主墩承台距陇海铁路防护栏7.47m。
承台基坑开挖施工中,为防止边坡失稳,同时为减小对一旁铁路路基影响,故在开挖过程中需对基坑进行支护,如下图所示:图1.1 M R21#墩承台基坑支护平面图(单位:m)图1.2 M L19#墩承台基坑支护平面图(单位:m)图1.3 M R21#墩承台基坑支护立面图(单位:c m)图1.4 M L19#墩承台基坑支护立面图(单位:c m)1.2 支护参数选定1.2.1 支护材料工程量工程项目及材料名称数量长度(m) 重量(kg)ML19#墩12m长Ф600×10mm钢管桩43 12 75078 I32工字钢 2 4.9 565.46I32工字钢 2 27.9 3219.66I32工字钢 2 10.9 1257.86C20护壁砼18.67(m3)MR21#墩12m长Ф600×10mm钢管桩42 12 73332 I32工字钢 2 5 577I32工字钢 2 27 3115.5I32工字钢 2 11 1269.4C20护壁砼15.09(m3)合计12m长Ф600×10mm钢管桩148.4(T)I32工字钢10.005(T)C20护壁砼33.76(m3)ML19#墩基坑开挖:3358.68方,MR21#墩基坑开挖:2782.76方1.2.2 支护土层参数根据设计图纸中设计说明及现场实地勘查,该地区土质主要为失陷性黄土质,属于低液限粉质粘土,经查《公路桥涵地基与基础技术规范》(JTG D63-2007)、《土力学》、《建筑地基与基础设计规范》(GB50011-2010)等相关资料可取以下相关的参考特性值。
钢桩的施工及检测评定

钢桩的施工及检测评定1钢管桩在我国沿海及内陆冲积平原地区,土质常为很厚(深达50~60m)的软土层,当上部结构荷载较大时,这类地基常不能直接作为持力层,而低压缩性持力层又很深,采用一般桩基,沉桩时须采用冲击力很大的桩锤,用常规钢筋混凝土和预应力混凝土桩,将很难以适应,为此多选用钢管桩加固地基。
因此,钢管桩在国内外都得到了较广泛地应用。
钢管桩的特点是:(1)重量轻、刚性好,装卸、运输、堆放方便,不易损坏;(2)承载力高。
由于钢材强度高,能够有效地打入坚硬土层,桩身不易损坏,并能获得极大的单桩承载力;(3)桩长易于调节。
可根据需要采用接长或切割的办法调节桩长;(4)排土量小,对邻近建筑物影响小。
桩下端为开口,随着桩打入,泥土挤入桩管内与实桩相比挤土量大为减少,对周围地基的扰动也较小,可避免土体隆起;对先打桩的垂直变位、桩顶水平变位,也可大大减少;(5)接头连接简单。
采用电焊焊接,操作简便,强度高,使用安全;(6)工程质量可靠,施工速度快。
但钢管桩也存在钢材用量大,工程造价较高;打桩机具设备较复杂,振动和噪声较大;桩材保护不善、易腐蚀等问题,在选用时应有充分的技术经济分析比较。
1.钢管桩构造、型式及规格钢管桩的管材,一般用普通碳素钢,抗拉强度为402MPa,屈服强度为235.2MPa,或按设计要求选用。
按加工工艺区分,有螺旋缝钢管和直缝钢管两种,由于螺旋缝钢管刚度大,工程上使用较多。
为便于运输和受桩架高度所限,钢管桩常分别由一根上节桩,一根下节桩和若干根中节桩组合而成,每节的长度一般为13m或15m,各节桩的构造、型式如图7-90。
图7-90钢管桩的构造型式(a)下节桩;(b)中节桩;(c)上节桩钢管桩的下口有开口和闭口之分,其构造、型式分别如图7-91。
图7-91闭口钢管桩构造型式钢管桩的直径自φ406.4~φ2032.0mm,壁厚自6~25mm不等,常用钢管桩的规格、性能见表7-92,应根据工程地质、荷载、基础平面、上部荷载以及施工条件综合考虑后加以选择。
钢管桩设计与验算

钢管桩设计与验算钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I=64π80.04-78.04=1.936×10-3M 4;依据386或389墩身高度和周边地形,钢管桩最大桩长按30m 考虑;1、桩的稳定性验算桩的失稳临界力Pcr 计算 Pcr=22l EI π=32823010936.1101.2-⨯⨯⨯⨯π=4458kN >R=658.3 kN2、桩的强度计算桩身面积 A=4πD 2-a 2 =4π802-782=248.18cm 2钢桩自身重量P ×30×102×7.85=5844kg=58.44kN桩身荷载 p=658.3+58.44=716.7 kNб=p /A=716.7×102/248.18=288.7kg /cm 2=35.3Mpa3、桩的入土深度设计通过上述计算可知,每根钢管桩的支承力近658.3kN,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN,管桩周长 U=πD=3.1416×0.8=2.5133m;依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:第一层粉质黏土厚度为3m, τ=120 Kpa第二层淤泥粉质黏土厚度为4m,τ=60 Kpa第三层粉砂厚度为1.8m,τ=90KpaN=∑τi u hiN =120×2.5133×3+60×2.5133×4+90×2.5133×h3=1316.6 kN=904.7+603.1+226.1 h2=1316.6kN解得 h3=-0.84m证明钢管桩不需要进入第三层土,即满足设计承载力;钢管桩实际入土深度:∑h=3+4=7 m4、打桩机选型拟选用DZ90,查表得知激振动570 kN,空载振幅≮0.8mm,桩锤全高 4.2 m,电机功率90kw;5、振动沉桩承载力计算根据所耗机械能量计算桩的容许承载力[]P =m 1{()[]v a A f m x 1223111βμα+-+Q} m —安全系数,临时结构取1.5m 1—振动体系的质量 m 1=Q/g=57000/981=58.1Q 1—振动体系重力 Ng —重力加速度=981 cm /s 2A X —振动沉桩机空转时振幅 A X = 10.3 mmM —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A xA n -振动体系开始下沉时振幅 取1.2 cmf —振动频率 17.5 转/Sa —振动沉桩机最后一击的实际振幅 取1.0 cm ν—沉桩最后速度 取5 cm/minα1—土性质系数,查表得α1=20β1—影响桩入土速度系数, 查表得β1=0.17 p=5.11{517.0110.10.12.15.171.58202231⨯+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⨯⨯⨯+9×104}=5.11{85.1107401.26 +9×104} =5.11×1.571610=1047438N=1047KN > N=716.7KN 通过上述计算及所选各项参数说明:1DZ90型振动打桩机,是完全能够满足本设计单桩承载力的;。
管桩深度验算

钢管桩设计:施工过程中需行走履带吊按50T 履带吊计算荷载按桩的容许承载力为[]a R = 544.90KN 进行计算桩的入土桩长,且不考虑桩端的闭塞效应。
(1)钢管桩的竖向荷载计算:有以上计算可知,居中行走时中部在单排钢管桩中心线时,单排钢管桩中间的钢管桩受力最大:RL=544.09KN钢管桩等自重计算:钢管桩顶面标高为+5.14m ,暂按入土18m 计算,地质钻孔为准进行计算,由设计图纸中所附地质勘察资料可知,河床面为-6.95m ,钢管桩为直径630mm 的标准螺旋焊接管,则钢管桩自重为W=30.09×1.23=37.01KN钢管桩受力P=544.9+37.01=581.91KN(2)钢管桩的竖向承载力计算本栈桥所有桩基均支撑在中砂、卵石层上,按摩擦桩计算其容许承载力。
根据《公路桥涵地基与基础设计规范》(JTG D63-2007)中的沉桩的承载力容许值公式,则桩的容许承载力为:[]⎪⎭⎫ ⎝⎛+=∑=ni rk P r ik i i a q A q l u R 121αα (5.3.3-3) 式中:[]a R ——单桩轴向受压承载力容许值(kN ),桩身自重与置换土重(当自重记入浮力时,置换土重也计入浮力)的差值作为荷载考虑;u ——桩身周长(m );n ——土的层数;i l ——承台底面或局部冲刷线以下各土层的厚度(m ); ik q ——与i l 对应的各土层与桩侧摩阻力标准值(kPa ),宜采用单桩摩阻力试验确定或通过静力触探试验测定,当无试验条件时按规范给定值选用;rk q ——桩端处土的承载力标准值(kPa ),宜采用单桩试验确定或通过静力触探试验测定,当无试验条件时按规范给定值选用;i α、r α——分别为振动沉桩对各土层桩侧摩阻力和桩端承载力的影响系数对于锤击、静压沉桩其值均取为1.0。
3#~4#墩按18米计算:[]⎪⎭⎫ ⎝⎛+=∑=n i rk P r ik i i a q A q l u R 121αα=(1.978×4.61×20+1.978×7.7×15+1.978×1.8×25+1.978×(L-4.61-7.7-1.8)×80+7.86×10-3×20)/2= 581.91kpa则 L=18.3m即打桩时须根据地质情况入土深度必须大于18.3m 才能满足设计要求。
钢管桩计算书

钢管桩计算书边跨现浇直线段支架设计计算一、计算何载(单幅)1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。
端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为:V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2×225 .065.0 ×1-1.2×1.5]=16.125 m3作用在支架的荷载:G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN2、底模及侧模重(含翼缘板脚手架):估算G2=130KN3、内模重:估算G3=58KN4、施工活载:估算G4=80KN5、合计重量:G5=1957.78+130+58+80=2226KN二、支架形式支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。
纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。
钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。
钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。
根据支架的具体结构,现将其简化成力学计算模型,如下图所示:327.5585327.510×1202020780550115115纵桥向横桥向三、支架内力及变形验算1、 横梁应力验算:横梁有长度为12.4m ,采用2I56a 工字钢,其上承托12根I45a 工字钢。
为简化计算横梁荷载采用均布荷载。
(1)纵梁上面荷载所生的均布荷载:Q 1=2226÷2÷12.25=90.86KN/m(2)纵梁的自重所生的均布荷载:Q 2=0.8038×(1.15+5.5/2)×11÷12.25=2.815N/m(3)横梁自身的重量所生的均布荷载:Q 3=2×1.0627=2.125N/m(4)横梁上的总均布荷载:Q=90.86+2.815+2.125=95.8N/mq=95.8KN/mQ图(KN)320585320M 图(KN.m)(5)力学简图:由力学简图可求得: 支座反力R=95.8×12.25/2 =586.78 KN由Q 图可得Qmax=306.56 KNM 图可得Mmax=490.5 KN.mq320320585横梁为简支双悬臂梁(6)应力验算σmax =W M max =22342105.4905⨯⨯=104.7MPa <[σ]=145Mpaτmax =Ib S Q max =225.1655762136921005.306⨯⨯⨯⨯⨯⨯==255.96Kg/cm 2τmax =25.6 MPa <[τ]=120 Mp Δ复合强度 σ=223τσ+=226.2537.104⨯+=113.7Mpa <[σ] 2、横梁的刚度验算λ=m /L=3.2/5.85=0.54f C = f D =EIqml 243(-1+6λ2+3λ3)=655762101.2245853208.9563⨯⨯⨯⨯⨯⨯ (-1+6×547.02+3×547.03) =0.9285×1.286 =1.194cmf E =3844ql (5-24λ2)=655762101.23841085.58.95684⨯⨯⨯⨯⨯⨯(5-24×547.02)=0.1061×(-2.18)=-0.393cm(向上)通过以上计算可知,横梁在均布荷载作用下,跨中将出现向上的拱度。
钢管桩标准节设计承载力计算

钢管桩标准节设计承载力计算一、 φ630钢管桩钢管桩直径630mm ,壁厚8mm 。
考虑锈蚀情况,壁厚按照6mm 进展计算。
其截面特性为:回转半径ix=22.062cm考虑钢管桩横联间距为10米,即钢管桩的自由长度按10m 计算,钢管桩一端固定,一端自由,自由长度系数为2.0,那么计算长度为2*10=20m 。
钢管桩的长细比:λ=L/ix=20/0.22=90.7查?钢构造设计标准?表C--2得:φ=0.616考虑钢材的容许应力为[σ]=180MPa1.1 最大轴向力计算求得:935.1N KN1.2 横联计算根据以上计算结果,按照900KN 轴向力,180KN.m 弯矩来设计横联。
横联竖向间距为10米。
1.2.1 2[28a 横联采用2[28a 作为横联,按照最大长细比[λ]=100来控制。
强度复核:按照桩顶承受18KN 的水平力计算,由λ=100查?钢构造设计标准?表C--2得:φ=0.555那么采用2[28a 作为横联的时候,最大间距取4.6米。
1.2.2 φ42.6钢管横联采用φ42.6钢管横联〔考虑锈蚀,壁厚为4mm 〕作为横联,按照最大长细比[λ]=100来控制。
强度复核:按照桩顶承受18KN 的水平力计算,由λ=100查?钢构造设计标准?表C--2得:φ=0.555那么采用φ42.6作为横联的时候,最大间距取12米。
综上:横联长度在4.6米以下的采用2[28a 作为横联。
4.6米以上12米以下的采用φ42.6钢管作为横联。
12米以上的横联采用自行设计的桁架形式。
二、 φ820钢管桩钢管桩直径820mm ,壁厚10mm ,考虑锈蚀情况,壁厚按照8mm 进展计算。
其截面特性为:回转半径ix=28.78cm考虑钢管桩横联间距为10米,即钢管桩的自由长度按10m 计算,钢管桩一端固定,一端自由,自由长度系数为2.0,那么计算长度为2*10=20m 。
钢管桩的长细比:λ=L/ix=20/0.29=70.0查?钢构造设计标准?表C--2得:φ=0.75考虑钢材的容许应力为[σ]=180MPa2.1 最大轴向力计算求得:1508N KN2.2 横联计算根据以上计算结果,按照1500KN 轴向力,300KN.m 弯矩来设计横联。
钢管桩计算

一、钢管桩计算由于中间跨25m远远大于边跨,故仅计算中跨支架。
纵向贝雷主要承受系杆重量、中横梁重量。
各项重量参见下表:单位KN注:拱肋及风撑浇筑时系杆和中横梁强度已达到90%以上且已部分张拉,故该荷载不计入纵、横向贝雷支架中。
10米系杆吊装时有两个支点,其中一个支点落在边跨上,根据上表可得荷载为:499.2*4/2+4492.8+127*13=7142.2KN纵向支架自身重量:21*12*270kg=68040kg=680KN边支墩横向支架自身重量:4*5*270kg=5400kg=54KN中支墩横向支架自身重量:6*5*270kg=8100kg=81KN纵向贝雷荷载通过横向贝雷传递给钢管桩,中间支架设置三个横向支点,边支墩受力为每个支点受力(7142.2+680)/4=1955KN;中支墩受力为1955*2=3910KN,边支墩设置12根钢管桩,每个桩受力为(1955+54)/12=167.4KN 中支墩设置20根钢管桩,每个桩受力为(3910+81)/20=199.6KN 根据以上可得,中支墩的钢管桩为最不利,每根桩桩顶反力F 0=199.6KN 。
结合工程概况中的地质情况,从而可以计算得出钢管桩的具体打入土体的深度和桩长。
本桥管桩采用钢管桩。
根据《公路桥涵地基与基础设计规范JTGD63-2007》5.3.3-2,对于沉桩的容许承载力[]P :打入、震动下沉的桩的容许承载力:[]()∑+=αααAR l q U P i ik i 21式中:[]P ——桩的容许承载力(KN ); U ——桩身截面周长(m ); i l ——各土层厚度(m ); A ——桩底支撑面积(m 2);αα,i ——震动沉桩对各土层桩周摩阻力和桩底承压力的影响系数; 本桥的震动下沉的钢管桩采用Φ529mm 、壁厚为8mm 。
地基承载力按1.5系数考虑,土层参考概况中的土质情况。
根据以上有:[]kN F P 5.3855.10=⨯=;m d U 27.3513.0529.0=⨯+⨯=⋅=πππ; 222013.0265.0m r A =⨯=⋅=ππ; 查表得:对于打入桩αα,i 为1.0; 根据地勘土层从上到下土层如下:表层素填土为施工开挖后回填堆载,实际桩位处均为淤泥质粉质粘土(土层3),故表层土侧摩阻系数按14考虑。
钢管桩验算

钢管桩检算⑴桩基承载力计算:根据计算,中间钢管桩承载荷载最大,该最大荷载值为:Pmax=170.6KN⑵钢管桩最大容许承载力计算由于钢管桩打入过程中,桩周淤泥层受到破坏,无法提供桩身与淤泥层之间的摩阻力,本计算暂不考虑淤泥层摩阻力。
桩打入桩最大容许承载力:〔P〕=1/k(U 刀 f i L i+AR)式中〔p〕--桩的容许承载力KNU----- 桩身横截面周长mf i----桩身穿过各地层与桩身之间的极限摩阻力KPa ;查《路桥施工计算手册》和设计院地质勘探成果,取 4=25L 1----各土层厚度 m L1=12A----- 桩底支撑面积mR——桩尖极限磨阻力Kpa, R=0K---- 安全系数,本设计采用2。
桩基采用© 426mm冈管桩,壁厚S =8mm管内填砂密实,采用打桩振动锤击下沉。
桩的周长U=1.34m不计桩尖承载力,仅计算钢管桩侧摩阻。
根据地质情况,按照打入局部冲刷线以下 12m计算:单桩承载力为〔P〕=201KN大于钢管桩承受荷载Pmax=170.6KN满足要求。
⑶桩身强度计算桩基采用© 426mm*8m钢管桩。
对钢管桩的容许承载力,按下式计算:PM FR/KP-桩的容许承载力,kN;为-纵向挠曲折减系数,根据lp/d查表得出;F-钢管截面的计算面积;R-钢的屈服应力,kPa;本设计中R=235000KPaK-安全系数,摩擦桩取2.5 ;lp-桩的计算长度,取ht ;ht-从土壤表面到桩顶的距离;d-钢管桩外径。
取 lp=htlp/d=1600/63 = 25.4查“轴心受压钢构件的纵向弯曲系数表”,纵向挠曲折减系数为"0.92F=n d 5 =0.0158mPM FR/K=1337KN单桩设计承载力170.6KN。
满足受力要求。
⑷结论经检算知,便桥设计满足受力要求。
钢管桩支架受力验算

18#墩现浇段钢管桩支架受力验算书一、计算依据⑴《建筑施工碗扣钢管脚手架安全技术规范》⑵《钢管扣件水平模板的支撑系统安全技术规程》⑶《建筑施工扣件式钢管脚手架安全技术规程》(⑷《钢结构》上、下册/中国工业出版社⑸《结构力学》/高等教育出版社⑹《材料力学》/高等教育出版社二、工程概况新邕宁邕江特大桥92+168+92米连续梁边跨现浇段对应节段为23# 段,节段长7.9m,中心梁高9m,梁底宽为6.5m梁顶板宽9m,顶板厚55 cm,腹板厚45 cm,底板厚50 cm,设计混凝土方量为165m3。
三、现浇钢管桩支架模板方案钢管桩立柱基础采用C30混凝土条形基础,基础宽1-1.2m,高1m。
钢管立柱下部通过焊接与预埋在基础上的80*80*2cm钢板相连,钢管桩立柱高23m,纵向间距2.25m,横向间距腹板下2.5-3.97m。
横梁梁采用2I40工字钢,I40工字钢上横向铺设132工字钢,间距0.6m。
在I32工字上搭设碗扣支架支撑梁体底模,支架横纵向步距腹板下为0.6m,纵向步距0.6m,水平杆步距0.6m。
支架顶托上横向铺15X 15cm方木,在15X 15cm方木上纵向铺10X 10cm方木为加劲肋木,方木净距为20cm。
底模板采用18mm优质竹胶板,侧模采用18mm优质胶木板,加劲肋木为10X10cm方木,间距30cm,背楞采用2[10槽钢,背楞间距60cm, 拉杆采用© 20精扎螺纹钢,间距80cm。
通过设计文件该地段位于邕江岸边,为弱风化灰岩,承载力为400Kpa。
清楚表层草皮及泥土到弱风化灰岩基础,按照钢管桩支架横向布置设置三道C30砼横梁,宽度1.2m,长度10m高度1m每道横梁在中部设置一道伸缩缝,按照钢管桩布置位置埋好预埋件。
预埋前必须由测量班用全站仪对平面控制点位置进行精确放样。
支架模板具体布设尺寸见《支架模板布设示意图》。
四、受力检算1、计算参数竹胶木板:50MPa (横向)E=7.4X 10‘Mpa油松、新疆落叶松、云南松、马尾松:[d=12MPa(顺纹抗压、抗弯)[T=1.3MPa E=9*103MPa热轧普通型钢:[o]=190MPa [ T=110MPa E=2.06x 105Mpa 140b: A=96.2cm2, l x=22800cm4, W x=1140cm3。
管桩深度验算

钢管桩设计:施工过程中需行走履带吊按50T 履带吊计算荷载按桩的容许承载力为[]a R = 544.90KN 进行计算桩的入土桩长,且不考虑桩端的闭塞效应。
(1)钢管桩的竖向荷载计算:有以上计算可知,居中行走时中部在单排钢管桩中心线时,单排钢管桩中间的钢管桩受力最大:RL=544.09KN钢管桩等自重计算:钢管桩顶面标高为+5.14m ,暂按入土18m 计算,地质钻孔为准进行计算,由设计图纸中所附地质勘察资料可知,河床面为-6.95m ,钢管桩为直径630mm 的标准螺旋焊接管,则钢管桩自重为W=30.09×1.23=37.01KN钢管桩受力P=544.9+37.01=581.91KN (2)钢管桩的竖向承载力计算本栈桥所有桩基均支撑在中砂、卵石层上,按摩擦桩计算其容许承载力。
根据《公路桥涵地基与基础设计规范》(JTG D63-2007)中的沉桩的承载力容许值公式,则桩的容许承载力为:[]⎪⎭⎫ ⎝⎛+=∑=ni rk P r ik i i a q A q l u R 121αα(5.3.3-3) 式中:[]a R ——单桩轴向受压承载力容许值(kN ),桩身自重与置换土重(当自重记入浮力时,置换土重也计入浮力)的差值作为荷载考虑;u ——桩身周长(m ); n ——土的层数;i l ——承台底面或局部冲刷线以下各土层的厚度(m );ik q ——与i l 对应的各土层与桩侧摩阻力标准值(kPa ),宜采用单桩摩阻力试验确定或通过静力触探试验测定,当无试验条件时按规范给定值选用;rk q ——桩端处土的承载力标准值(kPa ),宜采用单桩试验确定或通过静力触探试验测定,当无试验条件时按规范给定值选用;i α、r α——分别为振动沉桩对各土层桩侧摩阻力和桩端承载力的影响系数对于锤击、静压沉桩其值均取为1.0。
3#~4#墩按18米计算:[]⎪⎭⎫ ⎝⎛+=∑=ni rk P r ik i i a q A q l u R 121αα=(1.978×4.61×20+1.978×7.7×15+1.978×1.8×25+1.978×(L-4.61-7.7-1.8)×80+7.86×10-3×20)/2= 581.91kpa 则 L=18.3m即打桩时须根据地质情况入土深度必须大于18.3m 才能满足设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢管桩设计与验算 Prepared on 22 November 2020
钢管桩设计与验算
钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=×108Kpa,I=
64
π
(80.04-78.04)=×10-3M 4。
依据386#或389#墩身高度和周
边地形,钢管桩最大桩长按30m 考虑。
1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr=
2
2l
EI
π=
3
2
8230
10
936.1101.2-⨯⨯⨯⨯π
=4458kN >R= 2、桩的强度计算 桩身面积A=4
π(D 2-a 2) =4
π(802-782)=
钢桩自身重量 P ×30×102× =5844kg=
桩身荷载p=+=
б=p /A=×102/=/cm 2=
3、桩的入土深度设计
通过上述计算可知,每根钢管桩的支承力近,按规范取用安全系数k=,设计钢管桩入土深度,则每根钢管桩的承载力为×2=,管桩周长U=πD=×=。
依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:
第一层粉质黏土厚度为3m ,τ=120Kpa 第二层淤泥粉质黏土厚度为4m ,τ=60Kpa 第三层粉砂厚度为,τ=90Kpa N=∑τi uh i
N=120××3+60××4+90××h 3= =++=
解得h 3=
证明钢管桩不需要进入第三层土,即满足设计承载力。
钢管桩实际入土深度:∑h=3+4=7m 4、打桩机选型
拟选用DZ90,查表得知激振动570kN ,空载振幅≮,桩锤全高,电机功率90kw 。
5、振动沉桩承载力计算
根据所耗机械能量计算桩的容许承载力
[]P =m
1
{
()[]
v
a A f m x 12
23111βμα+-+Q
}
m —安全系数,临时结构取
m 1—振动体系的质量m 1=Q/g=57000/981= Q 1—振动体系重力N g —重力加速度=981cm/s 2 A X —振动沉桩机空转时振幅A X = M —振动沉桩机偏心锤的静力矩
μ—振动沉桩机振幅增大系数μ=A n /A x
A n -振动体系开始下沉时振幅取
f —振动频率转/S
a —振动沉桩机最后一击的实际振幅取 ν—沉桩最后速度取5cm/m in α1—土性质系数,查表得α1=20 β1—影响桩入土速度系数,查表得β1=
[p]=
5.11{
5
17.0110.10.12.15.171.58202
2
31⨯+⎥⎥
⎦
⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⨯⨯⨯+9×104
}
=5
.11{
85
.1107401.26
⨯+9×104
}
=
5
.11×*6
10 =1047438N=1047KN >N= 通过上述计算及所选各项参数说明:
1)DZ90型振动打桩机,是完全能够满足本设计单桩承载力的。