(好)电磁感应中的导轨类问题
物理考试电磁感应综合-导轨模型计算题(精选26题-含答案详解)
电磁感应综合-导轨模型计算题1.(9分)如图所示,两根间距L=1m 、电阻不计的平行光滑金属导轨ab 、cd 水平放置,一端与阻值R =2Ω的电阻相连。
质量m=1kg 的导体棒ef 在外力作用下沿导轨以v=5m/s 的速度向右匀速运动。
整个装置处于磁感应强度B=0.2T 的竖直向下的匀强磁场中。
求:(1)感应电动势大小;(2)回路中感应电流大小; (3)导体棒所受安培力大小。
【答案】(1)V 1=E (2)0.5A I = (3)0.1N F =安【解析】 试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势BLv E = 代入数据解得:V 1=E(2)感应电流RE I =代入数据解得:A 5.0=I(3)导体棒所受安培力BIL F =安 代入数据解得:N 10.F =安考点:本题考查了电磁感应定律、欧姆定律、安培力。
2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s 2(2)10m/s (3)0.4T 【解析】试题分析:(1)金属棒开始下滑的初速为零,Ve b a c由牛顿第二定律得:mgsinθ-μmgcosθ=ma ①由①式解得:a=10×(0.6-0.25×0.8)m/s 2=4m/s 2②;(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F , 棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④ 由③、④两式解得:s m s m F P v /10/)8.025.06.0(102.08=⨯-⨯⨯==⑤ (3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为B , 感应电流:RBlvI =⑥ 电功率:P=I 2R ⑦ 由⑥、⑦两式解得:T T vl PR B 4.011028=⨯⨯==⑧ 磁场方向垂直导轨平面向上;考点:牛顿第二定律;电功率;法拉第电磁感应定律. 3.(13分)如图,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。
电磁感应中的“杆导轨”类问题(3大模型)解题技巧
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L2,方向沿导轨平面向下。
(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sinθ=Q总+12mv m2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【内化模型】单杆+电阻+导轨四种题型剖析题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为α,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L示意图力学观点杆以速度v切割磁感线产生感应电动势E=BLv,电流I=BLvR,安培力F=BIL=B2L2vR。
12专题:电磁感应中的动力学、能量、动量的问题(含答案)
12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
物理考试电磁感应导轨问题经典归纳(含答案)
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=gsin α,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mgsin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,vm=E′BL匀速运动vm=mgRsin αB2L2一、单棒问题1、发电式(1)电路特点:导体棒相当于电源,当速度为v时,电动势E=Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值F①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.(一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.答案(1)0.1 T(2)0.67 C(3)0.26 J解析(1)金属棒在AB段匀速运动,由题中图象乙得:v=ΔxΔt=7 m/s I=BLvr+R,mg=BIL 解得B=0.1 TNM22-+=()()mF mg R rvB lμ212E mFs Q mgS mvμ=++mFt BLq mgt mvμ--=-F B F(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +R Q =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此过程中( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。
高分策略之电磁感应中的杆导轨模型
一、单棒问题基本模型运动特点最终特征阻尼式a逐渐减小的减速运动静止I=0电动式匀速a逐渐减小的加速运动I=0 (或恒定)匀速发电式a逐渐减小的加速运动I 恒定二、含容式单棒问题基本模型运动特点最终特征放电式a逐渐减小的加速运动匀速运动I=0 无外力充电式a逐渐减小的减速运动匀速运动I=0 有外力充电式匀加速运动匀加速运动I 恒定三、无外力双棒问题基本模型运动特点最终特征无外力等距式杆1做a渐小的加速运动杆2做a渐小的减速运动v1=v2I=0无外力不等距式杆1做a渐小的减速运动杆2做a渐小的加速运动a=0I=0L1v1=L2v2四、有外力双棒问题基本模型运动特点最终特征有外力等距式杆1做a渐大的加速运动杆2做a渐小的加速运动a1=a2,Δv 恒定I恒定有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动a1≠a2,a1、a2恒定I 恒定题型一阻尼式单棒模型如图。
1.电路特点:导体棒相当于电源。
2.安培力的特点:安培力为阻力,并随速度减小而减小。
F B =BIl=3.加速度特点:加速度随速度减小而减小,a= =4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止 6.三个规律 (1)能量关系:-0 = Q , =(2)动量关系: 00BIl t mv -⋅∆=-q =, q ==(3)瞬时加速度:a= =【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么( )A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的【答案】B【解析】设线圈完全进入磁场中时的速度为v x。
线圈在穿过磁场的过程中所受合外力为安培力。
电磁感应中导轨问题的分类及应用
电磁感应中导轨问题的分类及应用一、单动式导轨的基本特点和规律如图所示,间距为l的平行导轨与电阻R相连,整个装置处在大小为B、垂直导轨平面向上的匀强磁场中。
质量为m、电阻为r的导体从静止开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。
1.电路特点导体为发电边,与电源等效。
当导体速度为v时,其电动势为E=Blv。
2.安培力特点安培力为运动阻力,并随速度按正比规律增大F B=Blv=B2l2v/(R+r)∝v3.加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动ma=mgsinθ-μmgcosθ-B2l2v/(R+r)4.两个极值的规律当v=0时,F B =0,加速度最大为a=gsinθ-μgcosθ当a=0时,F合=0,速度最大。
根据平衡条件有mgsinθ=-μmgcosθ+B2l2v/(R+r)所以最大速度为v m=mg(sinθ-μcosθ)(R+r)/(B2l2)5.匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。
P G=P F+Pμ P G=mgv m sinθ Pμ=μmgv m cosθP F=F m v m=I m E m=E m2/(R+r)=I m2(R+r)当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这就是发电导轨在匀速运动过程中最基本的能量转化和守恒定律mgv m sinθ= F m v m=I m E m=E m2/(R+r)=I m2(R+r)二、双动式导轨的基本问题和规律如图所示,间距为l的光滑平行导轨水平放置,处在大小为B、方向竖直向上的匀强磁场中,质量均为m、电阻均为r的两根导体分别在平行于导轨方向的两个大小相等、方向相反的水平拉力F作用下,以速度v向左右两侧反向匀速运动。
1.电路特点两导体反方向(相向或背向)运动,均为发电边,与两个同样的电源串联等效。
2.回路中电动势和电流的计算根据欧姆定律,电动势和电流分别为E合=2E=2BlvI= E合/R=2Blv/(2r)=Blv/r3.拉力和安培力的特点和计算拉力为动力,安培力为阻力;在匀速运动的条件下,两者为平衡力。
高中物理-专题 电磁感应中的动力学问题(提高篇)(解析版)
2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.11 电磁感应中的动力学问题(提高篇)一.选择题1. (2020陕西咸阳一模)CD 、EF 是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L ,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B ,磁场区域的长度为d ,如图所示导轨的右端接有一电阻R ,左端与一弯曲的光滑轨道平滑连接将一阻值也为R 的导体棒从弯曲轨道上h 高处由静止释放,导体棒最终恰好停在磁场的右边界处。
已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是( )A. 电阻R 2BL ghB. 流过电阻R 的电荷量为2BLdR C. 整个电路中产生的焦耳热为mgh-μmgd D. 电阻R 中产生的焦耳热为12mgh 【参考答案】ABC【名师解析】金属棒下滑过程中,由机械能守恒定律得:mgh=12mv 2,所以金属棒到达水平面时的速度v=2gh ,金属棒到达水平面后进入磁场受到向左的安培力做减速运动,则导体棒刚到达水平面时的速度最大,所以最大感应电动势为E=BLv ,最大的感应电流为I=E/2R=22BL ghR,故A 正确;流过电阻R 的电荷量为q=r R ∆Φ+=2BLdR,故B 正确;金属棒在整个运动过程中,由动能定理得:mgh-W B -μmgd=0-0, 则克服安培力做功:W B =mgh-μmgd ,所以整个电路中产生的焦耳热为Q=W B =mgh-μmgd ,故C 正确;克服安培力做功转化为焦耳热,电阻与导体棒电阻相等,通过它们的电流相等,则金属棒产生的焦耳热为:Q R =Q/2=12(mgh-μmgd ),故D 错误。
【关键点拨】。
金属棒在弯曲轨道下滑时,只有重力做功,机械能守恒,由机械能守恒定律或动能定理可以求出金属棒到达水平面时的速度,由E=BLv 求出感应电动势,然后求出感应电流;由q=可以求出流过电阻R 的电荷量;克服安培力做功转化为焦耳热,由动能定理(或能量守恒定律)可以求出克服安培力做功,得到导体棒产生的焦耳热。
微专题 电磁感应中的“杆+导轨”模型
(2)0~4 s 内磁场均匀变化,产生的感应电动势 E1=ΔΔBt L1L2=0.5 V 由闭合电路欧姆定律得 I1=RE+1 r=0.1 A 0~4 s 内小灯泡上产生的焦耳热 Q1=I12Rt1=0.16 J
4~5 s 内导体棒在磁场中匀速运动,导体棒运动的位移 x=vt2=1 m<L2, 导体棒没有出磁场,小灯泡上产生的焦耳热 Q2=I22Rt2=0.16 J 0~5 s 内小灯泡上产生的焦耳热 Q=Q1+Q2=0.32 J. [答案] (1)0.8 kg 0.2 N (2)0.32 J
Q 总=-W 安=mgxsin θ-12mv2=2 J
QR=R+R rQ 总=1.5 J. 答案:(1)1 A b→a (2)1 N 平行于导轨平面向上 (3)1.5 J
3.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为 θ, 导轨间距为 l,所在平面的正方形区域 abcd 内存在有界匀强磁场,磁感 应强度大小为 B,方向垂直于斜面向上.将阻值相同、质量均为 m 的相 同甲、乙两金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙 相距 l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的 外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且 加速度大小为 a=gsin θ,乙金属杆刚进入磁场时做匀速运动.
[典例 3] 如图所示,两根足够长的平行金属导轨固 定在倾角 θ=30°的斜面上,导轨电阻不计,间距 L= 0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边 界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直斜 面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场 的磁感应强度大小均为 B=0.5 T.在区域Ⅰ中,将质量为 m1=0.1 kg、电阻为 R1=0.1 Ω 的金属条 ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量 为 m2=0.4 kg、电阻为 R2=0.1 Ω 的光滑导体棒 cd 置于导轨上,由静止开始下 滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd 始终与导轨垂直且两端 与导轨保持良好接触,取 g=10 m/s2.求:
电磁感应中的导轨类问题
E Im Rr
Fm BI ml ,
Fm mg am m
(2)最大速度: 稳定时,速度最大,电流最小
ቤተ መጻሕፍቲ ባይዱ
E Blvm mg F BI l E Blv m B l I min , min min Rr Rr E mg ( R r ) vm 2 2 泉州五中物理组 张墩杰 Bl B l
匀速 I 恒定
发电式
F
a逐渐减小 的加速运动
二、含容式单棒问题
基本模型 放电式 无外力 充电式
有外力 充电式
运动特点
a逐渐减小 的加速运动 a逐渐减小 的减速运动
最终特征
匀速运动 I= 0 匀速运动 I= 0
v0
F
匀加速运动
匀加速运动 I 恒定
三、无外力双棒问题
基本模型 无外力 等距式
1 2
v0
v1=0时: 电流最大 v2=v1时: 电流 I=0
Blv0 Im R1 R2
无外力等距双棒
3.两棒的运动情况 安培力大小:
B 2l 2 ( v2 v1 ) 1 FB BIl R1 R2
v0 2
两棒的相对速度变小,感应电流变小,安培力变小. 棒1做加速度变小的加速运动 棒2做加速度变小的减速运动 最终两棒具有共同速度
电磁感应中的导轨类问题
电 磁 感 应 动力学观点 受力情况分析 中 的 动量观点 导 运动情况分析 能量观点 轨 问 题
牛顿定律 平衡条件 动量定理 动量守恒 动能定理 能量守恒
一、单棒问题
基本模型 运动特点
a逐渐减小 的减速运动 a逐渐减小 的加速运动
最终特征
静止 I=0
阻尼式
高中物理 电磁感应中的导轨上的导体棒问题
电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
电磁感应典型题目(含答案)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题
简单物理 2014年3月第1页光滑导轨运动过程收尾状态v=0匀速匀速无电阻时匀速匀加速应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题RvRFtvtvCvCFtvtvvvttv Fxv1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=g sin α,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,v m=E′BL匀速运动v m=mgR sin αB2L2解析 (1)设甲在磁场区域abcd 内运动时间为t 1,乙从开始运动到ab 位置的时间为t 2, 则由运动学公式得L =12·2g sin θ·t 21,L =12g sin θ·t 22解得t 1= L g sin θ,t 2= 2Lg sin θ (1分)因为t 1<t 2,所以甲离开磁场时,乙还没有进入磁场. (1分) 设乙进入磁场时的速度为v 1,乙中产生的感应电动势为E 1,回路中的电流为I 1,则12mv 21=mgL sin θ (1分) E 1=Bdv 1 (1分) I 1=E 1/2R (1分) mg sin θ=BI 1d (1分)解得R =B 2d 22m 2Lg sin θ (1分)(2)从释放金属杆开始计时,设经过时间t ,甲的速度为v ,甲中产生的感应电动势为E , 回路中的电流为I ,外力为F ,则v =at (1分) E =Bdv (1分) I =E /2R (1分) F +mg sin θ-BId =ma (1分) a =2g sin θ 联立以上各式解得 F =mg sin θ+mg sin θ2g sin θL·t (0≤t ≤ Lg sin θ) (1分) 方向垂直于杆平行于导轨向下. (1分) (3)甲在磁场运动过程中,乙没有进入磁场,设甲离开磁场时速度为v 0,甲、乙产生的热 量相同,均设为Q 1,则v 20=2aL (1分)W +mgL sin θ=2Q 1+12mv 20 (2分)解得W =2Q 1+mgL sin θ乙在磁场运动过程中,甲、乙产生相同的热量,均设为Q 2,则2Q 2=mgL sin θ(2分)根据题意有Q =Q 1+Q 2 (1分) 解得W =2Q (1分)答案 (1)B 2d 22m 2Lg sin θ(2)F =mg sin θ+mg sin θ 2g sin θL ·t (0≤t ≤ Lg sin θ),方向垂直于杆平行于导轨向下(3)2Q突破训练3 如图7甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离s 与时间t的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙图7(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得:v =ΔsΔt =7 m/s I =BLv r +R ,mg =BIL 解得B =0.1 T (2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔS Δt B解得:q =0.67 C(3)Q =mgs -12mv 2解得Q =0.455 J从而Q R =Rr +R Q =0.26 J高考题组1. (2012·山东理综·20)如图8所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强 磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由 静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加 一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好, 图8 不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( ) A .P =2mgv sin θ B .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 答案 AC解析 根据I =E R =BLvR ,导体棒由静止释放,速度达到v 时,回路中的电流为I ,则根据共点力的平衡条件,有mg sin θ=BIL .对导体棒施加一平行于导轨向下的拉力,使其以2v 的速度匀速运动时,则回路中的电流为2I ,则根据平衡条件,有F +mg sin θ=B ·2IL ,所以拉力F =mg sin θ,拉力的功率P =F ×2v =2mgv sin θ,故选项A 正确,选项B 错误;当导体棒的速度达到v 2时,回路中的电流为I 2,根据牛顿第二定律,得mg sin θ-B I 2L =ma ,解得a =g2sin θ,选项C 正确;当导体棒以2v 的速度匀速运动时,根据能量守恒定律知,重力和拉力所做的功之和等于R 上产生的焦耳热,故选项D 错误.2. (2012·江苏单科·13)某兴趣小组设计了一种发电装置,如图9所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B 、方向始终与两边的运动方向垂直.线圈的总电阻为r ,外接电阻为R .求:图9(1)线圈切割磁感线时,感应电动势的大小E m ; (2)线圈切割磁感线时,bc 边所受安培力的大小F ; (3)外接电阻上电流的有效值I .答案 (1)2NBl 2ω (2)4N 2B 2l 3ωr +R (3)4NBl 2ω3 r +R解析 (1)bc 、ad 边的运动速度v =ωl2感应电动势E m =4NBlv 解得E m =2NBl 2ω(2)电流I m =E mr +R安培力F =2NBI m l解得F =4N 2B 2l 3ωr +R(3)一个周期内,通电时间t =49TR 上消耗的电能W =I 2m Rt 且W =I 2RT解得I =4NBl 2ω3 r +R .模拟题组3. 如图10,两根足够长光滑平行金属导轨PP ′、QQ ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大,板间有一带电微粒,金属棒ab 水平跨放在导轨上,下滑过程中与导轨接触良好. 图10 现同时由静止释放带电微粒和金属棒ab ,则 ( ) A .金属棒ab 最终可能匀速下滑 B .金属棒ab 一直加速下滑C .金属棒ab 下滑过程中M 板电势高于N 板电势D .带电微粒不可能先向N 板运动后向M 板运动 答案 BC解析 金属棒沿光滑导轨加速下滑,棒中有感应电动势而对金属板M 、N 充电,充电电 流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有 mg sin θ-BIl >0,金属棒将一直加速下滑,A 错,B 对;由右手定则可知,金属棒a 端(即 M 板)电势高,C 对;若微粒带负电,则电场力向上,与重力反向,开始时电场力为0, 微粒向下加速,当电场力增大到大于重力时,微粒的加速度向上,可能向N 板减速运动 到零后再向M 板运动,D 错.4. 如图11所示,足够长的光滑平行金属导轨cd 和ef 水平放置,在其左端连接倾角为θ=37°的光滑金属导轨ge 、hc ,导轨间距均为L =1 m ,在水平导轨和倾斜导轨上,各放一根与导轨垂直的金属杆,金属杆与导轨接触良好.金属杆a 、b 质量均为m =0.1 kg ,电阻R a =2 Ω、R b =3 Ω,其余电阻不计.在水平导轨和斜面导轨区域分别有竖直向上和竖直向下的匀强磁场B 1、B 2,且B 1=B 2=0.5 T .已知从t =0时刻起,杆a 在外力F 1作用下由静止开始水平向右运动,杆b 在水平向右的外力F 2作用下始终保持静止状态,且F 2=0.75+0.2t (N).(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)图11简单物理2014年3月第 PAGE \* MERGEFORMAT 7 页(1)通过计算判断杆a的运动情况;(2)从t=0时刻起,求1 s内通过杆b的电荷量;(3)若t=0时刻起,2 s内作用在杆a上的外力F1做功为13.2 J,则这段时间内杆b上产生的热量为多少?答案(1)以4 m/s2的加速度做匀加速运动(2)0.2 C(3)6 J解析(1)因为杆b静止,所以有F2-B2IL=mg tan 37°而F2=0.75+0.2t(N)解得I=0.4t (A)整个电路中的电动势由杆a运动产生,故E=I(R a+R b)E=B1Lv解得v=4t所以,杆a做加速度为a=4 m/s2的匀加速运动.(2)杆a在1 s内运动的距离d= eq \f(1,2) at2=2 mq= eq \x\to(I) Δteq \x\to(I) = eq \f(E,R a+R b)E= eq \f(ΔΦ,Δt) = eq \f(B1Ld,Δt)q= eq \f(ΔΦ,R a+R b) = eq \f(B1Ld,R a+R b) =0.2 C即1 s内通过杆b的电荷量为0.2 C(3)设整个电路中产生的热量为Q,由能量守恒定律得W1-Q= eq \f(1,2) mv EMBED Equation.3v1=at=8 m/s解得Q=10 J从而Q b= eq \f(R b,R a+R b) Q=6 J。
高考物理电磁感应现象的两类情况-经典压轴题含答案
高考物理电磁感应现象的两类情况-经典压轴题含答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.3.如图所示,竖直放置、半径为R 的圆弧导轨与水平导轨ab 、在处平滑连接,且轨道间距为2L ,cd 、足够长并与ab 、以导棒连接,导轨间距为L ,b 、c 、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B 的匀强磁场,均匀的金属棒pq 和gh 垂直导轨放置且与导轨接触良好。
高三复习电磁感应中的导轨类问题导体棒归类梳理
电磁感应中的导轨类问题
一、单棒问题。
1.无外力、无摩擦单棒,外阻R,内阻r (阻尼单棒)
(1)安培力的特点
安培力为阻力,并随速度减小而减小。
22
B B l v
F BIl R r ==
+
(2)加速度随速度减小而减小
22()B F B l v a m m R r ==
+
(3)运动特点:a 减小
的减速运动,最后停止 (4)能量关系:
2
0102
mv Q -=内外阻热量之比
R
r
Q R
Q r =。
2.有外力、有摩擦单棒
安培力为阻力,并随速度增大而增大
最终运动:匀速运动 v=0时,有最大加速度 a=0时,有最大速度 能量关系
2
12E m
Fs Q mgS mv μ=++
二、双棒问题
1.无外力等距双棒(无摩擦)
安培力大小
222112
B B l (v v
)
F BIl
R R
-==
+
2.无外力不等距双棒
最终特征:回路中电流为零
1122
Bl v Bl v
两棒安培力不相等,动量不守恒。
对两棒分别用动量定理
能量转化情况:
3.有外力等距双棒
稳定时都做匀加速直线运动,产生恒定电流
4.有外力不等距双棒。
9-07-物理建模:电磁感应中的“杆+导轨”模型
2017版高三一轮物理教学实用课件
第3页
返回目录
结束放映
二、模型分类及特点 Ⅰ.单杆水平式
物理 模型
F 设运动过程中某时刻棒的速度为 v,加速度为 a=m- B2L2v mR ,a、v 同向,随 v 的增加,a 减小,当 a=0 时,v BLv 最大,I= R 恒定
动态 分析
运动形式 收尾 状态 力学特征 电学特征
2017版高三一轮物理教学实用课件
第20页
转解析
返回目录 结束放映
5.真题演练
2017版高三一轮物理教学实用课件
第22页
返回目录
结束放映
【真题】 (2012· 山东卷· 20)如图示,相距为L的两条足够长的光滑 平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场 垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放, 当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向 下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运 动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电 阻,重力加速度为g.下列选项正确的是( ). A.P=2mgvsin θ B.P=3mgvsin θ C.当导体棒速度达到时加速 度大小为sin θ D.在速度达到2v以后匀速运 动的过程中,R上产生的焦耳 热等于拉力所做的功
2017版高三一轮物理教学实用课件
第4页
匀速直线运动
a= 0 v 最大 vm= FR B2L2
I 恒定
返回目录 结束放映
Ⅱ.单杆倾斜式
物理 模型 棒 释 放 后 下 滑 , 此 时 a = gsin α, 速 度 v↑→E = E BLv↑→I = R ↑→F = BIL↑→a↓, 当 安 培 力 F = mgsin α 时,a=0,v 最大 运动形式 匀速直线运动 mgRsin α 力学特征 a=0 v 最大 vm= B2L2 电学特征 I 恒定
电磁感应中的“单棒+导轨”问题
电磁感应中的“单棒+导轨”问题例题1:如图17(a)所示,平行长直金属导轨水平放置,间距L=0.4m,导轨右端接有阻值R=1Ω的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L,从0时刻开始,磁感应强度B的大小随时间t变化,规律如图17(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s 做直线运动,求:⑴棒进入磁场前,回路中的电动势E;⑵棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流i与时间t的关系式。
980280126y6x00402562603例题2:如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP 的夹角为135°,PQ与MP垂直,MP边长度小于1m。
将质量m=2kg,电阻不计的足够长直导体棒搁在导轨上,并与MP平行。
棒与MN、PQ交点G、H间的距离L=4m.空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T。
在外力作用下,棒由GH处以一定的初速度向左做直线运动,运动时回路中的电流强度始终与初始时的电流强度相等。
(1)若初速度v1=3m/s,求棒在GH处所受的安培力大小F A。
(2)若初速度v2=1.5m/s,求棒向左移动距离2m到达EF所需时间Δt。
(3)在棒由GH处向左移动2m到达EF处的过程中,外力做功W=7J,求初速度v3。
练习1:一个“∠”型导轨垂直于磁场固定在磁感应强度为B的匀强磁场中,a是与导轨相同的导体棒,导体棒与导轨接触良好。
在外力作用下,导体棒以恒定速度v向右运动,以导体棒在图5(甲)所示位置的时刻作为计时起点,下列物理量随时间变化的图像可能正确的()练习2:如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是()A、P=2mgvsinθB、P=3mgvsinθC、当导体棒速度达到v/2时加速度大小为g sinθ/2D、在速度达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功例题3:如右图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流经电流表电流的最大值Im.练习3:如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计。
双棒+水平导轨等间距(解析版)--电磁感应中的动量问题解读和专题训练
电磁感应中的动量问题解读和专题训练专题 “双棒+水平导轨等间距”模型【问题解读】1.在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力或拉力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便。
2.双棒模型(不计摩擦力)类型双棒无外力双棒有外力示意图(F为恒力)特点分析1.电路特点棒1切割磁感线产生感应电动势相对于电源;棒2受到安培力而加速运动,运动后产生反电动势。
2.电流特点回路中电流I=Blv1-Blv2R1+R2=Bl v1-v2R1+R2棒1减速,棒2加速,两棒的相对速度变小,回路中电流减小。
当v2=0时,回路中电流最大,I m=Blv0R1+R2当v2=v1时,回路中电流最小,为零。
3.运动特点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动。
最终两棒速度相等。
1.电路特点棒1切割磁感线产生感应电动势相对于电源;棒2受到安培力而加速运动,运动后产生反电动势。
2.电流特点回路中电流I=Blv1-Blv2R1+R2=Bl v1-v2R1+R2棒1加速,棒2加速,两棒的相对速度差恒定时,回路中电流恒定。
3.运动特点某时刻中回路中电流I=Bl v1-v2R1+R2安培力F A=BIl棒1加速度a1=F-F Am,棒2加速度a2=F Am,初始阶段,a1>a2,(v1-v2)增大,I增大,棒所受安培力增大,金属棒1加速度减小,金属棒2加速度增大,即棒1做加速度减小的加速运动,棒2做加速度减小的加速运动。
当a1=a2,(v1-v2)恒定,两棒匀加速运动。
最终两棒速度差恒定,电流恒定。
稳定时,F=(m1+m2)a,F A=m2a,F A=BIl,I =Bl v 1-v 2R 1+R 2,联立解得:(v 1-v 2)=R 1+R 2 m 2FB 2l 2m 1+m2。
速度图像动力学观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 (2)能量关系: Fs = QE + µ mgS + mvm (2)能量关系 能量关系: 2 F B2 l 2v F − FB − µ mg (3)瞬时加速度:a = (3)瞬时加速度 瞬时加速度: = − − µg = 0 m m( R + r ) m
∆φ Bl ⋅ ∆s = 问: q = n R+r R+r
杆1做a渐小 的加速运动 杆2做a渐小 的减速运动 杆1做a渐小 的减速运动
最终特征
v0
v1=v2
I= 0 a= 0 I= 0
无外力 不等距式
1
v0 2
杆2做a渐小 的加速运动
L1v1=L2v2
四、有外力双棒问题 基本模型 有外力 等距式
1 2 F
运动特点
杆1做a渐大 的加速运动 杆2做a渐小 的加速运动 杆1做a渐小 的加速运动
R
v0
t
电容无外力充电式
5.最终速度 电容器充电量: 电容器充电量:
v0
q = CU
最终导体棒的感应电动 势等于电容两端电压: 势等于电容两端电压: 对杆应用动量定理: 对杆应用动量定理:
U = Blv
mv0 − mv = BIl ⋅ ∆t = Blq 2 2 BlC v = v0 − m
无外力等距双棒
Blv0 Im = R1 + R2
无外力等距双棒
3.两棒的运动情况
v0 2
B 2l 2 ( v2 − v1 ) 安培力大小: F 安培力大小: B = BIl = 1 R1 + R2
棒1做加速度变小的加速运动 棒2做加速度变小的减速运动 最终两棒具有共同速度 v0 v共
O
两棒的相对速度变小,感应电流变小,安培力变小. 两棒的相对速度变小,感应电流变小,安培力变小.
F B 2 l 2v F − FB − µ mg = − − µg = 0 a= m m( R + r ) m
( F − µ mg )( R + r ) vm = 2 2 Bl
发电式单棒
7.稳定后的能量转化规律
F
( BLvm ) 2 Fvm = + µ mgvm R+r 8.起动过程中的三个规律
(1)动量关系: Ft − BLq − µ mgt = mvm − 0 (1)动量关系: 动量关系
1 1 2 2 m2 v0 = ( m1 + m2 )v共+Q 2 2 Q1 R1 两棒产生焦耳热之比: 两棒产生焦耳热之比: = Q2 R2
无外力等距双棒
5.几种变化: 几种变化: (1)初速度的提供方式不同 (2)磁场方向与导轨不垂直 (1)初速度的提供方式不同 (2)磁场方向与导轨不垂直
m
B
对棒1 对棒1: I1 = m1v0 − m1v1 对棒2 对棒2:I 2 = m2 v2 − 0 结合: Bl1v1 = Bl2 v2 结合:
I1 F1 l1 = = I 2 F2 l2
2 m1l2 v 可得: 可得: v1 = 2 2 0 m1l2 + m2l1
m1l2 l1 v2 = v 2 2 0 m1l2 + m2l1
v0 B B
R
发电式单棒
1.电路特点 导体棒相当于电源,当速度 导体棒相当于电源, 电动势E 为v时,电动势E=Blv 2.安培力的特点 安培力为阻力, 安培力为阻力,并随速度增大而增大
F
FB = BIl
3.加速度特点 加速度随速度增大而减小
Blv B 2l 2 v =B l= R+r R+r
vm
FB B 2l 2 v = (3)瞬时加速度: a = (3)瞬时加速度 瞬时加速度: m m( R + r ) 7.变化
(1)有摩擦 (1)有摩擦 (2)磁场方向不沿竖直方向 (2)磁场方向不沿竖直方向
练习:AB杆受一冲量作用后以初速度 =4m/s, 练习:AB杆受一冲量作用后以初速度 v0=4m/s,沿水 平面内的固定轨道运动,经一段时间后而停止。AB的 平面内的固定轨道运动,经一段时间后而停止。AB的 质量为m=5g,导轨宽为L=0.4m,电阻为R 质量为m=5g,导轨宽为L=0.4m,电阻为R=2 ,其余 的电阻不计,磁感强度B=0.5T, 的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦 因数为µ=0.4, 因数为µ=0.4,测得杆从运动到停止的过程中通过导线 的电量q (g取 的电量q=10-2C,求:上述过程中 (g取10m/s2) (1)AB杆运动的距离 (1)AB杆运动的距离; 杆运动的距离; (2)AB杆运动的时间 (2)AB杆运动的时间; 杆运动的时间; A (3)当杆速度为2m/s时其 (3)当杆速度为 当杆速度为2m/s时其 加速度为多大? 加速度为多大?
v0 1 2
Bl1v1 = Bl2 v2
回路中电流为零 v0 v2 v1
O
5.动量规律 系统动量守恒吗? 系统动量守恒吗? 安培力不是内力 两棒合外力不为零v源自t无外力不等距双棒
6.两棒最终速度
1
v0 2
任一时刻两棒中电流相同,两棒受 F1 BIl1 l1 任一时刻两棒中电流相同, = = 到的安培力大小之比为: 到的安培力大小之比为: F2 BIl2 l2 整个过程中两棒所受 安培力冲量大小之比
v0
B 2l 2 v FB = BIl = R+r
v v0
a减小的减速运动 静止
O
t
阻尼式单棒
6.三个规律
1 2 (1)能量关系: 2 mv0 − 0 = Q (1)能量关系 能量关系:
QR Qr =R r
v0
(2)动量关系: − BIl ⋅ ∆t = 0 − mv0 (2)动量关系: 动量关系 mv0 ∆φ Bl ⋅ ∆s q= q=n = Bl R+r R+r
∝v
v
F − FB − µmg F B2 l 2v = − − µg a= m m( R + r ) m
4.运动特点 运动特点
a减小的加速运动
O
t
发电式单棒
5.最终特征 6.两个极值 (1) v=0时,有最大加速度: v=0 有最大加速度: 匀速运动
F
F − µ mg am = m
(2) a=0时,有最大速度: a=0 有最大速度:
无外力不等距双棒
7.能量转化情况 系统动能 电能 内能
1 1 1 2 2 2 m1v0 − m1v1 − m2 v2 = Q 2 2 2
1
v0 2
Q1 R1 = Q2 R2
8.流过某一截面的电量
Bl2 q = m2 v2 − 0
无外力不等距双棒
9.几种变化 (1)两棒都有初速度 (1)两棒都有初速度
是否成立? 是否成立?
发电式单棒
9.几种变化 (1) 电路变化
F
(2)磁场方向变化 (2)磁场方向变化
B
F
(3)拉力变化 (3)拉力变化
F
(4) 导轨面变化(竖直或倾斜) 导轨面变化(竖直或倾斜)
B
M N
加沿斜面恒力 通过定滑轮挂 一重物 加一开关
若匀加速拉杆则 F大小恒定吗? 大小恒定吗?
α
电容放电式: 电容放电式:
M
m
FB
v0 1 2
e O1 c v0 B2 B1 f O2 d
h
(3)两棒都有初速度 (3)两棒都有初速度
(4)两棒位于不同磁场中 (4)两棒位于不同磁场中
v1 1 2
v2
两棒动量守恒吗? 两棒动量守恒吗?
两棒动量守恒吗? 两棒动量守恒吗?
无外力不等距双棒
1.电路特点 相当于电源; 棒1相当于电源;棒2受安培力而 起动,运动后产生反电动势. 起动,运动后产生反电动势. 2.电流特点
v vm
O
t
电容放电式: 电容放电式:
6.达最大速度过程中的两个关系 安培力对导体棒的冲量: 安培力对导体棒的冲量:
mBlCE I 安 = mvm = 2 2 m+ B l C
安培力对导体棒做的功: 安培力对导体棒做的功:
1 2 m( BlCE ) W安 = mvm = 2 2 2 2(m + B l C )
1.电路特点 电容器放电,相当于电源;导 电容器放电,相当于电源; 体棒受安培力而运动。 体棒受安培力而运动。 2.电流的特点 电流的特点 电容器放电时, 电容器放电时,导体棒在安培力作用下开始运 同时产生阻碍放电的反电动势, 动,同时产生阻碍放电的反电动势,导致电流 减小,直至电流为零,此时U 减小,直至电流为零,此时UC=Blv v 3.运动特点 运动特点 a渐小的加速运动,最终做匀 渐小的加速运动, 速运动。 速运动。 4.最终特征 匀速运动 但此时电容器带电量不为零 vm
O
t
电容放电式: 电容放电式:
5.最大速度vm 最大速度v 电容器充电量: 电容器充电量:
Q0 = CE
= CU = CBlvm 电容器放电电量: 电容器放电电量:∆Q = Q0 − Q = CE − CBlvm
放电结束时电量: 放电结束时电量: Q 对杆应用动量定理: 对杆应用动量定理:
mvm = BIl ⋅ ∆t = Bl ∆Q BlCE vm = 2 2 m+B l C
1.电路特点 相当于电源; 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 速起动,运动后产生反电动势. 2.电流特点
v0 1 2
Blv2 − Blv1 Bl( v2 − v1 ) I= = R1 + R2 R1 + R2
随着棒2的减速、 随着棒2的减速、棒1的加速,两棒的相对速 的加速, 变小,回路中电流也变小。 度v2-v1变小,回路中电流也变小。 v1=0时: 电流最大 =0时 v2=v1时: 电流 I=0