初中一元二次函数教案
初中数学教案模板一元二次方程(优秀7篇)
初中数学教案模板一元二次方程(优秀7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学教案模板一元二次方程(优秀7篇)作为一名无私奉献的老师,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
九年级(下)数学教案:二次函数与一元二次方程(全2课时)
主备人用案人授课时间年月日总第课时课题 5.4二次函数与一元二次方程(1)课型新授教学目标1.体会二次函数与方程之间的联系;2.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,以及何时方程有两个不等的实根,两个相等的实根和没有实根;3.理解一元二次方程的根与二次函数y=ax2+bx+c的图象的关系重点理解一元二次方程的根与二次函数y=ax2+bx+c的图象的关系难点理解一元二次方程的根与二次函数y=ax2+bx+c的图象的关系教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:问题1:你能快速地求出一元二次方程2230x x--=的根吗?问题2:请你画出函数223y x x=--图象,研究图象上是否有一些特殊的点和一元二次方程2230x x--=的根之间有某种联系,你有什么发现吗?问题3:研究一元二次方程2230x x-+=的根的个数及其判别式与二次函数223y x x=-+的图像和x轴的交点个数,你能得到什么结论?问题4:你能结合问题2、3,得到一般化的结论吗?结合课本P24内容进行合作探究:一元二次方程20(0)ax bx c a++=≠的根的个数与二次函数2(0)y ax bx c a=++≠的图像和x轴的位置关系之间有什么联系?二.交流展示:1.二次函数的一般形式是什么?与什么有点像?2.写出二次函数322--=xxy的顶点坐标、对称轴,并画出它的图象.探究一:(1)观察图象,x为何值时,y=0?(2)此时函数图象与x轴的交点与一元二次方程y–1 33O xP1教学过程教学内容个案调整教师主导活动学生主体活动根的关系?一般地,如果二次函数cbxaxy++=2的图象与x轴有两个公共点(1x ,0)、(2x ,0 ),那么一元二次方程2=++cbxax有两个不相等的实数根1xx=、2xx=,反之亦成立探究二:(1)观察二次函数962+-=xxy的图象(图1)和二次函数322+-=xxy的图象(图2),分别说出一元二次方程0962=+-xx和0322=+-xx的根的情况.二次函数y=a x2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根acb42-有两个交点有两个不相等的实数根42>-acb有一个交点有两个相等的实数根042=-acb没有交点没有实数根042<-acb三.释疑拓展:1.如图1所示,函数2y ax bx c=-+的图象过(-1,0),则bacacbcba+++++的值是()A.-3 B.3 C.21D.-21判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标。
初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计
在本章节的教学中,我们需要面对的是初三学生,他们在前两年的数学学习中,已经积累了一定的数学基础,掌握了函数、一元一次方程等基本知识。然而,二次函数与一元二次方程作为数学知识的一个难点,对学生而言,理解和运用上可能存在一定困难。
学生在学习过程中可能出现以下情况:对二次函数图像特征的理解不够深入,对一元二次方程求解方法的掌握不够熟练,以及在解决实际问题时不能灵活运用所学知识。因此,在教学过程中,我们要关注以下几点:
(3)鼓励学生进行合作学习,培养学生的团队协作能力和交流表达能力。
3.教学步骤:
(1)导入新课:通过生活中的实际问题,引出二次函数与一元二次方程的概念。
(2)探究新知:引导学生观察二次函数的图像,总结图像特征;教授一元二次方程的求解方法,并分析各种求解方法的适用条件。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(2)一元二次方程的求解方法有哪些?它们之间的优缺点是什么?
2.小组汇报
各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
(1)求解给定二次函数的顶点、开口方向和对称轴。
(2)利用一元二次方程求解实际问题的最优解。
2.教师巡回指导,解答学生在练习过程中遇到的问题。
3.鼓励学生分组讨论和合作学习,培养学生的团队协作能力和交流表达能力。
4.通过一元二次方程的求解过程,让学生体会数学的转化思想,培养学生解决问题的策略和方法。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生积极主动学习的态度。
2.引导学生体会数学在实际生活中的应用价值,增强学生的数学意识。
1.充分了解学生的知识储备,针对学生的薄弱环节进行有针对性的教学。
名师教学设计《一元二次方程》完整教学教案
(一)温故知新
什么是一元一次方程
它的一般形式是:
(二)探索新知
问题1 如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形分析:
设切去的正方形的边长为x cm,则盒
底的长为__________,
宽为__________.
得方程________________________
整理得____________________ ①
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛
分析:全部比赛的场数为___________.
设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_____________场.
列方程______________________
化简整理得_______________ ②
【归纳】1.一元二次方程:______________.
2.一元二次方程的一般形式:__________________ .
其中ax2是____________,_____是二次项系数;bx是__________,_____是一次项系数;_____是常数项.(注意:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数是一个重要条件,不能漏掉.)
3.一元二次方程的解(根):_____________________________.。
2023最新-一元二次方程教案(优秀7篇)
一元二次方程教案(优秀7篇)作为一名默默奉献的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。
优秀的教案都具备一些什么特点呢?牛牛范文为您带来了7篇一元二次方程教案,如果对您有一些参考与帮助,请分享给最好的朋友。
九年级数学《一元二次方程》教案篇一一、教材分析:1、本章的主要内容:(1)一元二次方程的有关概念;(2)一元二次方程的解法,根的判别式及根与系数的关系;(3)实际问题与一元二次方程。
2、本章知识结构图:3、教学目标:(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
4、本章的重点与难点本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。
难点:(1)分析方程的特点并根据方程的特点选择合适的解法;(2)实际背景问题的等量分析,设元列一元二次方程解应用题。
即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。
同时,还要根据实际问题的意义检验求得的结果是否合理。
二、教学中应注意的问题:1、重视一元二次方程与实际的联系,再次体现数学建模思想。
方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。
教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。
当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。
在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。
初中数学《二次函数与一元二次方程》教案
初中数学《二次函数与一元二次方程》教案2.8 二次函数与一元二次方程(1)教学目标一、教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2、理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.3、理解一元二次方程的根就是二次函数与y =h 交点的横坐标.二、能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3、通过学生共同观察和讨论,培养合作交流意识.三、情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2、具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根、两个相等的实根和没有实根.3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标.教学难点1、探索方程与函数之间的联系的过程.2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法教学过程:1、设问题情境,引入新课我们已学过一元一次方程kx+b=0 (k0)和一次函数y =kx+b (k0)的关系,你还记得吗?它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.2、新课讲解例题讲解我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度.一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h 与t 的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?小组交流,然后发表自己的看法.学生交流:(1)h 与t 的关系式是h =-5 t 2+v 0t +h 0,其中的v 0为40m/s,小球从地面抛起,所以h 0=0.把v 0,h 0带入上式即可求出h 与t 的关系式h =-5t 2+40t(2)小球落地时h为0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是-5t 2+40t=0t 2-8t=0t(t- 8)=0t=0或t=8t=0时是小球没抛时的时间,t=8是小球落地时的时间.也可以观察图像,从图像上可看到t =8时小球落地.议一议二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像如下图所示(1)每个图像与x 轴有几个交点?(2)一元二次方程x2+2x=0 , x2-2x+1=0有几个根?解方程验证一下, 一元二次方程x2-2x +2=0有根吗?(3)二次函数的图像y=ax2+bx+c 与x 轴交点的坐标与一元二次方程ax2+bx+c=0 的根有什么关系?学生讨论后,解答如下:(1)二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像与x 轴分别有两个交点、一个交点,没有交点. (2)一元二次方程x 2+2x=0有两个根0,-2 ;x2-2x+1=0有两个相等的实数根1或一个根1 ;方程x2-2x +2=0没有实数根(3)从图像和讨论知,二次函数y=x2+2x与x 轴有两个交点(0,0),(-2,0) ,方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图像与x 轴有一个交点(1,0),方程x2-2x+1=0 有两个相等的实数根1或一个根1二次函数y=x2-2x +2 的图像与x 轴没有交点, 方程x2-2x +2=0没有实数根由此可知,二次函数y=ax2+bx+c 的图像与x 轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.小结:二次函数y=ax2+bx+c 的图像与x 轴交点有三种情况:有两个交点、一个交点、没有焦点.当二次函数y=ax2+bx+c 的图像与x 轴有交点时,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.基础练习1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标.(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4 2、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a 的范围是 .4、已知抛物线y=x2+px+q与x 轴的两个交点为(-2,0),(3,0),则p= ,q= .5. 已知抛物线 y=-2(x+1)2+8 ①求抛物线与y轴的交点坐标;②求抛物线与x轴的两个交点间的距离.6、抛物线y=a x2+bx+c(a0)的图象全部在轴下方的条件是()(A) a<0 b2-4ac0(B)a<0 b2-4ac>0(B)(C)a>0 b2- 4ac>0 (D)a<0 b2-4ac<0想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60 m?你是怎样知道的?学生交流:在式子h =-5t 2+v 0t +h 0中v 0为40m/s, h 0=0,h=60 m,代入上式得-5t 2+40t=60t 28t+12=0t=2或t=6因此当小球离开地面2秒和6秒时,高度是6 0 m.课堂练习 72页小结:本节课学习了如下内容:1、若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ),B( x2,0 )2、一元二次方程ax2+bx+c=0与二次三项式ax2+bx+c及二次函数y=ax2+bx+c这三个“二次”之间互相转化的关系.体现了数形结合的思想3、二次函数y=ax2+bx+c何时为一元二次方程?。
人教版初二一元二次方程和二次函数教案
一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
)0(02≠=++a c bx“未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )C.n=2,m=1D.m=n=1 例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★★2、已知a 是0132=+-x x 的根,则=-a a 622。
★★★3、若=•=-+yx 则y x 324,0352 。
一元二次方程的相关教案【优秀3篇】
一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。
因此一元二次方程便成为了方程中研究的重要内容。
一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。
再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。
初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。
我在这些方程中安排了两个无理根方程。
一元二次方程的教案(必备3篇)
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
数学教案一元二次方程的应用(6篇)
数学教案一元二次方程的应用(6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!数学教案一元二次方程的应用(6篇)在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。
初中数学精品教案:一元二次方程--教学设计
人教版数学九年级上册21.1 一元二次方程教学设计一、内容和内容解析1.内容一元二次方程的概念;根据实际问题中的数量关系建立方程模型.2.内容解析一元二次方程是在一元一次方程基础上“次”的推广,它是解决诸多实际问题的桥梁。
本节课以实际问题为背景,建立数学模型,列出一元二次方程,引导学生观察这些方程的共同特点,并类比一元一次方程,归纳得出一元二次方程的概念,体现了研究代数学问题的一般方法;一元二次方程一般形式也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果.这样编排有利于学生理解并接收新知识,有充分地反映出一元二次方程以及有关概念来源于现实世界,是刻画现实世界的一个有效数学模型.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。
本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。
基于以上分析,本节课的重点是:由实际问题列出一元二次方程和形成一元二次方程的概念.二、教学目标与解析1.教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念.(2)使学生理解并能够掌握一元二次方程的一般形式以及确定项和系数.(3)了解一元二次方程根的概念.2.目标解析(1)通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能了解一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,培养学生分析问题和解决问题的能力及用数学思维的意识.(2)将不同形式的一元二次方程统一为一般形式,让学生从数学符号的角度,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数.(3)会判断一个数是否是一元二次方程的根.三、教学问题诊断分析我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。
初三数学第1讲: 一元二次方程定义及解法(直接开方、配方法)教案
教学过程一、课堂导入1、我们都学过哪几种方程?2、观察方程0562=x,结合以前学过的知识,你能否求出它的根?++x3、今天我们就学习一种新的方程——一元二次方程.二、复习预习复习提问1.什么叫做一元一次方程?定义:只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。
一般形式:ax+b=0(a、b为常数,a≠0)。
一元一次方程标准形式:只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程。
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a ≠0)。
其中a是未知数的系数,b是常数,x是未知数。
未知数一般设为x,y,z。
三、知识讲解考点/易错点1一元二次方程的定义1.方程的分类:通过上面的复习,引导学生答出:学过的几类方程是没学过的方程是x2-70x+825=0,x(x+5)=150.这类“两边都是关于未知数的整式的方程,叫做整式方程.”而在整式方程中,“只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.”据此得出复习中学生未学过的方程是(4)一元二次方程:x2-70x+825=0,x(x+5)=150.同时指导学生把学过的方程分为两大类:特点总结:(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是2。
一元二次方程的一般形式注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,可化为:x2+5x-150=0.从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.强调,其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.要特别注意:二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.判断方法:要判断一个方程是否为一元二次方程,先看它是否为整式方程。
一元二次函数讲解教案2篇
一元二次函数讲解教案一元二次函数讲解教案精选2篇(一)教案:一元二次函数的讲解目标:1. 学生能够理解一元二次函数的基本概念。
2. 学生能够识别一元二次函数的标准形式和一般形式,并进行相互转化。
3. 学生能够画出一元二次函数的图像,并能够提取关键信息。
4. 学生能够解一元二次方程,并能够应用一元二次函数解决实际问题。
教学过程:一、导入(5分钟)通过简单的问题引入一元二次函数的概念:- 请举一个实际生活中的例子,可以用一元二次函数来描述的。
- 你知道一元二次函数和一次函数的区别吗?二、概念讲解(10分钟)1. 定义一元二次函数:y = ax^2 + bx + c。
其中a、b、c为常数,并且a ≠ 0。
2. 一元二次函数的图像呈现抛物线的形状。
3. 标准形式和一般形式的区别:- 标准形式:y = a(x - h)^2 + k。
其中(h, k)为顶点坐标。
- 一般形式:y = ax^2 + bx + c。
4. 标准形式和一般形式的转化方法。
三、画图和提取信息(15分钟)1. 根据给定的一元二次函数,画出抛物线的图像。
2. 从图像中提取关键信息:开口方向、顶点坐标、对称轴、x轴与y轴的交点等。
四、方程求解(15分钟)1. 什么是一元二次方程?如何解一元二次方程?2. 通过图像求解一元二次方程的根。
3. 通过公式求解一元二次方程的根。
4. 实际问题的应用案例。
五、练习与巩固(15分钟)1. 练习解一元二次方程:给定一元二次函数的图像,求解相应的方程。
2. 练习画图和提取信息:给定一元二次函数的一般形式,画出抛物线的图像,并提取关键信息。
3. 练习应用问题:通过一元二次函数解决实际问题。
六、总结与反思(5分钟)请学生总结今天学习的重点内容,并提出自己的疑问或观点。
七、课堂延伸可以引导学生进一步探究一元二次函数的性质,如开口方向、对称性等。
可以让学生自主寻找相关的性质与规律,并进行讨论和总结。
也可以通过拓展问题拓宽学生的思维,如给定一元二次函数的一般形式,求解其与坐标轴的交点等。
一元二次函数讲解教案
一元二次函数讲解教案一、教学目标1.理解一元二次函数的定义、图像和性质。
2.掌握一元二次方程的求解方法。
3.能够运用一元二次函数解决实际问题。
二、教学重点与难点1.教学重点:一元二次函数的定义、图像和性质,一元二次方程的求解方法。
2.教学难点:一元二次函数图像的变换,一元二次方程的求解技巧。
三、教学过程一、导入1.回顾一元一次函数的定义、图像和性质。
2.提问:一元二次函数与一元一次函数有什么区别?二、新课讲解1.定义介绍一元二次函数的定义:一般地,形如y=ax²+bx+c(a≠0)的函数称为一元二次函数。
2.图像开口方向:当a>0时,开口向上;当a<0时,开口向下。
对称性:一元二次函数的图像关于其对称轴对称。
顶点:一元二次函数的图像有唯一的顶点,顶点坐标为(-b/2a,4ac-b²/4a)。
3.性质介绍一元二次函数的性质:当a>0时,函数在顶点左侧单调递减,在顶点右侧单调递增。
当a<0时,函数在顶点左侧单调递增,在顶点右侧单调递减。
函数的最大值或最小值出现在顶点处。
4.一元二次方程介绍一元二次方程的求解方法:公式法:x=[-b±√(b²-4ac)]/2a因式分解法:将一元二次方程分解为两个一次因式的乘积,然后求解。
配方法:将一元二次方程转化为完全平方形式,然后求解。
三、案例分析1.分析几个典型的一元二次函数图像,让学生找出它们的开口方向、对称轴、顶点坐标等。
2.分析几个一元二次方程,让学生运用所学方法求解。
四、巩固练习1.让学生独立完成几个一元二次函数的图像绘制和性质分析。
2.让学生独立求解几个一元二次方程。
五、课堂小结3.强调一元二次函数在实际问题中的应用。
六、课后作业1.绘制几个一元二次函数的图像,并分析它们的性质。
2.求解几个一元二次方程。
3.选取一个实际问题,运用一元二次函数解决。
通过本节课的学习,希望同学们能够掌握一元二次函数的基本知识,为后续学习打下坚实基础。
初中一元二次方程教案模板
初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。
二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。
2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。
三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。
2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。
3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。
4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。
5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。
6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。
四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。
2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。
3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。
4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。
2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。
3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。
4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。
六、教学资源:1. 教材:一元二次方程相关章节的内容。
2. 课件:教师制作的课件,包括图片、文字和动画等。
二次函数教学设计(精选9篇)
二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。
初中数学一元二次方程教案(5篇)
初中数学一元二次方程教案(5篇)初中数学一元二次方程教案(精选5篇)作为一名优秀的教育工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。
下面是小编为大家整理的初中数学一元二次方程教案,如果大家喜欢可以分享给身边的朋友。
初中数学一元二次方程教案篇1学习目标:1、使学生会用列一元二次方程的方法解决有关增长率的应用题;2、进一步培养学生分析问题、解决问题的能力。
学习重点:会列一元二次方程解关于增长率问题的应用题。
学习难点:如何分析题意,找出等量关系,列方程。
学习过程:一、复习提问:列一元二次方程解应用题的一般步骤是什么二、探索新知1.情境导入问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.2023年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2023年村长完成了36.3•亩坡耕地还林还草任务,求①增长率x是多少②该村有50户人家,每户均地村长2023•年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,•则国家将对该村投入补助粮食多少万斤2.合作探究、师生互动教师引导学生分析关于环保的情境导入问题,•这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,•即2023年实际完成的亩数是30(1+x),第二次增长后,即2023年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.教师引导学生运用方程解决问题:①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.②全村坡耕地还林还草为50×36.3=1 815(亩),•国家将补助粮食1815 ×500=907 500(斤)=90.75(万斤).三、例题学习说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
九年级数学上册《 二次函数与一元二次方程》教案
九年级数学上册《二次函数与一元二次方程》教案经典题型教学目标知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.教学重点和难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程设计(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t —5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t -5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s 时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x +9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2++的图像与x轴相交,ax bx c那么交点的横坐标就是一元二次方程2++=0的根.ax bx c(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计二次函数与一元二次方程抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲:一元二次方程
一、考点、热点回顾
1. 一元二次方程的四种解法:
直接开平方法、因式分解法、配方法、公式法
2. 根的判别式:
关于x 的一元二次方程ax bx c a 200++=()≠
∆=-b ac 2
4
当∆>0时,方程有两个不相等的实根
当∆=0时,方程有两个相等的实根
当∆<0时,方程无实根
3. 根与系数关系
关于x 的一元二次方程ax bx c a 200++=()≠ 当
∆≥+=-=01212时,有,x x b a x x c a
二、典型例题
一、复习引入
(学生活动)用配方法解下列方程
(1)6x 2-7x+1=0 (2)4x 2-3x=52
(老师点评) (1)移项,得:6x 2-7x=-1
二次项系数化为1,得:x 2-
76x=-16 配方,得:x 2-76x+(712)2=-16+(712
)2
(x-712)2=25144
x-712=±512 x 1=512+712=7512
+=1 x 2=-512+712=7512-=16 (2)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m )2=n 的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
二、探索新知
如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1=2b a
-,
x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax 2+bx=-c
二次项系数化为1,得x 2+
b a x=-
c a
配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a
)2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0
∴22
44b ac a -≥0
直接开平方,得:x+2b a =±2a
即
∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c
代入式子就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x 2-4x-1=0 (2)5x+2=3x 2
(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
解:(1)a=2,b=-4,c=-1
b 2-4ac=(-4)2-4×2×(-1)=24>0
x=(4)422242
--±±±==⨯
∴x 1x 2 (2)将方程化为一般形式
3x 2-5x-2=0
a=3,b=-5,c=-2
b 2-4ac=(-5)2-4×3×(-2)=49>0
x=(5)57236
--±±=⨯ x 1=2,x 2=-13
(3)将方程化为一般形式
3x 2-11x+9=0
a=3,b=-11,c=9
b 2-4ac=(-11)2-4×3×9=13>0
∴x=(11)11236
--±=⨯
∴x 1=
116+x 2=116 (3)a=4,b=-3,c=1
b 2-4ac=(-3)2-4×4×1=-7<0
因为在实数范围内,负数不能开平方,所以方程无实数根.
三、巩固练习
教材P 42 练习1.(1)、(3)、(5)
四、应用拓展
例2.某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020m m ⎧+=⎨-≠⎩
或③1020m m +=⎧⎨-≠⎩ 解:(1)存在.根据题意,得:m 2+1=2
m 2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x 2-1-x=0
a=2,b=-1,c=-1
b 2-4ac=(-1)2-4×2×(-1)=1+8=9
x=(1)13224
--±=⨯ x 1=,x 2=-12
因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-
12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m 2+1=0,m 不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-13
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-
13. 五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P 45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x 2-12x=3,得到( ).
A .
B .
C .x=32-±
D .x=32
±
22的根是( ).
A .x 1x 2
B .x 1=6,x 2
C .x 1x 2
D .x 1=x 2 3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).
A .4
B .-2
C .4或-2
D .-4或2
二、填空题
1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x 2-8x+12的值是-4.
3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.
三、综合提高题
1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.
2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a ;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100
A
元收费.
(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)
(2
根据上表数据,求电厂规定的A 值为多少?
答案:
一、1.D 2.D 3.C
二、1.x=2b a
-,b 2-4ac ≥0 2.4 3.-3
三、1.x=22
a =a ±│
b │ 2.(1)∵x 1、x 2是ax 2+bx+c=0(a ≠0)的两根,
∴x 1=2b a -,x 2=2b a
-
∴x 1+x 2b a
,
x 1·x 2=2b a -·2b a
-=c a (2)∵x 1,x 2是ax 2+bx+c=0的两根,∴ax 12+bx 1+c=0,ax 22+bx 2+c=0 原式=ax 13+bx 12+c 1x 1+ax 23+bx 22+cx 2
=x 1(ax 12+bx 1+c )+x 2(ax 22+bx 2+c ) =0
3.(1)超过部分电费=(90-A )·
100A =-1100A 2+910A (2)依题意,得:(80-A )·
100A =15,A 1=30(舍去),A 2=50。