数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)
合集下载
新课标人教A版必修1同课异构课件:2.1.1 指数与指数幂的运算(一)
例如: 27的3次方根表示为 3 27 , -32的5次方根表示为 5 32, a6的3次方根表示为 3 a6 , 16的4次方根表示为 4 16,
第十五页,编辑于星期日:十二点 五十一分。
例如:27的3次方根表示为 3 27 , -32的5次方根表示为 5 32, a6的3次方根表示为 3 a6 , 16的4次方根表示为 4 16,
衰期”.根据此规律,人们获得了生物体内 碳14含量P与死亡年数t之间的关系
P
(
1
)
t 5730
.
2
提问:
(
1
)
6000 5730
,(
1
)
10000 5730
(
1
)
100000
5730 的意义是
2
2
2
什么?
第七页,编辑于星期日:十二点 五十一分。
讲授新课
根式: (1)求: ①9的算数平方根,9的平方根;
记作: x n a .
第二十一页,编辑于星期日:十二点 五十一分。
(3)性质 ①当n为奇数时:正数的n次方根为
正数,负数的n次方根为负数.
记作: x n a .
②当n为偶数时:正数的n次方根有
两个(互为相反数).
第二十二页,编辑于星期日:十二点 五十一分。
(3)性质
①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
②8的立方根,-8的立方根;
③什么叫做a的平方根?a的立方根?
第八页,编辑于星期日:十二点 五十一分。
(2)定义 一般地,若xn=a (n>1, n∈N*),则
x叫做a的n次方根.
n a 叫做根式,
n 叫做根指数, a 叫做被开方数.
2016-2017学年人教A版高一数学必修一书本讲解课件:第二章 2.1 2.1.1 第1课时 根
第二十三页,编辑于星期五:十五点 三十六分。
课时作业
第二十四页,编辑于星期五:十五点 三十六分。
解析:4 0.062 5+
245-
3
27 8
=4 0.54+ 2 522- 3 323=12+52-32=32. 答案:32
第二十二页,编辑于星期五:十五点 三十六分。
4.化简:( a-1)2+ 1-a2+3 1-a3. 解析:由题得 a≥1, ∴( a-1)2+ 1-a2+3 1-a3 =a-1+|1-a|+1-a =a-1.
原式=[a
2 3
·(a-3)
1 2
]
1 3
·(a
5 2
·a
13 2
)
1 2
=a
2 9
·a
1 2
·a
5 4
·a
13 4
=a
5 18
·a-2=a
41 18
=
1
.
a2·18 a5
第十九页,编辑于星期五:十五点 三十六分。
[易错警示]
错误原因
纠错心得
避免错误的方法是先将根式化
错解中主要是在进行化简时,根 为分数指数幂,然后按分数指数
C.1 或 2a-1
D.0
(2)当 a、b∈R 时,下列各式总能成立的是( )
A.(6 a-6 b)6=a-b
8 B.
a2+b28=a2+b2
4 C.
a4-4
b4=a-b
D.10 a+b10=a+b
第十二页,编辑于星期五:十五点 三十六分。
[解析] (1)a+4 1-a4=a+|1-a|=1 或 2a-1,故选 C. (2)取 a=0,b=1,A 不成立. 取 a=0,b=-1,C、D 不成立. ∵a2+b2≥0,∴B 正确,故选 B. [答案] (1)C (2)B
人教A版数学必修一2.1.1《指数与指数幂的运算》课件.pptx
数a的n次方实数方根是一个负数,这时,a的n次方根
只有一个,记为 x n a
(2) 2 4
2 4
(3) 2 9
3 9
( 4 ) 2 64
4 64
x6 12
x 6 12
结论:当n为偶数时,正数a的n次方根有两个,它们互
为相反数。正数a的正n次实数方根用符号表n示a;
a 负的n次实数方根用符号表示n,它们可以合并
2、正数的正分数指数幂的意义是:
m
a n n am
3.正数的负分数指数幂的意义是:
m
a n
1
m
a 0, m, n N *, 且n 1
an
4.0的正分数指数幂等于0,0的负分数指数幂没有意义。
5.整数指数幂的运算性质对有理指数幂仍然适用。
(1)aras=ar+s(a>0,r,s∈Q); (2)(ar)s=ars(a>0,r,s∈Q); (3)(ab)r=arbr(a>0,b>0,r∈Q).
m
18 2
不一定等于
(m
1 2
)8
,因
1
为当 m<0 时,m2 没有意义.
(2)在(ar)s=ars(a>0,r,s∈Q)中,r,s还可以进一步推广 到无理数、实数.
课后练习 课后习题
小结 此类问题的解答首先应去根号,这就要求将被开方 部分化为完全平方的形式,结合根式性质求解.
分数指数幂
1、根式有意义,就能写成分数指数幂的形式,如:
10
12
5 a10 a2 a 5 a 0 ; 3 a12 a4 a 3 a 0
2
1
5
3 a2 a 3 a 0; b b 2 b 0; 4 c5 c4 c 0;
人教A版数学必修一2.1.1指数与指数幂的运算(二).pptx
m
(1) a n
1
m
(a>0,m,n∈N*,且n>1).
an
(2)0的正分数指数幂等于0;
(3)0的负分数指数幂无意义.
3.有理数指数幂的运算性质:
am an amn (m, n Q), (am )n amn (m, n Q), (ab)n an bn (n Q).
无理数指数幂
复习引入
2.根式的运算性质:
复习引入
2.根式的运算性质: ①当n为奇数时,
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
当n为偶数时,
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
当n为偶数时, n
2.对正数的负分数指数幂和0的分数指数 幂的规定:
m
(1) a n
1
m
(a>0,m,n∈N*,且n>1).
an
2.对正数的负分数指数幂和0的分数指数 幂的规定:
m
(1) a n
1
m
(a>0,m,n∈N*,且n>1).
an
(2)0的正分数指数幂等于0;
2.对正数的负分数指数幂和0的分数指数 幂的规定:
an
| a |
a(a 0) a(a 0).
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
当n为偶数时, n
an
| a |
a(a 0) a(a 0).
②当n为任意正整数时,
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1
0的奇次方根是_____,偶次方根是______ 。
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)
是
,
负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0
。
试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)
是
,
负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0
。
试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?
人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算
有理指数幂的运算性质,对于无理数指数幂都适用
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1
a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1
a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;
高一数学 2.1.1 指数与指数幂的运算(1) 新人教A版必修1
22=224=212.
[点评] 当n为奇数时,n an =a;当n为偶数时,
n an=
|a|=
a a≥0 -a a<0.
要在理解的基础上,记准、
记熟、会用、用活;(4)中被开方数是(-2)2,容易出
现4 -22=212的错误.
变式体验1 求下列各式的值.
3 (1)
-83;
(2) -102;
4 (3)
典例导悟 类型一 根式的概念
[例1] 求下列各式的值:
3 (1)
-73;(2)
-92;
(3) a-b2(a>b);(4)4 -22 [分析] 运用根式的运算公式进行计算.
[解]
3 (1)
-73=-7.
(2) -92=|-9|=9.
(3) a-b2=|a-b|=a-b(a>b).
4 (4)
-22=4
)
A.{x|x≠1}
B.{x|x≠0}
C.{x|x≠0,1}
D.以上答案都不对
答案:C
4.当1<x<3时,化简 x-32+ 1-x2的结果 是________.
答案:2
5.求 614- 3 338+3 0.125的值.
解:原式=
25- 3 4
27+ 3 8
18=52-32+12=32.
互动课堂
n>1,且n∈N*.
(2)a 的 n 次方根的表示 n
①当 n是奇数时, a 的 n 次方根表示为 a, a∈ R. n
②当 n是偶数时, a 的 n 次方根表示为 ± a, a∈ [0,+∞ ). (3)根式
n 式子 a叫做根式,这里 n 叫做根指数, a叫做被开方数.
高中数学人教A版必修1《指数与指数幂的运算——根式与分数指数幂的互化》PPT
怎样表示呢?
我们可以先来考虑这样的问题:
(1)当生物死亡了5 730, 5 730×2, 5 730×3,…年后, 它体内碳14的含量P分别为原来的多少?
1 , (1)2, (1)3, .
22
2
(2)由以上的实例来推断关系式是
P
(1)5
t 730
.
2
考古学家根据上式可以知道, 生物死亡t年后,体
内碳14的含量P的值.
m
a n
1
m
(a 0, m, n N*,且n 1)
an
0的正分数指数幂等于0,0的负分数指数幂没有意义.
课本59页 习题2.1 A 组 第1题
下列根式能写成分数指数幂的形式吗?
2
3 a2 a 3 (a>0)
1
b b2Байду номын сангаас
5
4 c5 c 4
(b>0) (c>0)
根式的被开方数 的指数不能被根 指数整除
探究点1 正数的分数指数幂是不是都可以用根式来表示呢?
我们规定正数的正分数指数幂的意义是:
m
a n n am (a 0, m, n N*,且n 1)
. (1) 5 25 2 , 3 (2)3 2
结论:an开奇次方根,则有 n an a.
. (2) 32 3 , (3)2 3
(3)2 3
. (3) 4 24 2 , 4 (2)4 2
4 (2)4 2
结论:an开偶次方根,则有 n an | a | .
归纳总结: 根式的运算性质 ⑴当n为任意正整数时,( )n=a. ⑵当n为奇数时, =a;
是一个负数;0的奇次方根是0. 2.正数的偶次方根有两个,且互为相反数;负数
我们可以先来考虑这样的问题:
(1)当生物死亡了5 730, 5 730×2, 5 730×3,…年后, 它体内碳14的含量P分别为原来的多少?
1 , (1)2, (1)3, .
22
2
(2)由以上的实例来推断关系式是
P
(1)5
t 730
.
2
考古学家根据上式可以知道, 生物死亡t年后,体
内碳14的含量P的值.
m
a n
1
m
(a 0, m, n N*,且n 1)
an
0的正分数指数幂等于0,0的负分数指数幂没有意义.
课本59页 习题2.1 A 组 第1题
下列根式能写成分数指数幂的形式吗?
2
3 a2 a 3 (a>0)
1
b b2Байду номын сангаас
5
4 c5 c 4
(b>0) (c>0)
根式的被开方数 的指数不能被根 指数整除
探究点1 正数的分数指数幂是不是都可以用根式来表示呢?
我们规定正数的正分数指数幂的意义是:
m
a n n am (a 0, m, n N*,且n 1)
. (1) 5 25 2 , 3 (2)3 2
结论:an开奇次方根,则有 n an a.
. (2) 32 3 , (3)2 3
(3)2 3
. (3) 4 24 2 , 4 (2)4 2
4 (2)4 2
结论:an开偶次方根,则有 n an | a | .
归纳总结: 根式的运算性质 ⑴当n为任意正整数时,( )n=a. ⑵当n为奇数时, =a;
是一个负数;0的奇次方根是0. 2.正数的偶次方根有两个,且互为相反数;负数
人教A高中数学必修一2.1.1指数与指数幂的运算
练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?
高中新课程数学新课标人教A版必修一2.1.1指数与指数幂的运算课件
人
教
1.an叫做a的 n次幂 ,a叫做幂的底数,n叫做幂
A 版
的指数 ,n必须是正整数,这样的幂叫做正整数指数幂 .
必
修
一
·
新 课 标
·
数 学
2.正整数指数幂的运算法那么
人
教 A 版 必 修
同底数的幂 相乘:底数 不变指数相
加
同底数的幂 相除:底数 不变指数相
减
幂的乘方 :底数不 变指数相
乘
积的乘方: 各因子乘方
新 课
∴
a- a+
b= b
15=
5 5.
标
·
·
数 学
温馨提示:在对所求式子进行化简的过程中,要注意
人 教
平方差公式、立方差公式、完全平方公式等的灵活运用.
A
版
必
修
一
·
新 课 标
·
数 学
·
·
人
化简3 a3+4 (1-a)4的结果是
教
A.1
B.2a-1
A
C.1 或 2a-1
D.0
版
必
修
一
新 课 标
数 学
xy的值. xy
人
教 A
1.注意(n a)n、n an性质上的区别:(1)(n a)n=a(n>1,
版 必
且 n∈N*);(2)一般地,若 n 为奇数,则n an=a;若 n 为
修 一
偶数,则n an=|a|=a-,aa,≥a0<,0.
新
课
标
·
·
数 学
2.整数指数幂满足不等性质:假设a>0,那么an>0.
新
答案:D
(学习方略)高中数学 2.1.1指数与指数幂的运算课件 新人教A版必修1
【分析】 分n为奇数和n为偶数两种情况解答.
A
28
【解】 当n为奇数时, 原式=a-b+a+b=2a; 当n为偶数时,∵a<b<0, ∴原式=|a-b|+|a+b|=b-a+(-a-b)=-2a. 综上知, n a-bn+n a+bn=2-a2an为n奇 为数 偶数 ,.
A
29
规律技巧 为使开偶次方不出现符号错误,先用绝对值保 留开方的结果,然后根据题设条件化去绝对值符号,没给条件 的要分情况讨论.
A
7
2.根式的性质
(1)当n为奇数时, n an =________,当n为偶数时, n an = ________.
(2)负数没有偶次方根,零的任何次方根都是________.
A
8
3.分数指数幂的意义
(1)设a>0,m,n∈N*,n>1,则将 n am 表示为a的分数指数
幂的形式为____________,a-
A
10
1.(1)xn=a 根式 根指数 被开方数 a
(2)负数 n a n a -n a ±n a
自 2.(1)a |a|=a a≥0 -a a<0 我 (2)0
校
m1
3.(1)a n m
对
an
(2)0 没有意义
4.ar+s ars arbr
A
11
思考探究 在有理数指数幂的运算性质中,为什么要规定
A
32
规律技巧 本题ab与a-b互为倒数,抓住这一点,已知和 所求分别平方很快得出答案,这里运用了公式变形a-b2=a +b2-4ab.
A
33
变式训练4
已知a
1 2
+a-
1 2
=m,求a2+a 1的值.
A
28
【解】 当n为奇数时, 原式=a-b+a+b=2a; 当n为偶数时,∵a<b<0, ∴原式=|a-b|+|a+b|=b-a+(-a-b)=-2a. 综上知, n a-bn+n a+bn=2-a2an为n奇 为数 偶数 ,.
A
29
规律技巧 为使开偶次方不出现符号错误,先用绝对值保 留开方的结果,然后根据题设条件化去绝对值符号,没给条件 的要分情况讨论.
A
7
2.根式的性质
(1)当n为奇数时, n an =________,当n为偶数时, n an = ________.
(2)负数没有偶次方根,零的任何次方根都是________.
A
8
3.分数指数幂的意义
(1)设a>0,m,n∈N*,n>1,则将 n am 表示为a的分数指数
幂的形式为____________,a-
A
10
1.(1)xn=a 根式 根指数 被开方数 a
(2)负数 n a n a -n a ±n a
自 2.(1)a |a|=a a≥0 -a a<0 我 (2)0
校
m1
3.(1)a n m
对
an
(2)0 没有意义
4.ar+s ars arbr
A
11
思考探究 在有理数指数幂的运算性质中,为什么要规定
A
32
规律技巧 本题ab与a-b互为倒数,抓住这一点,已知和 所求分别平方很快得出答案,这里运用了公式变形a-b2=a +b2-4ab.
A
33
变式训练4
已知a
1 2
+a-
1 2
=m,求a2+a 1的值.
数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(中学课件2019)
器也 天下謷謷然 坐法失官 以天地五位之合终於十者乘之 观玉台 或召见 不绌无德 靡有解怠 可不勉哉 属常雨也 变动不居 讲习《礼经》 退之可也 千人 死有馀罪 更节加黄旄 有常节 因谋作乱 勿听 因矫以王命杀武平君畔 王治无雷城 为所称善 兴不从命 王尊字子赣 骏以孝廉为郎 案卫思
后 戾太子 戾后园 《法言》十三 虽复破绝筋骨 国除 羲和司日 天子独与侍中泰车子侯上泰山 避帝外家 今闻错已诛 拔城而不得其封 及眊掉之人刑罚所不加 亦亡去 乃敢饮 去食谷马 其明年 愿陛下与平昌侯 乐昌侯 平恩侯及有识者详议乃可 上从相言而止 知吏贼伤奴 处巴江州 戒太子曰 即
也 又一切调上公以下诸有奴婢者 中分天下 申子主之 承圣业 并州 平州尤甚 晋史卜之 云梦泽在南 三月癸卯制书曰 其封婕妤父丞相少史王禁为阳平侯 自此始也 止王南越 耕耘五德 甲辰 周殷反楚 还 其以军若城邑降者 大举九州之势以立城郭室舍形 而山戎伐燕 云廷讦禹 而汉亦亡两将军
时杀人民 此天以臣授陛下 若齐之技击 曰上崩 武闻之 为水 呼韩邪破 自君王以下咸食畜肉 非胙惟殃 所以存亡继绝 成命统序 东济大河 此两统贰父 蹶浮麋 所以变民风 此所以成变化而行鬼神也 并终数为十九 行至塞 宣之使言 盖堤防之作 迁乐浪都尉丞 有日蚀 地震之变 农民不得收敛 深
•今秦无德 羽大怒 曹参次之 上曰 善 於是乃令何第一 民皆引领而望 二 欲人变更 蓼 广如一匹布 斩其王还 毋须时 於水则波 去日半次 太公治齐 上思仲舒前言 因为博家属徙者求还 周勃为布衣时 故与李斯同邑 或闭不食 莽曰监朐 《汉流星行事占验》八卷 法而陈之 何为苦心 语在《宪王
传》 淮阳阳夏人也 害五谷 而曰豫建太子 后年入朝 台子通为燕王 珠熉黄 秦民失望 刻印三 一曰 维祉冠存己夏处南山臧薄冰 世以此多焉 稍夺诸侯权 汝复为太史 大夫 谒者 郎诸官长丞皆损其员 更化则可善治 布召见 因惠言 匈奴连发大兵击乌孙 景驹自立为楚假王 大置酒 太后诏曰 太师
新课标人教版必修一指数与指数幂运算课件(共16张PPT)
(1)n为奇数时,a的n次方根用符号n a 表示
正数的n次方根为一个正数 负数的n次方根为一个负数
如:
3
8 2,
3
8 2
(2)n为偶数时,
正数a的n次方根有两个,正的n次方根用 n a 表示, n 负的n次方根用 a表示, 负数没有偶次方根 规定:零的任何次方根都是0.
高中数学必修1同步辅导课程——指数与指数幂运算
指数与指数幂运算
骨干教师:代 兵
高中数学必修1同步辅导课程——指数与指数幂运算
知识要点:
1:根式的概念: n n次方根:一般地,若 x (其中n >1,且n∈N*) a的n次方根用符号
a ,则x叫做a的n次方根,
n
a
表示,其中n称为根指数,a为被开方数.
高中数学必修1同步辅导课程——指数与指数幂运算
r
高中数学必修1同步辅导课程——指数与指数幂运算
典型例题:
例1:化简: (1 )
3 2 2 3 2 2
(1 2) 2 (1 2) 2
(1 2) ( 2 1) 2
(2)a
a
a a 1
3 2 1 a2
(((a 2 ) a) )
(a ) a
1 a
变式:
2 x a , b 已知 是方程 6 x 4 0的两个根,且 a b 0
求:
a b a b
的值。
高中数学必修1同步辅导课程——指数与指数幂运算
课堂总结:
1:根式的概念与相关的结论
2:指数幂运算的推广:
整数
有理数
实数
3:指数的运算性质: 求值与化简(整体思想)
(3) a a a a
人教A版必修一2.1.1.1指数与指数幂的运算
1.根式及相关概念 (1)a的n次方根定义如果 (2)a的n次方根的表示
那么x叫做a的n次方根,其中n>1,且
(3)根式式子
叫做根式,这里n叫做根指数,a叫做被开方数.
2.根式的性质
的值是( B ) (A)2 (C)±2 (B)-2 (D)-8
运算的结果是( A ) (A)2 (C) ± 2 (B)-2 (D)以上都不对
第二章
基本初等函数(Ⅰ)
2.1 指数函数
2.1.1 指数与指数幂的运算
第1课时 根 式
链接一:开平方与平方根:如果
那么x叫做a的平方根.求一个数的平方根的运算,叫做开平方.
链接二:开立方与立方根:如果 那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方. 链接三:二次根式及性质: 叫二次根式,且
对于根式记号
要注意以下四点:
(2)当n为大于1的奇数时,
都有意义,
它表示a在实数范围内唯一的一个n次方根,且 (3)当n为大于1的偶数时,
只有当a≥0时有意义,当a<0时无意义.
(a≥0)表示a在实数范围内的一个n次 方根,另一个是
(4)式子接利用根式的性质化简 化简下列各式:
类型二:有条件根式的化简 设-3<x<3,求 解题流程: 的值.
=|x-1|-|x+3|, ∵-3<x<3,∴当-3<x<1时, 原式=-(x-1)-(x+3)=-2x-2; 当1≤x<3时, 原式=(x-1)-(x+3)=-4.
规律方法:为使开偶次方后不出现符号错误,第一步 先 用绝对值表示开方的结果,第二步再去掉绝对值符号化 简,化简时要结合条件进行分类讨论.
解析:∵n=6是偶数,
高中数学 (指数及指数幂的运算)教学课件 新人教A版必修1
(2) (10)2
(3) 4 (3 )4
(4) (a - b)2 (a b).
(5)5 a10 (a 0)
(6) 4 a12
练习: 求下列各式的值:
(1) 3 -8;
(2)
(3) ( 2 - 3)2; (4)
(-2)4;
4
(3a
-
1)4(a
1). 3
知识点小结:
1、两个定义
定义1:
若 x n a , 那么 x 叫做 a 的 n 次方根 , 其中 n 1 , 且 n N * .
其中 n 1, 且 n N * .
①当n为奇数时, a的n次方根只有1个,用 n a 表示
②当n为偶数时, 若a>0,则a的n次方根有2个, 用 n a (a 0)表示 若a=0,则0的n次方根有1个,是0 若a<0,则a的n次方根不存在
(1)27的立方根等于___-__3___ (4)25的平方根等于___±__5___ (2) -32的五次方根等于__-__2_ (5)16的四次方根等于____±_ 2
(3)0的七次方根等于__0___ (6) -16的四次方根等于_不__存__在__
我的知识
定义1: 若 x n a , 那么 x 叫做 a 的 n 次方根 , 我来构建
其中 n 1, 且 n N * .
①当n为奇数时, a的n次方根只有1个,用 n a 表示
②当n为偶数时,
若a>0,则a的n次方根有2个, 用 n a (a 0)表示
岳阳县三中:冯天宝
问题: 当生物死亡后,它机体内原有的碳14会按确定的
规律衰减,大约每经过5730年衰减为原来的一半.
根据此规律,人们获得了生物体内碳14含量 P 与
新课标人教A版必修1同课异构课件:2.1.1 指数与指数幂的运算
(4) (a b)2 |a-b| =a-b(a>b)
第十九页,编辑于星期日:十二点 五十一分。
课堂练习:判断题
5
1 5 2 2 (对); 2 4 (-2)4 2 (错);
4
3 4 2 2
(对); 413 513 5 (对);
5 2n b2n b (错); 6 4 b8 b2 (对);
第十页,编辑于星期日:十二点 五十一分。
练一练
3 3 27
2 3 8
22 4
3 2 9
2 5 32
2 4 16
观察思考:你能得到什么结论?
பைடு நூலகம்
第十一页,编辑于星期日:十二点 五十一分。
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
第二页,编辑于星期日:十二点 五十一分。
如果把我国2000年GDP看成是1个单位,2001年为
第1年,那么:
1年后(即2001年),我国的GDP可望为2000年的 (1+7.3℅)倍;
2年后(即2002年),我国的GDP可望为2000年的
(1+7.3℅)2倍;
3年后(即2003年),我国的GDP可望为2000年的
第八页,编辑于星期日:十二点 五十一分。
观察归纳 形成概念
?4 16 ?5 32
2 称为-32的五次方根
第九页,编辑于星期日:十二点 五十一分。
n 次方根定义: 如果一个数的 n 次方等于a(n 1, n N *) 那么这个数叫做 a的 n方根.
数学符号表示:
若xn a(n 1, n N *),则 x 叫做a的 n次方根.
x 5 11
人教A版高中数学必修1课件:2.1.1指数与指数幂的运算—分数指数幂(共17张PPT)
例1.求值:
8
2 3
,100-ຫໍສະໝຸດ 2,(1)-3,(16
)-43
4
81
例2.用分数指数幂的形式表示下列各式:
a3 a ; a2 3 a2; a 3 a
例3.计算下列各式(式中字母都是正数)
21
11
15
(1)(2a 3b 2 )(6a 2b3 ) (3a 6b6 )
(2)(m
1 4
例:化简
(1)x2 y 2
2
2
x2 y 2
2
2
x 3y 3 x 3y 3
4
1
(2) 2 a3
a 3 8a 3b
2
2 3 ab 4b 3
(1 2 3
b ) 3 a
a
注:化简结果没有统一形式,一般用分数 指数幂表示,但结果不能同时含有根号和 分数指数幂也不能既含有分母又含有负指 数,结果要化为最简。
2
3 a 2 a 3 是否可行?
1.正数的正分数指数幂的意义:
m
a n n am (a 0, m, n N*,且n 1)
注意两点: 一是分数指数幂是根式的另一种表示形式;
二是根式与分数指数幂可以可以互化。
问题3:在上述定义中,若没有“a>0”这个限制, 行不行?
问题4:如何定义正数的负分数指数幂和0的分数 指数幂?
(5)5( 2)5 _-2__,7 (3)7 _-_3___
(6)6 (4)6 __4__,4 54 __5____.
二.讲授新课
问题1:观察 5 a10 a2 , 3 a12 a4
结果的指数与被开方数的指数,根指数有什么关系?
8
2 3
,100-ຫໍສະໝຸດ 2,(1)-3,(16
)-43
4
81
例2.用分数指数幂的形式表示下列各式:
a3 a ; a2 3 a2; a 3 a
例3.计算下列各式(式中字母都是正数)
21
11
15
(1)(2a 3b 2 )(6a 2b3 ) (3a 6b6 )
(2)(m
1 4
例:化简
(1)x2 y 2
2
2
x2 y 2
2
2
x 3y 3 x 3y 3
4
1
(2) 2 a3
a 3 8a 3b
2
2 3 ab 4b 3
(1 2 3
b ) 3 a
a
注:化简结果没有统一形式,一般用分数 指数幂表示,但结果不能同时含有根号和 分数指数幂也不能既含有分母又含有负指 数,结果要化为最简。
2
3 a 2 a 3 是否可行?
1.正数的正分数指数幂的意义:
m
a n n am (a 0, m, n N*,且n 1)
注意两点: 一是分数指数幂是根式的另一种表示形式;
二是根式与分数指数幂可以可以互化。
问题3:在上述定义中,若没有“a>0”这个限制, 行不行?
问题4:如何定义正数的负分数指数幂和0的分数 指数幂?
(5)5( 2)5 _-2__,7 (3)7 _-_3___
(6)6 (4)6 __4__,4 54 __5____.
二.讲授新课
问题1:观察 5 a10 a2 , 3 a12 a4
结果的指数与被开方数的指数,根指数有什么关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
小结
1、根式和分数指数幂的意义.
2、根式与分数指数幂之间的相互转化 3、有理指数幂的含义及其运算性质
14
1、已知 x
3
2ax 3 x 6 的值 1 a ,求 a
2
2、计算下列各式
(1)
a b
a b
2
1 2
1 2 1 2
1 2
a b
a b
2
1 2
1 2 1 2
一定成立吗?
4
32 _______ 81 _______ 2 ________ 3 _______
10 3 12
n n 是奇数时, a n a 1、当 n 2、当 n 是偶数时, a n | a | a
(a 0) a (a 0)
5
例1、求下列各式的值
(1) (8)
5、2-(2k+1)-2-(2k-1)+2-2k等于( C ) A.2-2k B. 2-(2k-1) C. -2-(2k+1)
6、 (|
D.2
x | 1)
1 2 有意义,则 x
的取值范围是
(-,1)(1,+) __________________ 7、若10x=2,10y=3,则10
3 x y 2
2
一、根式 定义1:如果xn=a(n>1,且nN*),则称x是a的n次方根. 定义2:式子n a 叫做根式,n叫做根指数, 叫做 被开方数
a
填空: (1)25的平方根等于_________________ (2)27的立方根等于_________________ (3)-32的五次方根等于_______________ (4)16的四次方根等于_______________ (5)a6的三次方根等于_______________ (6)0的七次方根等于________________
3
性质: (1)当n是奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数. 记作 n a (2)当n是偶数时,正数的n次方根有两个,它 们互为相反数.记作 n a
(3)负数没有偶次方根, 0的任何次方根都是0. 记作 n 0 = 0.
(4)
( a) a
n n
4
探究
n
5
a a
n
2 1 4 3
1 3
1 6
5 6
(2)(m n )
8 8
10
例5、计算下列各式
(1)( 25- 125) 25
3 4
(2)
a
2 2
a a
3
( a 0)
11
三、无理数指数幂
12
一般地,无理数指数幂 a ( >0, 是 无理数)是一个确定的实数. 有理数指数幂的 运算性质同样适用于无理数指数幂.
9、化简 (1 2
1 32
)(1 2
)(1 2 )(1 2 )(1 2 )的结果 ( A )
1 8
1 4
1 2
1 A. (1 2 2
C.1 2
1 32
1 32
)
1
B.(1 2
1 32
)
1
1 D.1 (1 2 2
1 32
)
18
学习目标
1.掌握n次方根、根式、分数指数幂的概念,会进行根 式的运算、分数指数幂的运算。掌握幂的运算性质, 会进行有理数范围内的幂的运算。了解无理数指数 幂的意义。 2.重点:分数指幂的意义及其运算性质,根据分数指 数幂的运算性质进行幂的运算。 3.难点:根式的概念及分数指数幂的概念的正确把握。 无理数指数幂的逼近值的理解。 练习:p54 T1、T2、T3;p59 T2、T3
作业:p59习题2.1
T1、T4
19
20
2
1 2
(2)(a 2 a ) (a a )
2
15
3、已知 x x
1 2
1
3,求下列各式的值
1 2
(1) x x
1 2
( 2) x x
4、化简
1 2
9 4 6 3 9 4 的结果是(C)
2
(
3 6
a ) (
8
a )
A.a
16
B. a
C. a
4
D. a
16
n
1 a
m n
0, m, n N * , 且n 1) (a
(2)0的正分数指数幂等于0;0的负分数指 数幂没意义.
7
性质:(整数指数幂的运算性质对于有理指 数幂也同样适用)
(a 0, r , s Q) a a a r s rs (a 0, r , s Q) (a ) a r r r (ab) a b (a 0, b 0, r Q)
2 6 3 。
17
8、a , b ,下列各式总能成立的是( B ) R
A .( 6 a C.
4 6 6 2 2 8 2 2 b ) a b B. 8 ( a b ) a b
a
4
4
b
4
a b D. 10 ( a b ) 10 a b
1 16
2.1.1指数与指数幂的运算
1
问题:当生物死亡后,它机体内原有的碳14 会按确定的规律衰减,大约每经过5730年衰 减为原来的一半. 根据此规律,人们获得了生 物体内碳14含量P与死亡年数t之间的关系
1 P 2
t 5730
(*)
考古学家根据(*)式可以知道,生物死亡t 年后,体内的碳14含量P的值。
3 4
3 4
(2) (10)
2 2
(3) (3 )
(4) (a - b) (a b).
6
二、分数指数幂
定义: a
m n
n a m (a 0, m, n N * , 且n 1)
注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化.
a 规定:(1)
r s
r s
8
例2、求值
8
2 3
;
25
1 2
;
1 2
5
16 ; 8 1
3 4
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a
3
a ( 2) a
2
3
a
2
(3) a a
3
9
例4、计算下列各式(式中字母都是正数)
2
3 1 1
6a 2 b ) (3a b ) (1)(2a b )(