初一数学一元一次方程解决问题专项练习
部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

专题08 解一元一次方程(40题) 专项训练1.(2022·河南周口·七年级期末)解方程:(1)2(3)37(1)3x x x +-=--; (2)3151123y y +-=+2.(2022·江苏扬州·七年级期末)解下列方程:(1)4x ﹣3=2(x ﹣1)(2)152126x x -+-=3.(2022·河北保定·七年级期末)解方程:(1)2(1)129x x --=; (2)13124x x +--=1.【答案】(1)2x =-;(2)1x =-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.(1)解:去括号得:22129x x --=,移项得:29212x x -=+,合并同类项得:714x -=,系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)(31)4x x +--=,去括号得:22314x x +-+=,移项得:23412x x -=--,合并同类项得:1x -=,系数化为1得:1x =-.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.4.(2022·浙江丽水·七年级期末)解下列方程(1)3x +1=-2 (2)13132y y -+=-5.(2022·黑龙江·七年级期末)解下列方程:(1)862(64)x x x =--(2)231147x x +--=【答案】(1)x =2 (2)x =-2【分析】(1)先去括号,移项,合并同类项,系数化为1可得(2)去分母,去括号,移项,合并同类项,系数化为1可得(1)解:去括号得:8x =6x +8x -12移项得:8x -6x -8x =-12合并同类项得:-6x =-12系数化为1得:x =2(2)解:去分母得:7(x +2)-4(3x -1)=28去括号得:7x+14-12x +4=28移项得:7x -12x =28-14-4合并同类项得:-5x =10系数化为1得:x =-2【点睛】本题考查了解一元一次方程,熟练掌握解题步骤并小心计算是解题关键.6.(2022·福建泉州·七年级期末)解方程:714(10)3x x --=-.【答案】10x =【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:()()371210x x --=-,去括号得:3712120x x -+=-,移项得:1212037x x --=---,合并同类项得:13130x -=-,系数化为1得:10x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.7.(2022·河北·涿州市七年级期末)解一元一次方程(1)0.50.7 6.5 1.3x x -=-(2)1123x x --=8.(2022·陕西渭南·七年级期末)解方程:5144123x x x --+=-.9.(2022·四川眉山·七年级期末)解方程:213134x x -+-=10.(2022·河南郑州·七年级期末)解下列方程:(1)2(32)14x -=(2)13735x x x -+-=-【答案】(1)3x =(2)7x =【分析】(1)先去括号,再移项,合并同类项,化系数为 1;(2)先去分母,再去括号,移项,合并同类项,化系数为 1.(1)解:去括号,可得:6414x -=,移项,合并同类项:618x =,系数化为1,可得:3x =;(2)解:去分母,可得:155(1)7153(3)x x x --=´-+,去括号,可得:155510539x x x -+=--,移项,合并同类项,可得:1391x =,系数化为1,可得:7x =.【点睛】本题考查解一元一次方程,掌握解一元一次方程的方法是解题关键.11.(2022·新疆塔城·七年级期末)解方程:(1)()73326x x -+=(2)16136x x x -+-=-【答案】(1)6x =- (2)2x =【分析】(1)先去括号,再移项,合并同类项,最后化系数为1即可;(2)先去分母,再去括号,移项、合并同类项,最后化系数为1.(1)解:7966x x --=212x -=6x =-.(2)解:()()62166x x x --=-+714x -=-2x =.【点睛】此题考查了解一元一次方程,涉及去分母、去括号、移项,合并同类项、化系数为1等知识,解题的关键是掌握相关知识.12.(2022·福建泉州·七年级期末)解方程:2141126x x +--=.【答案】x =1【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【详解】去分母,得:3(2x +1)﹣(4x ﹣1)=6,去括号,得:6x +3﹣4x +1=6,移项,得:6x ﹣4x =6﹣3﹣1,合并同类项,得:2x =2,系数化为1,得:x =1;【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.(2022·四川广安·七年级期末)解方程:(1)()43204x x --=(2)2151136x x +--=14.(2022·黑龙江绥化·期末)解方程.(1)32185525x += (2)311043x x -=15.(2022·四川广元·七年级期末)解方程:21252x x x +--=-.16.(2022·河北承德·七年级期末)解下列方程:①2342x x -=- ②123123x x +--=.17.(2022·黑龙江牡丹江·七年级期末)解方程:312123x x x ---+=.18.(2022·安徽阜阳·七年级期末)2121134-+=-x x .19.(2022·贵州毕节·七年级期末)解方程:(1)2(3)3(1)6x x -+-=(2)123126x x +--=【答案】(1)3x = (2)0x =20.(2022·黑龙江大庆·期末)解方程:(1)3(x ﹣2)=2﹣5(x ﹣2); (2)223146x x +--=21.(2022·河南许昌·七年级期末)解方程:(1)83(21)172(3)--=++x x(2)14527-+-=-x x x22.(2022·宁夏·七年级期末)解下列方程:(1)5(2)3(21)7x x +--=(2)123123x x +--=23.(2022·陕西·西安七年级期末)解方程:(1)3x ﹣2(10﹣x )=5;(2)123146x x +--=.【答案】(1)x =5; (2)x =-3【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:去括号得:3x -20+2x =5,移项合并得:5x =25,解得:x =5;(2)去分母得:3x +3-4x +6=12,移项合并得:-x =3,解得:x =-3;【点睛】此题考查了解一元一次方程,熟练掌握解方程的基本步骤是解本题的关键.24.(2022·辽宁·朝阳七年级期末)解方程:(1)2(21)37x x -=-; (2)341125x x -+-=.25.(2022·海南·七年级期末)解下列方程:(1)()()4321x x -+=-; (2)2543137x x +--=.26.(2022·安徽·七年级期末)解方程:123152x x -+-=27.(2022·山东聊城·七年级期末)解下列一元一次方程:(1)()()73124x x -+=- (2)121123x x --+=【答案】(1)4x =-(2)5x =【分析】(1)根据去括号,移项,合并同类项的步骤解一元一次方程即可;(2)根据去分母,去括号,移项,合并同类项的步骤解一元一次方程即可;28.(2022·湖南永州·七年级期末)解方程:(1)()()31241x x +=-; (2)5121136x x +--=.29.(2022·云南临沧·七年级期末)解方程:(1)4x -4=6-x(2)142123x x ---=【答案】(1)2(2)-1【分析】(1)根据解方程的步骤求解即可;(2)根据解方程的步骤求解即可.(1)解:4x -4=6-x ,移项得4x +x =6+4,合并同类项得5x =10,系数化1得x =2;(2)解:去分母得 3(x -1)-2(4x -2)=6,去括号得 3x -3-8x +4=6,移项合并得 -5x =5,系数化1得 x =-1;【点睛】本题考查了一元一次方程的解法,解题的关键是熟练掌握解方程的步骤.30.(2022·山东聊城·七年级期末)解下列方程:(1)32(3)23(21)--=--x x(2)332164x x +-=-31.(2022·福建龙岩·七年级期末)解方程:(1)6742x x -=-;(2)3157146y y --=+.32.(2022·山东威海·期末)解方程:(1)42(4)2(1)x x -+=-; (2)121(7)(5)352x x +=--; (3)0.30.40.50.220.20.3x x --+=.33.(2022·山东烟台·期末)解方程:(1)0.170.210.70.03x x--=(2)31423x x--+=∴x =7.【点睛】本题考查一元一次方程的应用,熟练掌握一元一次方程的解法是解题关键.34.(2022·山东济南·期末)解方程:(1)51263x x x +--=- (2)20.820.50.4x x --=35.(2022·吉林四平·七年级期末)某同学解方程12324x x +-=+的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得()()2123x x +=-+.(第一步)去括号,得2223x x +=-+.(第二步)移项,得2223x x +=-+.(第三步)合并同类项,得33x =.(第四步)系数化为1,得1x =.(第五步)(1)该同学解答过程从第___________步开始出错,错误原因是____________________;(2)写出正确的解答过程.【答案】(1)一,漏乘不含分母的项(2)见解析.【分析】(1)观察第一步,可得结论;(2)按解一元一次方程的一般步骤求解即可.(1)解:方程去分母,得2(x +1)=(2-x )+12,所以该同学从第一步就出错了,错误的原因是去分母时,不含分母的项漏乘了.故答案为:一,漏乘不含分母的项;(2)解:去分母,得2(x +1)=(2-x )+12,去括号,得2x +2=2-x +12,移项,得2x +x =2-2+12,合并同类项,得3x =12,系数化为1,得x =4.【点睛】本题主要考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.36.(2022·河南开封·七年级期末)下面是某同学解方程的过程,请认真阅读并完成相应的任务:解方程:51263x x x +--=-解:去分母,得()()125621x x x -+=--………………第一步去括号,得125622x x x -+=-+ ……………………第二步移项,得621252x x x --+=--+ ……………………第三步合并同类项,得515x -=- ………………………………第四步系数化为1,得3x = ………………………………………第五步(1)任务一:填空:①以上解方程步骤中,第一步去分母的依据是___.②第___步开始出现错误,这一步错误的原因是.(2)任务二:请写出本题正确的解题过程.(3)任务三:请你根据平时的学习经验,在解方程时还需注意的事项提一条合理化建议.【答案】(1)①等式的基本性质二;②二,去括号时没有变符号;(2)1x =(3)去分母时要注意每一项都要乘到,(答案不唯一,合理就行)【分析】(1)观察这位同学解方程的步骤,利用等式的基本性质及去括号可进行求解;(2)根据一元一次方程的解法可直接进行求解;37.(2022·吉林长春·七年级期末)阅读下面方程的求解过程:解方程:31421 25x x-+=-解15x﹣5=8x+4﹣1,(第一步)15x﹣8x=4﹣1+5,(第二步)7x=8,(第三步)78x=.(第四步)上面的求解过程从第 步开始出现错误;这一步错误的原因是 ;此方程正确的解为 .38.(2022·山东滨州·七年级期末)学习了一元一次方程的解法后,老师布置了这样一道计算题3157146x x ---=,甲、乙两位同学的解答过程分别如下:甲同学:解方程3157146x x ---=.解:3157121121246x x --´-´=´ 第①步3(31)122(57)x x --=- 第②步3112107x x --=- 第③步3107112x x -=-++ 第④步76x -= 第⑤步67x =-. 第⑥步乙同学:解方程3157146x x ---=.解:31571211246x x --´-=´ 第①步3(31)12(57)x x --=- 第②步3311014x x --=- 第③步3101413x x -=-++ 第④步710x -=- 第⑤步107x =-. 第⑥步老师发现这两位同学的解答过程都有错误,请回答以下问题:(1)甲同学的解答过程从第__________步开始出现错误(填序号);(2)乙同学的解答过程从第__________步开始出现错误(填序号);错误的原因是_________________________.(3)请写出正确的解答过程.【答案】(1)③(2)①,错用等式的性质2(方程两边漏乘)(3)1x =-【分析】准确运用一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出答案.39.(2022·浙江台州·七年级期末)解方程:213x +﹣1016x +=1.甲、乙两位同学的解答过程如下甲同学:解:213x +×6﹣1016x +×6=1第①步2(2x +1)﹣10x +1=1⋯⋯第②步4x +2﹣10x +1=1⋯⋯第③步4x ﹣10x =1﹣2﹣1⋯⋯第④步﹣6x =﹣2⋯⋯第⑤步x =13……第⑥步乙同学:解:426x +﹣1016x +=1⋯⋯第①步421016x x +-+=1⋯⋯第②步636x -+=1⋯⋯第③步﹣6x +3=6⋯⋯第④步﹣6x =3⋯⋯第⑤步x =﹣12⋯⋯第⑥步老师发现这两位同学的解答过程都有错误.(1)请你指出甲、乙两位同学分别从哪一步开始出错,甲:第 步,乙:第 步(填序号);(2)请你写出正确的解答过程.40.(2022·浙江宁波·七年级期末)在解方程231136x x -=-时,小元同学的解法如下: 41(31)x x =--……第①步4131x x =--……第②步70x =……第③步0x =……第④步小元同学的解法正确吗?若不正确,请指出他在第 步开始出现错误,并写出正确的解题过程:【答案】小元同学的解法不正确,①,正确的解题过程见解析【分析】他在第①步开始出现错误,应该是:4x =6-(3x -1),根据解一元一次方程的一般步骤,写出正确的解题过程即可.【详解】解:小元同学的解法不正确,他在第①步开始出现错误,正确的解题过程如下:去分母得:46(31)x x =--,去括号得:4631x x =-+移项合并同类项得:77x = 解得:1x =【点睛】此题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.。
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。
初一一元一次方程解决实际问题十种典型类型

一、一般列式1、一个梯形的下底比上底多2 厘米,高是5 厘米,面积是 40 平方厘米,求上底有多长?2、某校三年共购置计算机 140 台,昨年购置数目是前年的两倍,今年购置数目又是昨年的两倍,前年这个学校购置了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500 台,此中a 型b 型c 型三种洗衣机的数目比为 1:2:14 ,这三种洗衣机各计划生产多少台?4、一个人用 540 元买了两种布料,共 138 尺,此中蓝色布料每尺三元,黑色布料每尺 5 元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,仍是你把你的羊给我一只我们的杨树就相同了。
请问它们分别有几个羊?5、某人工作一年的酬劳是年关给他一件衣服和10 枚金币,但他干满 7 个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12 的两个数字对换获得21,一个两位数,个位上的数是 a,10 位上的数是 b,把它们对换获得另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为何?一个两位数个位上的数是10 位数上的数字是x 把一与 x 对换,新两位数比原两位数小 18,x 等于多少?2、一个三位数百位上的数字比 10 位上的数字大一个位上的数字比 10 位上的数字三倍少 2,若将个位与百位数字调动地点后,所得的三位数与原三位数的和是 1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有 1000 元。
她提示存折有一个 6 位数的密码有以下两个特点:A. 这个 6 位数的最左端数字是1,B.假如把最左端的数字一移到最右端,则所获得的新 6 位数是本来 6 位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,假如每个鸽笼住 6 只鸽子,则节余三只鸽子,无鸽笼住,假如再飞来5 只鸽子,连同本来的鸽子,每个鸽笼恰好住8 只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,假如每人分三本,则节余 20 本,假如每人分 4 本则还缺 25 本,这个班有多少学生?五、火车问题1、一列火车匀速行驶,经过一条长 300 米的地道需要 20 秒的时间,地道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是 10 秒,求出火车的长度?2、某铁路桥长 1200 米,此刻有一辆火车,从桥上经过,测得火车从上桥到完整过桥共用 50 秒,整个火车完整在桥上的时间是 30 秒,求火车的长度和速度。
苏科版七年级数学上册《4.3用一元一次方程解决问题》专项练习题-带答案

苏科版七年级数学上册《4.3用一元一次方程解决问题》专项练习题-带答案学校:___________班级:___________姓名:___________考号:___________基础过关全练知识点1用一元一次方程解决问题的步骤1.【教材变式·P115T10】某景区的门票分为两种:A种门票60元/张,B 种门票12元/张.某旅行社为一个旅行团代购部分门票,若旅行社购买A,B两种门票共15张,总费用为516元,求旅行社为这个旅行团代购A 种门票和B种门票各多少张.2.【新情境·志愿者服务】【新独家原创】某大学的志愿者负责冬奥会某馆的对外联络和文化展示服务工作,负责对外联络服务工作的有17人,负责文化展示服务工作的有10人,现在另调20人去两服务处支援,使得在对外联络服务工作的人数比在文化展示服务工作的人数的2倍多5,问:应调往对外联络、文化展示两服务处各多少人?知识点2 用一元一次方程解决实际问题3.(2022江苏宿迁沭阳月考)某小组的m 个人计划做n 个中国结,如果每人做6个,那么比计划多做9个,如果每人做4个,那么比计划少做7个.有下列四个等式:①6m +9=4m -7;②6m -9=4m +7;③n+96=n−74;④n−96=n+74,其中正确的是( )A.①②B.②④C.②③D.③④4.一个两位数,个位上的数字比十位上的数字的2倍多1,如果个位上的数字与十位上的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为 .5.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.每件衬衫降价多少元时,销售完这批衬衫正好达到盈利40%的预期目标?6.【主题教育·爱国主义教育】(2023江苏苏州相城期末)某中学组织部分师生去北京展览馆参观“奋进新时代”主题成就展.若单租45座客车若干辆,则全部坐满;若单租60座的客车,则少租一辆,且余15个座位.求该校前去参观的师生总人数.能力提升全练7.【主题教育·生命安全与健康】(2022贵州铜仁中考,7,★★☆)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.178.(2022四川乐山中考,15,★★☆)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形” ABCD的周长为26,则正方形d的边长为.9.(2021陕西中考,19,★★☆)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件标价降低30元销售11件的销售额相等.求这种服装每件的标价.10.(2020山西中考,17,★★☆)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.11.(2022江苏苏州期末,24,★★★)如图,已知点A、B、C是数轴上三点,O 为原点.点C对应的数为6,A、B两点对应的数分别为a、b,且满足(a+10)2+|b-2|=0.(1)求a、b的值;(2)动点P、Q分别同时从A、C出发,以每秒6个单位和3个单位的速CQ,设度沿数轴正方向运动,M为AP的中点,N在线段CQ上,且CN=13运动时间为t秒(t>0).①求点M、N对应的数(用含t的式子表示);②当t为何值时,OM=2BN?素养探究全练12.【运算能力】已知数轴上点A,B表示的数分别为-1,3,动点P表示的数为x.(1)若点P到A,B的距离和为6,求出x的值;(2)是否存在点P,使得PA-PB=3?若存在,求出x的值;若不存在,说明理由;(3)若点M,N分别从点A,B同时出发,沿数轴正方向分别以3个单位长度/秒,2个单位长度/秒的速度运动,多长时间后,M、N两点相距1个单位长度?答案全解全析基础过关全练1.解析设旅行社为这个旅行团代购A种门票x张,则代购B种门票(15-x)张,依题意得60x+12(15-x)=516,解得x=7,则15-x=8.答:旅行社为这个旅行团代购A种门票7张,B种门票8张.2.解析设调往对外联络服务处x人,则调往文化展示服务处(20-x)人依题意得17+x-2[10+(20-x)]=5,解得x=16∴20-x=20-16=4.答:调往对外联络服务处16人,调往文化展示服务处4人.3.C某小组m个人计划做n个中国结,根据中国结的个数一定,如果每人做6个,那么比计划多做9个,如果每人做4个,那么比计划少做7个,则可列方程为6m-9=4m+7,故②正确,①错误;根据某小组的人数一定,则可列方程n+96=n−74,故③正确,④错误.4.37解析设原两位数的十位上的数字为x,则个位上的数字为2x+1.根据题意,得2(10x+2x+1)-1=10(2x+1)+x,解这个方程,得x=3,所以2x+1=7.故原来的两位数为37.5.解析设每件衬衫降价x元时,销售完这批衬衫正好达到盈利40%的预期目标.根据题意,得120×400+(120-x)×(500-400)-80×500=80×500×40%解这个方程,得x=40.答:每件衬衫降价40元时,销售完这批衬衫正好达到盈利40%的预期目标.6.解析设单租45座客车x辆,则该校前去参观的师生总人数为45x 根据题意得45x=60(x-1)-15解得x=5∴45x=45×5=225.答:该校前去参观的师生总人数为225.能力提升全练7.B设小红答对的个数为x,由题意得5x-(20-x)=70,解得x=15.即小红答对的个数为15.8.5解析设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,依题意得(3x+5x+5x)×2=26,解得x=1,所以5x=5×1=5,即正方形d的边长为5.9.解析设这种服装每件的标价是x元根据题意,得10×0.8x=11(x-30),解得x=110.答:这种服装每件的标价为110元.10.解析设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元根据题意,得80%×(1+50%)x-128=568,解得x=580.答:该电饭煲的进价为580元.11.解析(1)∵(a+10)2+|b-2|=0∴a+10=0,b-2=0,∴a=-10,b=2.(2)①∵动点P 、Q 分别同时从A 、C 出发,以每秒6个单位和3个单位的速度运动,运动时间为t 秒∴AP=6t,CQ=3t∵M 为AP 的中点,N 在线段CQ 上,且CN=13CQ ∴AM=12AP=3t,CN=13CQ=t ∵点A 表示的数是-10,点C 表示的数是6∴M 表示的数是-10+3t,N 表示的数是6+t.②∵OM=|-10+3t|,BN=BC+CN=6-2+t=4+t,OM=2BN∴|-10+3t|=2(4+t)=8+2t当点M 在点O 右侧时,OM=-10+3t由-10+3t=8+2t,得t=18当点M 在点O 左侧时,OM=-(-10+3t)由-(-10+3t)=8+2t,得t=25 故当t=18或t=25时,OM=2BN. 素养探究全练12.解析 (1)当点P 在点A 的左侧时,PA=-1-x,PB=3-x则-1-x+3-x=6,解得x=-2;当点P 在点B 的右侧时,PA=x+1,PB=x-3则x+1+x-3=6,解得x=4.综上所述,当点P 到A,B 的距离和为6时,x=-2或4.(2)存在.∵AB=3-(-1)=4∴当PA-PB=3时,点P在线段AB上∴PA=x+1,PB=3-x由题意得(x+1)-(3-x)=3解得x=2.5.(3)设出发t秒后,M,N两点相距1个单位长度.由题意得,点M的坐标为3t-1,点N的坐标为2t+3当点M在点N的左侧时,(2t+3)-(3t-1)=1解得t=3;当点M在点N的右侧时,(3t-1)-(2t+3)=1解得t=5.综上所述,出发3秒或5秒后,M,N两点相距1个单位长度.。
(完整版)一元一次方程的应用题100道

一元一次方程的应用题用方程解决问题〔1〕---------比例问题与日历问题1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3∶2,种西红柿和芹菜的面积比是5∶7,三种蔬菜各种的面积是多少公顷?3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
问他们应各投资多少万元?4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是:1:2:,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,四天日期之和为65,求这四天分别是哪几日?6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共为85,请求出小华找的数。
5个数的和7日历上同一竖列上3日,日期之和为75,第一个日期是几号?用方程解决问题〔2〕---------调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人?3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原方案做几题?几小时完成?5、小丽在水果店花18元,买了苹果和橘子共6千克,苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少千克?6、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?8、某队有55人,每人每天平均挖土方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题〔3〕---------盈亏问题工作量与折扣问题1.用化肥假设干千克给一块麦田施肥,每亩用千克,还多3千克,这块麦田有多少亩?6千克,还差17千克;每亩用5(2.毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,那么共有多少名毕业生?长凳有多少条?(3.将一批货物装入一批箱子中,如果每箱装 10件,还剩下6件;如果每箱装(13件,那么有一只箱子只装1件,这批货物和箱子各有多少?(4.有一次数学竞赛共 20题,规定做对一题得5分,做错或不做的题每题扣2(分,小景得了86分,问小景对了几题?(5.修一条路,A队单独修完要20天,B队单独修完要12天。
七年级数学一元一次方程练习题(含答案)

七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
七年级一元一次方程应用题例题

七年级一元一次方程应用题例题
例题一:
问题描述:
某家庭共有父亲和儿子两人,父亲今年26岁,比儿子年龄大30岁。
求儿子目前的年龄。
解题过程:
设儿子目前的年龄为x岁,根据题意,可以得到方程:父亲的年龄 = 儿子的年龄 + 30 26 = x + 30 通过移项和化简方程,可以得到: x = 26 - 30 x = -4 即儿子目前的年龄为负4岁,这显然不符合实际情况。
因此,儿子目前的年龄无解。
例题二:
问题描述:
小红和小明共有零花钱190元,如果小红的零花钱是小明的2倍,求小红和小明各自的零花钱数。
解题过程:
设小红的零花钱为x元,小明的零花钱为y元,根据题意,可以得到方程: x + y = 190 x = 2y 将第二个方程代入第一个方程,得到: 2y + y = 190 3y = 190 y = 190 / 3 y = 63.33 小明的零花钱不能是小数,因此我们重新计算小明的零花钱: y = 63 代入第二个方程,计算小红的零花钱: x = 2*63 x = 126 因此,小红的零花钱为126元,小明的零花钱为63元。
通过以上两个例题,我们可以看到在解决一元一次方程应用题时,需要仔细分析题意,建立与变量的关系,并逐步求解方程,最终得到问题的答案。
希望同学们在做题时能够灵活运用方程求解的方法,解决实际问题。
初一数学解一元一次方程的同步练习题及参考答案

初一数学解一元一次方程的同步练习题及参考答案(基础过关)一、多项选择题1、方程3x+6=2x-8移项后,正确的.是a、 3x+2x=6-8b。
3x-2x=-8+6c.3x-2x=-6-8d.3x-2x=8-62.方程式72x-1-34x-1=11移除支架后,正确的a.14x-7-12x+1=11b.14x-1-12x-3=11c、 14x-7-12x+3=11d。
14x-1-12x+3=113、如果代数式与的值互为相反数,则的值等于a、不列颠哥伦比亚省。
4、如果与是同类项,则是a、 2b。
1c。
d、 05、已知矩形周长为20cm,设长为cm,则宽为a、不列颠哥伦比亚省。
二、填空题1.得到方程2x-0.3=1.2+3x的位移项2、方程12-2x-4=-x-7去括号得.3.如果a-1+B+22=0,则AB=4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5.如果24a-2-6=34a-2,代数公式a2-3a+4=三、解答题1.求解以下方程132x+5=24x+3-324y﹣320﹣y=6y﹣79﹣y372x-1-34x-1=43x+2-11、观察方程[x-4-6]=2x+1的特点,你有好的解法吗?写出你的解法.(知识和能力提升)1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1-ax=-5的解是偶数。
看看你能找到多少2、解方程1 | 4x-1 |=722 | x-3 |+5=13答案(基本净空)一、选择题1、 c2、c3、d4、a5、b二、填空题1、 2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、 1x=62y=3x=2、x=-9(知能升级)1、 a=1,2,3,4,62、1x=2,2x=7,-1。
(完整)七年级解一元一次方程经典50道练习题(带答案)

自我测试 60分钟看看准确率 牛刀小试 相信自己一定行1、712=+x ;2、825=-x ;3、7233+=+x x ;4、735-=+x x ;解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为113、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--x x 解:(移项)(合并)(化系数为1).17、 475.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ; 22、32034)=-(-x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、323236)=+(-x ; 解:(去括号)(移项)(合并) (化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+; 32、3423+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ; 34、)-()=+(131141x x ; 35、142312-+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为136、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ; 38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为139、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为143、1232151)=-(-x x ; 44、1615312=--+x x ; 45、x x 2414271-)=+(; 解:(去分母)(去括号)(移项)(合并)(化系数为146、259300300102200103 )=-()-+(x x . 47、307221159138)=-()--()--(x x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为148、51413121-=+x x ; 49、13.021.02.015.0=-+--x x ; 50、3.01-x -5.02+x =12. 解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】 (1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x . 1.1、【答案】 (9)25=-x ; (10)56=x ; (11)5=-x ; (12)31=-x ; (13)1=x ; (14)32=x ; (15)35=-x ; (16)1=x . 2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ; (20)3=-x ; (21)4=x ; (22)9=x .2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ; (26)4=-x ; (27)21=x ; (28)910=x ; (29)6=x ; (30)23=x . 3、【答案】 (31)8=x ; (32)51=x ; (33)16=-x ; (34)7=x ; (35)52=-x ; (36)3=x ; (37)28=-x ; (38)165=-x .3.1、【答案】 (39)5=x ; (40)1413=x ; (41)1=-x ; (42)320=-x ; (43)1225=x ; (44)3=-x ; (45)87=x ; (46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ; (50)229=x .。
七年级一元一次方程计算题

七年级一元一次方程计算题一、简单的一元一次方程求解(1 - 10题)1. x + 5 = 12- 解析:方程两边同时减去5,得到x+5 - 5=12 - 5,即x = 7。
2. 2x-3 = 7- 解析:首先方程两边同时加上3,得到2x - 3+3=7 + 3,即2x=10。
然后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。
3. 3(x + 1)=18- 解析:先使用分配律将括号展开,得到3x+3 = 18。
方程两边同时减去3,3x+3 - 3=18 - 3,即3x = 15。
最后方程两边同时除以3,3x÷3=15÷3,解得x = 5。
4. (x)/(2)+1 = 3- 解析:方程两边同时减去1,得到(x)/(2)+1 - 1=3 - 1,即(x)/(2)=2。
然后方程两边同时乘以2,(x)/(2)×2 = 2×2,解得x = 4。
5. 4x-2x+3 = 7- 解析:先合并同类项,4x-2x = 2x,方程变为2x+3 = 7。
方程两边同时减去3,2x+3 - 3=7 - 3,即2x = 4。
最后方程两边同时除以2,2x÷2 = 4÷2,解得x = 2。
6. 5(x - 2)=3x- 解析:先展开括号,得到5x-10 = 3x。
方程两边同时减去3x,5x-3x - 10=3x - 3x,即2x-10 = 0。
方程两边同时加上10,2x-10 + 10=0 + 10,即2x = 10。
最后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。
7. (2x + 1)/(3)=3- 解析:方程两边同时乘以3,得到2x + 1=9。
方程两边同时减去1,2x+1 - 1=9 - 1,即2x = 8。
最后方程两边同时除以2,2x÷2 = 8÷2,解得x = 4。
8. 3x+5 = 2x - 1- 解析:方程两边同时减去2x,3x - 2x+5 = 2x - 2x-1,即x+5=-1。
初一数学用方程解决问题

初一数学用方程解决问题(一元一次方程)1、学校组织学生步行去文昌阁参观,半小时后,崔老师骑自行车用20min从原路赶上队伍,已知崔老师骑自行车的速度比学生队伍行进的速度快10km/h。
求崔老师骑自行车的速度?2、学校运动场跑道800m,大伟跑步的速度是爸爸的5/3倍,他们从同一起跑点沿跑道的同一方向动身,5分钟后大伟第一次追上了爸爸,你明白他们的跑步速度吗?假如大伟追上爸爸后赶忙转身沿相反方向跑,几分钟后大伟又一次与爸爸相遇?3、甲骑自行车从A到B,乙骑自行车从B到A,甲每小时比乙多走4千米。
两人在早晨9点同时动身,到上午11点两人还相距42千米,到中午1:00两人又相距42千米,求A、B两地的距离?4、旅行者游玩水库景区,乘坐摩托艇顺水而下,然后返回登艇处,水流速度是4千米/小时,摩托艇在静水中的速度是18千米/小时,为了使游玩时刻不超过4分钟,旅行者驶出多远就应回头?5、甲、乙两人练习200米赛跑,甲每秒跑8米,乙每秒跑7.5米,假如甲让乙先跑2秒,那么甲通过几秒能够追上乙?6、甲、乙两架飞机同时从相距1000公里的两个机场相向飞行,飞了半小时到达同一中途机场,假如甲飞机的速度是乙飞机的2.5倍,求乙飞机的速度?7、甲、乙两列火车,长为188米和260米,甲车比乙车每秒多行6米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8、从甲地到乙地,海路比陆地近60千米,上午8点,一艘轮船从甲地驶往乙地,中午12点,一辆汽车从甲地开往乙地,它们同时到达乙地,轮船的速度是每小时36千米,汽车的速度是每小时48千米,那么从甲地到乙地海路与陆地各是多少千米?9、实验学生去校外进行春游,他们以每小时6千米的速度行进,走了26分钟,学校要将一个重要通知传给队长,通讯员从学校动身,骑自行车以每小时18千米的速度按原路追上去,通讯员需要多长时刻能够追上学生队伍?10、一房屋爆破为了确保安全,点燃引火线后人要在爆破前转移到45 00米以外的安全地带,引火线燃烧的速度是0.6厘米/秒,人离开的速度的是7米/秒,问引火线至少需要多少厘米?11、一项工作,甲单独做15小时完成,已单独做8小时完成,现在先由甲独做3小时,剩下的部分由甲、乙合做,剩下的部分需要几小时完成?12、现有一个水池,用两个水管注水,假如单开甲管,3小时40分钟注满水池,假如单开乙管,需要6小时注满水池。
七年级解一元一次方程经典50道练习题(带答案)-精选

自我测试 60 分钟看看准确率 牛刀小试 相信自己一定行1、2x +1=7;2、5x -2=8;3、3x +3=2x +7;4、x +5=3x -7 ;解:(移项)(合并) (化系数为 1)5、11x -2=14x -9;6、x -9=4x +27 ;7、 2x +6=1;8、10 x -3=9;解:(移项)(合并) (化系数为 1)1 1 9、4x -2=3-x ; 10、-7x +2=2x -4 ;11、5x -2=7x +8 ;12、 x =- x 3 42+解:(移项)(合并) (化系数为 1313、 x = x 1614、+ 23 5 21 x1- x =3x + ;15、1-xx + ; 16、 x2=-2 - =- +2253 3解:(移项)(合并)(化系数为 1).17、4(x +0 .5)+x =7 ; 18、-2(x -1)=4;19、5(x -1)=1; 20、 2-(1-x )=- 2 ;解:(去括号) (移项) (合并) (化系数为 1)21、11x +1=5(2x +1) ;22、4x -(3 2 0-x )=3.23、5(x +8)-5=0;24、2(3-x )=9 ;解:(去括号) (移项) (合并) (化系数为 1)25、-3(x +3)=24 ; 26、-2(x -2)=12 ; 27、1(2 2-3x )=4x +4 ; 28、2 26-(3 x + )= ;3 3解:(去括号)(移项) (合并) (化系数为 1)29、(2 200-15x )=70+25x ;30、(3 2x +1)=12 .31、解:(去分母)x +2x = 5 4; 32、3-xx +4 = 2 3;(去括号) (移项) (合并) (化系数为 1)1 1 1 1 2x-1 x 2+33、(x+1)=(2x-3);34、(x+1)=(x-1);35、 1=-;3 74 3 3 4解:(去分母)(去括号)(移项)(合并)(化系数为 11 1 1 1 1 1 136、(x-1)=2-(x+2). 37、(x+14)=(x+20);38、(x+15)=-(x-7).2 5 7 4 5 2 3解:(去分母)(去括号)(移项)(合并)(化系数为 139、1413x;40、-=247 x5-4=38;41、2x-1 5x+1=68;42、19x-2x-;7=26解:(去分母)(去括号)(移项)(合并)(化系数为 11 1 2x+1 5x 1-43、x- 3 2x 1;44、 1(-)=-=5 2 3 6解:(去分母)1;45、2x14 4 2x(+)=-;7(去括号)(移项)(合并)(化系数为 146、3 29(200 x 300 x 300 .47、(8 3x-1)-(9 5x-11)-(2 2x-7)=30;+)-(-)=10 1025解:(去分母)(去括号)(移项)(合并)(化系数为 148、121 1 1 0.5 x-1 0 .1x 2+x+x ;49、 1=--=-;50、3 4 5 0.2 0.3x 1-0.3-x+20.5=12 .解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】 1、【答案】(1)x =3 ;(2)x =2; (3)x =4 ;(4)x =6;(5)7x ; (6) x =-12 ; (7) x =4 ; (8) x =- 32. = 31.1、【答案】 (9) 5 x ; (10) =- 2 6 x = ; (11) x =- 5; (12) 51x ;=- 3( 13) x =1; ( 14) 2 x ; ( 15) = 3 5x ; (16) x =1.=- 32、【答案】(17) x =1;(18) x =-1;(19)6x ; ( 20) x =-3 ; ( 21) x =4 ; (22) x =9.= 52.1、【答案】 (23) x =- 7 ;(24)3x =- ; (25) x =-11; (26) x =- 4 ; (27)2 1 x = ; (28) 2 10 x = ;9(29) x =6;(30)3x = .23、【答案】(31) x =8 ;(32)1x = ;(33) x =-16 ;(34) x =7 ;(35)52 x =- ;5(36) x =3 ; ( 37) x =- 28 ;(38)5x =-.163.1、【答案】 (39) x =5;(40)13x = ;(41) x =- 1;(42)1420 x ; (43) =- 325 x = ; 12(44) x =- 3;(45)7x = ; (46) x =216 .84、【答案】(47) x =3 ; (48)32x =- ; (49) 15 64 x = ; (50) 13 29x = .2。
解一元一次方程专项训练(40道)(原卷版) —2024-2025学年七年级数学上学期(人教版)

解一元一次方程专项训练(40道)目录【专项训练一、移项与合并同类项】 (1)【专项训练二、去括号】 (3)【专项训练三、去分母】 (5)【专项训练三、拓展】 (7)【专项训练一、移项与合并同类项】1.解方程.(1)124 2.4x -=(2)45258x :=:2(3)()42:15x -=2.解方程:3256x x -=+.3.解方程:15%9%7%0.31x x -=+.4.解下列方程:(1)6259x x -=-+;(2)0.4 2.8 3.6 1.6 1.7y y y +-=-5.解下列方程:(1)5278x x -=+;(2)1752x x -=+;(3)2.49.8 1.49x x -=-;(4)5671238x x x x -++=+-+.6.解方程.(1)3657x +=;(2)61173x ¸=;(3)2181525x =;(4)319112020x -=.7.解方程(1)1154x x -=(2)3136712x ¸=(3)8328354x -´=8.解方程:(1)133428x -=;(2)2.4 4.516 2.6x x +=-.9.解方程:(1)132354x x x -+=-+;(2)42147x x x -+-=-.10.解方程:(1)2.49.8 1.49y y -=-(2)3312x x -=+.【专项训练二、去括号】11.解方程:2(5)333(51)x x -=-+.12.解方程2(1)15(2)x x -=-+.13.解方程:()()23531214x x x x -+-=.14.解方程:()()250%1831x x +=--15.解方程:94(2)2(31)x x x -+=+. 16.解方程:()()12113x x x ++-=-17.解方程:()()7211335x x -=+-.18.解下列方程(1)()3124x =-+(2)()12113x x x+--=-19.解方程:(1)()46252x x -=-;(2)()214x x -+=-;20.解方程:()()4253521x x -+=--.【专项训练三、去分母】21.解下列方程:(1)221146x x ---=;(2)155x x +-=.22.解方程:2135102x x x -+--=.23.解方程:5121163x x --=-.24.解方程:5121123x x +-=-;25.解下列方程(1)223312x x x +-=--.(2)10.10.220.30.05x x x ++-=.26.解方程:213152x x +--=.27.解方程:3230.20.5-+-=x x .28.解方程:341123+--=x x 29.解方程:0.12230.30.6x x x -+-=30.解方程:3514y y --=31.解方程:2121163x x +--=.32.解方程:(1)14123x x +=+;(2)435227x x -+=-.33.解方程:(1)222123x x --+=;(2)253432x x +--=;34.解方程:(1)()()()2234191y y y +--=-;(2)322132x x x +--=-.(3)()3151x x +=-;(4)2121136x x -+=-.35.解方程.(1)()()1123222x x -=--(2)3157146x x ---=【专项训练三、拓展】36.解关于x 的方程()()222a x x +=-37.解关于x 的方程:55ax a x +=+.38.已知关于x 的一元一次方程320222022x x n +=+的解为2022x =,求关于y 的一元一次方程()5232022522022y y n --=--的解.39.已知关于x 的方程()()2153a x a x b ---=有无数多个解,求常数a 、b 的值.40.当整数k 为何值时,方程9314x kx -=+有正整数解?并求出正整数解.。
专题 解一元一方程计算题(50题)(解析版)

七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。
利用一元一次方程求解实际问题练习题

利用一元一次方程求解实际问题练习题背景介绍:一元一次方程是数学中最基础也是最常见的方程类型之一,其形式为ax + b = 0,其中a和b为已知数,x为未知数。
本文将通过一些实际问题练习题的解答,展示如何利用一元一次方程解决实际问题。
问题一:一个小贩卖了24个香蕉,如果每个香蕉卖1元,那么小贩总共收入多少元?解答:假设小贩共卖出x个香蕉,根据题意,每个香蕉卖1元,因此小贩总收入等于卖出的香蕉数量乘以每个香蕉的价格。
根据一元一次方程的性质,可以得到以下等式:x * 1 = 24将方程化简,得到:x = 24因此,小贩总共收入24元。
问题二:某电视机原价6000元,商家打八折促销,现价是多少?解答:假设现价为x元,根据题意,商家打八折,即现价为原价的80%。
根据一元一次方程的性质,可以得到以下等式:80% * 6000 = x将百分数转换为小数,得到80% = 0.8,表示80/100,化简方程,得到0.8 * 6000 = x计算得到:x = 4800因此,电视机的现价是4800元。
问题三:一辆汽车每小时行驶60千米,行驶t小时,总共行驶多少千米?解答:假设汽车总共行驶的距离为x千米,根据题意,汽车每小时行驶60千米,因此总共行驶的距离等于每小时行驶的速度乘以行驶的时间。
根据一元一次方程的性质,可以得到以下等式:60 * t = x将方程化简,得到:x = 60t因此,汽车总共行驶60t千米。
问题四:小明的年龄是小红的2倍,小明今年18岁,那么小红今年多少岁?解答:假设小红今年的年龄为x岁,根据题意,小明的年龄是小红的2倍,因此可以得到以下等式:2x = 18将方程化简,得到:x = 9因此,小红今年9岁。
通过以上几个实际问题练习题的解答,我们可以看到一元一次方程在解决实际问题时的应用。
通过设立适当的未知数和等式,我们可以利用一元一次方程求解实际问题中的未知数,从而得到问题的解答。
总结:一元一次方程是数学中最基础也是最常见的方程类型之一,通过本文对实际问题练习题的解答,我们深入了解了如何利用一元一次方程来求解实际问题。
苏教版初一上册用一元一次方程解决问题知识汇总及专项练习

用一元一次方程解决问题的一般步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的数量之间的相等关系,列出方程。
【题型1】月历中数之间的关系问题:同一横行中,后一个数比前一个数多1,同一竖列中,下一个数比上一个多7。
【题型2】比赛问题:胜、负、平局。
【题型3】年龄问题:随着年龄变化但年龄差始终不变。
【题型4】等积变形问题:变形前的体积=变形后的体积:【题型5】盈余"和"不足"问题:用两种不同的方法描述量。
基本相等关系是:盈时的总量一盈的数量=亏时的总量+亏的数量。
【题型6】行程问题:(1)相遇、追及问题:甲的行程+乙的行程=甲、乙两人总的行程追者的路程=前者的路程+原本的路程(2)顺流与逆流问题:顺流速度=静水速度+水流速度逆流速度=静水速度一水流速度【题型7】工作总量问题:若问题中没有具体的工作总量,往往把全部工作量看成1。
工作总量=工作效率×工作时间各部工作分量之和=总量【题型8】配套问题:列比例式构造方程。
(通过比例关系明确数量之间的关系。
)【题型9】售价(标价)、成本(进价)、利润的关系:商品的利润=商品的售价一商品的成本 商品的售价=商品的成本×(1±盈利%/亏损%) 利润率=(商品的利润/商品的成本)x100% 商品的利润=商品的成本×利润率商品打X 折(10X%)后的售价=商品的标价x 折扣(10X )。
【题型10】银行储蓄问题:年存储利息=本金X 年利率X 年数【题型11】数字问题:两位数的数字之和=十位的数字×10+个位的数字。
【题型12】和差倍分问题:利用和倍差倍解方程。
【题型13】分量与总量问题:各分量之和=总量【题型14】分段收费【题型15】方案问题【题型1】月历中数之间的关系问题例1:某月的月历上竖列相邻的三个数的和是39,则该列的第一个数是( )。
A.6B.12C.13D.14例2:小丽在2月的月历上圈出5 个数,呈“十字框”形,它们的和是 55,则中间的数是( )。
人教版七年级数学上册作业课件 第三章 一元一次方程 专题训练(七) 列一元一次方程解决实际问题

(3)t 秒后点 A 表示的数为 6t-4,点 B 表示的数为 2t+2. ①当点 A 在点 B 的左侧时,有(2t+2)-(6t-4)=3,解得 t=34 ,此时 6t-4=21 ; ②当点 A 在点 B 的右侧时,有(6t-4)-(2t+2)=3,解得 t=94 ,此时 6t-4=129 . 综上所述,当 A,B 两点相距 3 个单位长度时,点 A 表示的数为21 或129
答:甲现在的年龄是 42 岁,乙现在的年龄是 56 岁
类型四 数字问题 5.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数字与个 位上的数字对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位 数. 解:设原来十位上的数字为x,则个位上的数字为x+4.依题意,得10(x+4)+x =2(10x+x+4)-12,解得x=4,则x+4=8. 答:原来的两位数是48
解:设玻璃杯中水的高度下降 x mm,根据题意,得π(920 )2·x=125×125×81, 解得 x=6π25 ≈199.
答:玻璃杯中的水的高度下降约 199 mm
类型二 古代数学问题 2.(湘潭中考)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前 成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有 三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔 关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只 鸡和兔? 解:设鸡有x只,则兔有(35-x)只,根据题意得2x+4(35-x)=94,解得x=23, 所以35-x=12.答:有鸡23只,兔12只
初一一元一次方程解决实际问题十种典型类型

初一一元一次方程解决实际问题十种典型类型2米栽一棵桂花树,这段公路需要栽多少棵桂花树?4、XXX家有一些苹果,他把它们分给他的三个朋友,每人分了8个,还剩下4个苹果。
后来他又从家里拿来10个苹果,他的四个朋友一起分享这些苹果,每人分到相同的数量,最后每人分到了几个苹果?5、某班同学去旅游,每辆大巴车可以坐60人,但是这次只报名了55人,所以需要再加一辆小巴士。
最后每辆车坐了多少人?最后在距离终点10千米的地方相遇,XXX的速度是每小时60千米,求小亮的速度。
3、甲乙两人相距100千米,甲先出发,以每小时40千米的速度前进,乙以每小时60千米的速度出发,当乙追上甲时,甲已经走了多长时间?他们相遇时离甲的起点还有多远?十、其他问题1、某人去买鸡蛋,他有10元钱,鸡蛋每个0.1元,鸭蛋每个0.2元,如果他买了100个蛋,问他买了多少个鸡蛋?多少个鸭蛋?2、某人去买水果,他有100元钱,XXX每斤2元。
梨子每斤1元,如果他买了60斤水果,问他买了多少斤苹果?多少斤梨子?3、某人的年龄是一个两位数,如果把他的年龄的十位数和个位数互换,他的年龄会变成原来的3/5,求他的年龄。
4、有一只小猴子从一棵树上掉下来,第一次掉到离树顶1/3的地方,然后又掉下来离树顶1/4的地方,以后每次掉下来的高度都是前一次的1/3。
求它第10次掉落时离树顶多远?1.XXX和销量同时出发,XXX的速度是8千米每小时,销量的速度是6千米每小时。
问XXX出发后几小时追上XXX?改写:XXX和销量同时出发,XXX的速度为每小时8千米,销量的速度为每小时6千米。
求XXX出发后几小时能追上XXX?2.电气车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气车速度的5倍,还快20千米每小时,半小时后两车相遇,两车的速度各是多少?改写:电气车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度是电气车速度的5倍,再加上20千米每小时。
七年级一元一次方程解应用题

七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。
- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。
2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。
- 设甲、乙两地的距离为x千米。
- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。
- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。
- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。
- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学一元一次方程解决问题专项练习
第一类工程问题
1.一项工程,由甲单独做要10天完成,乙单独做要15天完成,甲先单独做5天,然后甲乙合作完成这项工程,还需要多少天?
2.食堂存煤若干吨,原来每天烧煤4t,用去15t后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量。
3.一项工程甲单独做需要10天,乙单独做需要12天,丙单独做需要15天,甲丙先做3天后,甲因事离去,乙参与工作,问还需要几天完成?
4.一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。
现对空水池先打开进水管2小时,然后打开出水管,使进水管,出水管一起开放,问,再过几个小时可将水池注满?
5.某车间有16名工人,每人每天可加工甲种零件5个或者乙种零件4个。
在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元。
若此车间一共获利1440元,求这一天有几个工人加工甲种零件?
第二类行程问题
6.一轮船在甲乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为每小时2千米。
求甲乙两个码头之间的距离。
7.甲乙两地之间的路程为180千米,一人骑自行车从甲地出发每小时行驶15千米,另一人骑摩托车从乙地出发,已知摩托车的速度是自行车速度的3倍,若两人同时出发,相向而行,问,经过多长时间两人相遇?
8.甲乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为每分钟100米,乙的速度是甲速度的二分之三倍,问(1)经过多长时间后两人首次相遇?(2)第二次相遇呢?
9.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以每分18米的速度从队头至队尾又返回,已知队伍的行进速度为每分钟14米。
问(1)若已知队长320米,则通讯员几分钟返回?(2)若已知通讯员用了25分钟,则队长多少米?
10.甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?
11.上午8时,甲乙两人从A,B两地同时出发,相向而行.上午9时,两人相距54千米,两人继续前进,到上午11时,两人又相距54千米,已知甲每小时比乙多走3千米,求,A,B两地的距离。
第三类打折问题
12.一家商店将一种自行车按进价提高50%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?
13.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.
14.某商店有两个进价不同的平板电脑,都卖了600元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店是赔了还是赚了多少钱?
15.一种商品的买入单价为1500元,如果出售一件商品获得的毛利润是卖出单价的15%,那么这种商品出售单价应定为多少元?(精确到1元)
16.A,B两家售货亭以同样价格出售商品,一星期后A家把价格降低了10%,再过一个星期又提高20%,B 家只是在两星期后才提价10%,两星期后哪家售货亭的售价低?
第四类方案选择问题
17.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.
(1)写出y1,y2与x之间的函数关系式(即等式).
(2)一个月内通话多少分钟,两种通话方式的费用相同?
(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?
18.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?
19.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
20.大连市出租车的收费标准是:起步价8元(即路程不超过3KM的车费为8元),3KM后每千米收费2元,由于最近油价上涨,起步价涨了1元,某人共付了车费30元,出租车的行程是多少千米?
21.瓷器商店委托搬运站送800只花瓶,双方约定每只运费是3.5角,若打破1只,这只不但不给运费,反而要赔偿2.5元。
结果运到目的地后,搬运站共得运费268.6元,问:在搬运过程中打破了多少只瓷瓶?。