高考数学专题复习分类讨论思想
高考数学专题复习(数形结合、分类讨论思想)
专题4 数形结合、分类讨论思想一.知识探究:1.数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。
数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
数形结合的途径:(1)通过坐标系形题数解(2)通过转化构造数题形解 数形结合的原则:(1)等价性原则;(2)双向性原则;(3)简单性原则2.分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;二.命题趋势分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测对本专题的考察为:将有一道中档或中档偏上的试题,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由n S 求n a 等。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
三.再现性题组1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<1 对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2. 若θ∈(0, π2),则lim n →∞cos sin cos sin n n n n θθθ+θ-的值为( )。
人教A版高考数学(文)复习课件 专题 数学思想方法第1部分专题7第2讲
设 lg(log210)=t,则 lg(lg2)=-t.由条件可知 f(t)=5,即 f(t)= at3+bsin t+4=5,所以 at3+bsin t=1,所以 f(-t)=-at3-bsin
t+4=-1+4=3.
答案 C
规律方法 复杂的数学问题常用换元法实现化归与转化,运用 “换元”把式子转化为有理式或使整式降幂等,或者把较复杂 的函数、方程、不等式问题转化为易于解决的基本问题.
▪分类讨论的常见类型:
▪(1)由数学概念引起的分类讨论:有的概念本身 就是分类的,如绝对值、直线斜率、指数函数、 对数函数等.
▪(2)由性质、定理、公式的限制引起的分类讨论: 有的定理、公式、性质是分类给出的,在不同 的条件下结论不一致,如等比数列的前n项和公 式、函数的单调性等.
▪(3)由数学运算和字母参数变化引起分类;如偶 次方根非负,对数的底数与真数的限制,方程 (不等式)的运算与根的大小比较,含参数的取 值不同会导致所得结果不同等.
3a1+3d=6, 8a1+28d=-4,
解得ad1==-3,1.
故 an=3-(n-1)=4-n.
(2)由(1)可得 bn=n·qn-1,于是 Sn=1·q0+2·q1+3·q2+…+n·qn-1. 若 q≠1,将上式两边同乘 q,得 qSn=1·q1+2·q2+…+(n-1)·qn-1+n·qn. 两式相减,得(q-1)Sn=nqn-1-q1-q2-…-qn-1 =nqn-qqn--11=nqn+1-qn-+11qn+1. 于是,Sn=nqn+1-q-n+112qn+1. 若 q=1,则 Sn=1+2+3+…+n=nn2+1.
▪历年高考中,化归与转化思想无处不在,我们 要不断培养和训练自觉的转化意识,将有利于 提高解决数学问题的应变能力,提高思维能力 和技能、技巧.
分类讨论思想
已知函数
f (x )= x
+ 4 x − 5, x ∈ [t , t + 2] ,此函数
备考者要细细体会这“ 例一变” 备考者要细细体会这“一 例一变”的相似与相异之 处.当被解决的问题出现两种或两种以上情况时,为 当被解决的问题出现两种或两种以上情况时, 叙述方便,使问题表述有层次、有条理, 叙述方便,使问题表述有层次、有条理,需作讨论 分别叙述. 分别叙述.
分类讨论思想
1.分类讨论思想又称“逻辑化分思想” 1.分类讨论思想又称“逻辑化分思想”,它是把所 分类讨论思想又称 要研究的数学对象划分为若干不同的情形, 要研究的数学对象划分为若干不同的情形,然后 再分别进行研究和求解的一种数学思想. 再分别进行研究和求解的一种数学思想.分类讨论 思想在高考中占有十分重要的地位, 思想在高考中占有十分重要的地位,相关的习题 具有明显的逻辑性、综合性、探索性的特点,难 具有明显的逻辑性、综合性、探索性的特点, 度有易,有中,也有难. 度有易,有中,也有难.题型可涉及任何一种题 型,知识领域方面,可以“无孔不入”地渗透到 知识领域方面,可以“无孔不入” 每个数学知识领域. 每个数学知识领域.
探究拓展
某些学生一见到有“二次”出现, 某些学生一见到有“二次”出现,往
往认识为“二次函数” 往认识为“二次函数”或“二次方程”,这是由 二次方程” 定式思维引起的,备考者务必树立强烈的“ 定式思维引起的,备考者务必树立强烈的“确认 身份”意识,否则,分析问题有失偏颇. 身份”意识,否则,分析问题有失偏颇.如本例 中,未表明不等式的次数,且高次项系数含可变 未表明不等式的次数, 参数,我们称之为“准二次不等式” 参数,我们称之为“准二次不等式”,解题时要 分情况讨论,确认不等式“二次项”系数是否为零. 分情况讨论,确认不等式“二次项”系数是否为零. 变式训练1 已知m 求函数f )=(4变式训练1 已知m∈R,求函数f(x)=(4-3m)x22x+m在区间[0,1]上的最大值. 在区间[ 上的最大值. 分析 求 最大值的方法不同,所以对m 最大值的方法不同,所以对m可先分成两种情况去 讨论. 讨论. 当4-3m=0时f(x)是一次函数,4-3m≠0时 =0时 是一次函数, ≠0时 f(x)是二次函数,由于二次函数开口向上和向下 是二次函数,
高考数学复习 分类讨论思想、转化与化归思想
第2讲 分类讨论思想、转化与化归思想数学思想解读1.分类讨论的思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.2.转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.热点一 分类讨论思想的应用应用1 由概念、法则、公式、性质引起的分类讨论【例1】 (1)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________; (2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________. 解析 (1)若a >1,有a 2=4,a -1=m ,解得a =2,m =12. 此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立.当q ≠1时,由a 3=32,S 3=92,∴⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0, 所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6, 综上可知,a 1=32或a 1=6. 答案 (1)14 (2)32或6探究提高 1.指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.2.利用等比数列的前n 项和公式时,若公比q 的大小不确定,应分q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.【训练1】 (1)(2017·长沙一中质检)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的所有可能取值的集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }为首项为2,公比为2的等比数列, 则S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1.答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由图形位置或形状引起的分类讨论【例2】 (1)(2017·昆明一中质检)已知双曲线的离心率为233,则其渐近线方程为________;(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________. 解析 (1)由于e =c a =233,∴c 2a 2=a 2+b 2a 2=43,则a 2=3b 2, 若双曲线焦点在x 轴上,渐近线方程y =±33x . 若双曲线焦点在y 轴上,渐近线方程y =±3x .(2)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. 答案 (1)y =±3x ,或y =±33x (2)12或32探究提高 1.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.2.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.【训练2】 设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析 若∠PF 2F 1=90°.则|PF 1|2=|PF 2|2+|F 1F 2|2, 又因为|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,所以|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20, 所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.答案 72或2应用3由变量或参数引起的分类讨论【例3】已知f(x)=x-a e x(a∈R,e为自然对数的底).(1)讨论函数f(x)的单调性;(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.解(1)f′(x)=1-a e x,当a≤0时,f′(x)>0,函数f(x)是(-∞,+∞)上的单调递增函数;当a>0时,由f′(x)=0得x=-ln a,所以函数f(x)在(-∞,-ln a)上的单调递增,在(-ln a,+∞)上的单调递减.(2)f(x)≤e2x⇔a≥xe x-ex,设g(x)=xe x-ex,则g′(x)=1-e2x-xe x.当x<0时,1-e2x>0,g′(x)>0,∴g(x)在(-∞,0)上单调递增.当x>0时,1-e2x<0,g′(x)<0,∴g(x)在(0,+∞)上单调递减.所以g(x)max=g(0)=-1,所以a≥-1.故a的取值范围是[-1,+∞).探究提高 1.(1)参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.本题中参数a与自变量x的取值影响导数的符号应进行讨论.(2)解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论.2.分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.【训练3】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1). 热点二 转化与化归思想 应用1 特殊与一般的转化【例4】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( ) A.2a B.12a C.4aD.4a(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 (1)抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F ⎝ ⎛⎭⎪⎫0,14a .过焦点F 作直线垂直于y 轴,则|PF |=|QF |=12a ,∴1p +1q =4a .(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 答案 (1)C (2)4 2 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练4】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C =12+121+12×12=45.答案 45应用2 函数、方程、不等式之间的转化【例5】 已知函数f (x )=3e |x |,若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值. 解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0, ∴f (x +t )≤3e x ⇔e x +t ≤e x ⇔t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ). ∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数, 又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m . ∴要使得对任意x ∈[1,m ],t 值恒存在, 只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e =-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3.探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练5】 (2017·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A → ·PB → ≤20,则点P 的横坐标的取值范围是________.解析 设点P (x ,y ),且A (-12,0),B (0,6).则P A → ·PB → =(-12-x ,-y )·(-x ,6-y )=x (12+x )+y (y -6)≤20, 又x 2+y 2=50, ∴2x -y +5≤0,则点P 在直线2x -y +5=0上方的圆弧上(含交点). 联立⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图形知,-52≤x ≤1.故点P 横坐标的取值范围是[-52,1]. 答案 [-52,1]应用3 正与反、主与次的转化【例6】 (1)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________;(2)对于满足0≤p ≤4的所有实数p ,不等式x 2+px >4x +p -3恒成立,则x 的取值范围是________.解析 (1)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数, 则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立, 则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373. ∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5. (2)设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0.所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1.答案 ⎝ ⎛⎭⎪⎫-373,-5 (2)(-∞,-1)∪(3,+∞)探究提高 1.第(1)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.题目若出现多种成立的情形,则不成立的情形相对很少,从后面考虑较简单,因此,间接法多用于含有“至多”“至少”及否定性命题情形的问题中.2.第(2)题是把关于x 的函数转化为在[0,4]内关于p 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.【训练6】 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 ⎝ ⎛⎭⎪⎫-23,11.分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思想,降低问题难度.常见的分类讨论问题:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论,函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论,对称轴位置的讨论,判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.。
第3讲 分类讨论思想在解析几何中的应用(原卷版)
第3讲分类讨论思想在解析几何中的应用在解答某些数学问题时。
有时会遇到很多情况,需要对各种情况加以分类,并逐步求解,然后综合理解,这就是分类讨论法。
分类讨论是一种逻辑方法。
是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零,积零为整的思想,与归类整理的方法有关。
分类讨论思想在数学问题具有明显的。
逻辑性、综合性、探索性,能训练人的思维条理和概括性。
解析几何中的分类讨论思想涉及到直线的方程、圆与圆的位置关系,圆锥曲线的概念以及性质等问题。
也是高考常考查的知识点。
【应用一】分类讨论思想在直线、圆中的应用1、直线方程的几种形式2、圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).3、直线与圆的位置关系三种位置关系:相交、相切、相离.Δ<0 Δ>0 【例1.1】(2023四川南充高三模拟)过(2,2)P 作圆22:(1)1C x y -+=的切线,则其切线方程为____________. .【思维提升】涉及到直线的方程问题。
若设直线的点斜式、斜截式方程必须考虑直线的斜率是否存在,特别是直线与圆的位置关系是要验证斜率不存在的情况。
这种问题也是经常考查也是学生最容易丢分的问题。
【变式1.1】(2023·山西·统考一模)经过()2,0A ,()0,2B ,()2,4C 三点的圆与直线240kx y k -+-=的位置关系为( ) A .相交B .相切C .相交或相切D .无法确定【变式 1.2】(2022年重庆市第八中学高三模拟试卷)若直线1:480l ax y ++=与直线2:3(1)60l x a y ++-=平行,则a 的值为( )A. 4-B. 3C. 3或4-D. 3-或6【变式1.3】 (202江苏扬州中学期中)(多选题)已知圆1O :()22325x y +-=,圆2O :()()2261125x y -+-=,下列直线中,与圆1O ,2O 都相切的是( ) A .34370x y +-=B .34320x y ++=C .43160x y --=D .43340x y -+=【变式1.4】(2022·辽宁鞍山·高二期中)过点()2,4P 引圆()()22111x y -+-=的切线,则切线的方程为( ) A .2x =-或4340x y +-= B .4340x y -+= C .2x =或4340x y -+=D .4340x y +-=【应用二】分类讨论思想在圆锥曲线定义中的应用1、 椭圆的定义平面内与两个定点F 1,F 2的距离之和等于常数(大于||F 1F 2)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |||MF 1+||MF 2=2a },||F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数. (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集.2、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 3、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.【例2.1】(四川省双流中学2022年高三上学期期中)设定点()10,3F -,()20,3F ,动点P 满足条件129PF PF t t+=+(t 为常数,且0t >),则点P 的轨迹是______.【思维提升】涉及到圆锥曲线的定义问题一定要考虑定义要满足的条件,否则轨迹就不一定是圆锥曲线,如椭圆中忽略条件就有可能轨迹是线段,或者不存在。
高中数学高考数学学习资料:专题6 第5讲 数学思想方法与答题模板建构
[例2]
(1)(2011· 绍兴一中)为了解某校高三学生的视力情况,
随机地抽查了该校100名高三学生的视力情况,得到频率 分布直方图如下图,由于不慎将部分数据丢失,但知道前 4组的频数成等比数列,后6组的频数成等差数列,设最大 频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值 分别为 ( )
[例1] (2011· 北京高考)用数字2,3组成四位数,且数字2,3 至少都出现一次,这样的四位数共有______个(用数字作答
).zxxk
[解析] 数字 2,3 至少都出现一次,包括以下情况:
1 “2”出现 1 次,“3”出现 3 次,共可组成 C4 =4(个)四位数. 2 “2”出现 2 次 ,“3”出现 2 次,共可组成 C4 =6(个)四位数. 3 “2”出现 3 次,“3”出现 1 次,共可组成 C4 =4(个)四位数.
综上所述,共可组成 14 个这样的四位数.
[答案] 14
[点评] 在解决排列组合应用问题时,要根据事件发
生情形进行恰当分类.分类时要做到不重不漏,且标
准要统一.zxxk
2.数形结合思想 数形结合思想在本专题的应用主要体现在:
(1)频率分布直方图、茎叶图的应用.
(2)算法框图. (3)复数的几何意义.
(2)ξ 可能取的值有 0,2,4,6,8.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(5 分) 1 1 1 P(ξ=0)= × = ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(6 分) 4 2 8 1 1 1 1 5 P(ξ=2)= × + × = ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄(7 分) 4 4 2 2 16 1 1 1 1 1 1 5 P(ξ=4)= × + × + × = ;┄┄┄┄┄┄┄┄┄┄┄(8 分) 2 4 4 2 4 4 16 1 1 1 1 3 P(ξ=6)= × + × = ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄(9 分) 2 4 4 4 16 1 1 1 P(ξ=8)= × = .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(10 分) 4 4 16
高考数学文(二轮复习)课件《分类讨论思想》
由图形或图象引发的分类讨论
[试题调研] x+y-2≥0, (2014· 北京高考)若x,y满足kx-y+2≥0, y≥0, )
[例2]
且z=y-x的最小值为-4,则k的值为( A.2 B.-2 1 C.2
1 D.-2
[思路方法]
线性约束条件中含有参数,k的取值会对可行
域产生影响,因此解题时要注意对k的分类讨论.可将k分为 k>0,k<-1,k=-1与-1<k<0等情况讨论求解.
或0<x≤4,即不等式f(x)≥-2的解集为
1 -∞,- ∪(0,4],故选率、指数 函数、对数函数等.与这样的数学概念有关的问题往往需要根 据数学概念进行分类,从而全面完整地解决问题. (1)分段函数在自变量不同取值范围内,对应关系不同,必 须进行讨论.由数学定义引发的分类讨论一般由概念内涵所决 定,解决这类问题要求熟练掌握并理解概念的内涵与外延.
[回访名题] (1)(2013· 辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△ OAB为直角三角形,则必有( A.b=a3 1 B.b=a +a
两式相减,得 (q-1)Sn=nqn-1-q1-q2-„-qn-1
n n+1 n q - 1 nq - n + 1 q +1 n =nq - = . q-1 q-1
nqn+1-n+1qn+1 于是,Sn= . q-12 nn+1 若q=1,则Sn=1+2+3+„+n= 2 . nn+1 q=1, 2 所以Sn= n+1 n nq -n+1q +1 q≠1. 2 q - 1
(3)由性质、定理、公式的限制而引起的分类讨论:如函数 的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图 象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问 题,由于参数的取值不同会导致所得的结果不同,或者由于对 不同的参数值要运用不同的求解或证明方法等.
全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习(附答案)
全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习【方法总结】分类讨论思想研究函数的单调性讨论含参函数的单调性,其本质就是讨论导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主.讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般来说需要进行四个层次的分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是否有变号零点,即“有没有”;(3)导函数的变号零点是否在函数定义域或指定区间内,即“在不在”;(4)导函数的变号零点之间的大小关系,即“大不大”.牢记:十二字方针“是不是,有没有,在不在,大不大”.考点一 导主一次型【例题选讲】[例1]已知函数f(x)=x-a ln x(a∈R),讨论函数f(x)的单调性.【对点训练】1.已知函数f(x)=a ln x-ax-3(a∈R).讨论函数f(x)的单调性.2.已知函数f(x)=ln x-ax(a∈R),讨论函数f(x)的单调性.考点二 导主二次型【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x1,x2都在定义域内,则讨论个零点x1,x2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1是不是+有没有+在不在[例2](2021ꞏ全国乙节选)已知函数f(x)=x3-x2+ax+1.讨论f(x)的单调性.[例3](2018ꞏ全国Ⅰ节选)已知函数f(x)=1x-x+a ln x,讨论f(x)的单调性.[例4]设函数f(x)=a ln x+x-1x+1,其中a为常数.讨论函数f(x)的单调性.【对点训练】3.(2020ꞏ全国Ⅲ节选)已知函数f(x)=x3-kx+k2.讨论f(x)的单调性.4.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性.命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性.[例6] 已知函数f (x )=x 2e -ax-1(a 是常数),求函数y =f (x )的单调区间.[例7] 已知函数f (x )=(a +1)ln x +1x -ax +2(a ∈R ).讨论f (x )的单调性.[例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.[例9] (2016ꞏ山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.【对点训练】6.已知函数f (x )=122-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间.8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性.9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性.10.已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,且1<a <2,试讨论函数f (x )的单调性.考点三 导主指对型 【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.[例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.12.已知函数f (x )=(x 2-2ax )ln x -122+2ax (a ∈R ).(1)若a =0,求f (x )的最小值; (2)求函数f (x )的单调区间.考点四 导主正余型【例题选讲】[例12](2017山东理)已知函数f(x)=x2+2cos x,g(x)=e xꞏ(cos x-sin x+2x-2),其中e是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.【对点训练】13.(2017ꞏ山东)已知函数f(x)=13x 3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性参考答案【例题选讲】[例1] 已知函数f (x )=x -a ln x (a ∈R ),讨论函数f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a , ①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增, ②当a >0时,x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.【对点训练】1.已知函数f (x )=a ln x -ax -3(a ∈R ).讨论函数f (x )的单调性. 1.解析 函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x ,令f ′(x )=0,得x =1,当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当a =0时,f (x )为常函数.2.已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性. 2.解析 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )在(0,+∞)上单调递增. ②当a >0时,令f ′(x )=1x -a =1-ax x =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 考点二 导主二次型 【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x 1,x 2都在定义域内,则讨论个零点x 1,x 2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1 是不是+有没有+在不在[例2] (2021ꞏ全国乙节选)已知函数f (x )=x 3-x 2+ax +1.讨论f (x )的单调性.解析 由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ). ①当a ≥13时,f ′(x )≥0,f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增,在⎝ ⎛⎪⎫1-1-3a 3,1+1-3a 上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增.[例3] (2018ꞏ全国Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性. 解析 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①当a ≤2时,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②当a >2时,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42. 当x ∈⎝ ⎛⎪⎫0,a -a 2-4∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎪⎫0,a -a 2-4,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[例4] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.讨论函数f (x )的单调性. 解析 函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1).(1)当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.(2)当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. (3)当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a. 由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增. 【对点训练】3.(2020ꞏ全国Ⅲ节选)已知函数f (x )=x 3-kx +k 2.讨论f (x )的单调性. 3.解析 由题意,得f ′(x )=3x 2-k ,当k ≤0时,f ′(x )≥0恒成立,所以f (x )在(-∞,+∞)上单调递增; 当k >0时,令f ′(x )=0,得x =±k 3,令f ′(x )<0,得-k3<x <k3,令f ′(x )>0,得x <-k3或x >k 3,所以f (x )在⎝⎛⎭⎫-k 3,k 3上单调递减,在⎝⎛⎭⎫-∞,-k 3,⎝⎛⎭⎫k 3,+∞上单调递增. 4.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.4.解析 由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2. 设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数. ②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2, x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增.此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在(a -a 2-82,a +a 2-82)上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性. 5.解析 由题易得f ′(x )=(ax 2+2ax +1)e x ,当a =0时,f ′(x )=e x >0,此时f (x )在R 上单调递增. 当a >0时,方程ax 2+2ax +1=0的判别式Δ=4a 2-4a .①当0<a ≤1时,Δ≤0,ax 2+2ax +1≥0恒成立,所以f ′(x )≥0,此时f (x )在R 上单调递增; ②当a >1时,令f ′(x )=0,解得x 1=-1-1-1a ,x 2=-1+1-1a .x ∈(-∞,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增. 所以f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减.综上,当0≤a ≤1时,f (x )在R 上单调递增;当a >1时,f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减.命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性. 解析 因为f (x )=ln x +ax 2-(2a +1)x ,所以f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x. 由题意知函数f (x )的定义域为(0,+∞),令f ′(x )=0得x =1或x =12a , 若12a <1,即a >12,由f ′(x )>0得x >1或0<x <12a ,由f ′(x )<0得12a <x <1, 即函数f (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减;若12a >1,即0<a <12,由f ′(x )>0得x >12a 或0<x <1,由f ′(x )<0得1<x <12a ,即函数f (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,则在(0,+∞)上恒有f ′(x )≥0,即函数f (x )在(0,+∞)上单调递增.综上可得,当0<a <12时,函数f (x )在(0,1)上单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递增;当a >12时,函数f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.[例6] 已知函数f (x )=x 2e -ax -1(a 是常数),求函数y =f (x )的单调区间.解析 根据题意可得,当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e-ax +x 2(-a )e -ax =e -ax (-ax 2+2x ). 因为e -ax >0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a(1)当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0,即f ′(x )≥0,函数y =f (x )单调递增. (2)当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )单调递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )单调递减. 综上所述,当a =0时,函数y =f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0);当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0. [例7] 已知函数f (x )=(a +1)ln x +1x -ax +2(a ∈R ).讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),且f ′(x )=-(x -1)(ax -1)x 2.令f ′(x )=0,得x =1或x =1a . 当a ≤0时,ax -1<0,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当0<a <1时,f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减; 当a =1时,f (x )在(0,+∞)上单调递减;当a >1时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,1上单调递增,在(1,+∞)上单调递减. [例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.解析 f ′(x )=a x +1-a -2x =-2x ⎝⎛⎭⎫x +2+a 2x +1, 令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞),①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎫-1,-a +22,f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫-a +22,0,f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫0,-a +22,f ′(x )>0,则f (x )单调递增;若x ∈⎝⎛⎭⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减. 综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )在⎝⎛⎭⎫-1,-a +22上单调递减,在⎝⎛⎭⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减;当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎫0,-a +22上单调递增,在⎝⎛⎭⎫-a +22,+∞上单调递减.[例9] (2016ꞏ山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3. 当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①若0<a <2,则2a >1,当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. 【对点训练】6.已知函数f (x )=122-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.6.解析 函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x. ①当0<a <1时,1a >1,∴x ∈(0,1)和⎝⎛⎭⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; ②当a =1时,1a =1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增; ③当a >1时,0<1a <1,∴x ∈⎝⎛⎭⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间. 7.解析 f (x )=x 2e ax +1+1-a (a ∈R )的定义域为(-∞,+∞),f ′(x )=x (ax +2)e ax +1 . ①当a =0时,x >0,f ′(x )>0;x <0,f ′(x )<0,所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,x ∈⎝⎛⎭⎫-∞,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,0,f ′(x )<0;x ∈(0,+∞),f ′(x )>0, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,-2a ,(0,+∞),单调递减区间为⎝⎛⎭⎫-2a ,0. ③当a <0时,x ∈(-∞,0),f ′(x )<0;x ∈⎝⎛⎭⎫0,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,+∞,f ′(x )<0, 所以函数f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫-2a ,+∞,单调递增区间为⎝⎛⎭⎫0,-2a . 8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性.8.解析 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x. (1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;(2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;(3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a , 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0;当x ∈(1-a 2a ,+∞)时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减,在(1-a 2a ,+∞)上单调递增. 9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性. 9.解 因为f ′(x )=k +4k x -4x 2-1=⎝⎛⎭⎫k +4k x -4-x 2x 2=-(x -k )⎝⎛⎭⎫x -4k x 2(x >0,k >0). ①当0<k <2时,4k k >0,且4k >2,所以当x ∈(0,k )时,f ′(x )<0,当x ∈(k ,2)时,f ′(x )>0,所以函数f (x )在(0,k )上是减函数,在(k ,2)上是增函数;②当k =2时,4k =k =2,f ′(x )<0在(0,2)上恒成立,所以f (x )在(0,2)上是减函数;③当k >2时,0<4k <2,k >4k ,所以当x ∈⎝⎛⎭⎫0,4k 时,f ′(x )<0;当x ∈⎝⎛⎭⎫4k ,2时,f ′(x )>0, 所以函数f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数.综上可知,当0<k <2时,f (x )在(0,k )上是减函数,在(k ,2)上是增函数;当k =2时,f (x )在(0,2)上是减函数;当k >2时,f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数. 10.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,且1<a <2,试讨论函数f (x )的单调性. 10.解析 函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1. ①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增,当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即32<a <2时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增.当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a <2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.考点三 导主指对型【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.解析 函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0,得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0. 故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2.当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0;当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0;故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. [例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.解析 易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1),令f ′(x )=0得x =a 2或x =e .当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e).当a >0时,①若a 2<e ,即0<a <2e ,当x ∈⎝⎛⎭⎫0,a 2时,f ′(x )>0,当x ∈⎝⎛⎭⎫a 2,e 时,f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;②若a 2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间;③若a 2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x ∈⎝⎛⎭⎫e ,a 2时,f ′(x )<0,当x ∈⎝⎛⎭⎫a 2,+∞时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;当a =2e 时,f (x )无单调递减区间;当a >2e 时,f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.11.解析 ∵f (x )=e x -ax -1,∴f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.12.已知函数f (x )=(x 2-2ax )ln x -122+2ax (a ∈R ).(1)若a =0,求f (x )的最小值;(2)求函数f (x )的单调区间.12.解析 (1)若a =0,f (x )=x 2ln x -12x 2,定义域为(0,+∞),f ′(x )=2x ln x +x 2×1x -x =2x ln x ,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f (x )的最小值为f (1)=-12.(2)f ′(x )=(2x -2a )ln x +(x 2-2ax )ꞏ1x -x +2a =(2x -2a )ln x ,①当a ≤0时,2x -2a >0,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,此时f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);②当0<a <1时,由f ′(x )>0可得0<x <a 或x >1,由f ′(x )<0可得a <x <1,此时f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞);③当a =1时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(0,+∞);④当a >1时,由f ′(x )>0可得0<x <1或x >a ,由f ′(x )<0可得1<x <a ,此时f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).综上所述:当a ≤0时,f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);当0<a <1时,f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞);当a =1时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >1时,f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).考点四 导主正余型【例题选讲】[例12] (2017山东理)已知函数f (x )=x 2+2cos x ,g (x )=e x ꞏ(cos x -sin x +2x -2),其中e 是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.解析 (1)g′(x)=(e x)′ꞏ(cos x-sin x+2x-2)+e x(cos x-sin x+2x-2)′=e x(cos x-sin x+2x-2-sin x-cos x+2)=2e x(x-sin x).记p(x)=x-sin x,则p′(x)=1-cos x.因为cos x∈[-1,1],所以p′(x)=1-cos x≥0,所以函数p(x)在R上单调递增.而p(0)=0-sin 0=0,所以当x<0时,p(x)<0,g′(x)<0,函数g(x)单调递减;当x>0时,p(x)>0,g′(x)>0,函数g(x)单调递增.综上,函数g(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)因为h(x)=g(x)-af (x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),所以h′(x)=2e x(x-sin x)-a(2x-2sin x)=2(x-sin x)(e x-a).由(1)知,当x>0时,p(x)=x-sin x>0;当x<0时,p(x)=x-sin x<0.当a≤0时,e x-a>0,所以x>0时,h′(x)>0,函数h(x)单调递增;x<0时,h′(x)<0,函数h(x)单调递减.当a>0时,令h′(x)=2(x-sin x)(e x-a)=0,解得x1=ln a,x2=0.①若0<a<1,则ln a<0,所以x∈(-∞,ln a)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(ln a,0)时,e x-a>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x-a>0,h′(x)>0,函数h(x)单调递增.②若a=1,则ln a=0,所以x∈R时,h′(x)≥0,函数h(x)在R上单调递增.③若a>1,则ln a>0,所以x∈(-∞,0)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(0,ln a)时,e x-a<0,h′(x)<0,函数h(x)单调递减;x∈(ln a,+∞)时,e x -a>0,h′(x)>0,函数h(x)单调递增.综上所述,当a≤0时,函数h(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减;当0<a<1时,函数h(x)在(-∞,ln a),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a=1时,函数h(x)在R上单调递增;当a>1时,函数h(x)在(-∞,0),(ln a,+∞)上单调递增,在(0,ln a)上单调递减.【对点训练】13.(2017ꞏ山东)已知函数f(x)=13x 3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性.13.解析 (1)由题意得f′(x)=x2-ax,所以当a=2时,f(3)=0,f′(x)=x2-2x,所以f′(3)=3,因此曲线y=f(x)在点(3,f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g′(x)=f′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x).令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,所以g(x)在(-∞,+∞)上单调递增.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.综上所述,当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减;当a=0时,函数g(x)在(-∞,+∞)上单调递增;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减.。
专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件
|技法点拨| 此题是一道典型的求离心率的题目,一般需要通过a,b,c之间的关系, 得出关于a,c的方程,经过恒等变形就可以求出离心率.
目录
在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知△ABC 的面积为
3 15,b-c=2,cos A=-14,则 a=____8____.
目录
构造函数关系解决问题 在高考试题中,综合问题的比较大小、求最值等,一般均需利用构 造函数法才能完成.如何正确的构造出恰当的函数,是解决此类问题的 关键,因此充分挖掘原问题的条件与结论间的隐含关系,通过类比、联 想、抽象、概括等手段,构造出恰当的函数,在此基础上利用函数思想 和方法使原问题获解,这是函数思想解题的更高层次的体现.
目录
|技法点拨| 挖掘、提炼多变元问题中变元间的相互依存、相互制约的关系,反客为 主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解, 是解题人思维品质高的表现.本题主客换位后,利用新建函数 y=x1+ln x 的 单调性巧妙地求出实数 k 的取值范围.此法也叫主元法.
目录
已知函数 f(x)=33xx- +11+x+sin x,若存在 x∈[-2,1],使得 f(x2+x)+f(x-k) <0 成立,则实数 k 的取值范围是__(_-__1_,__+__∞__)__. 解析:由题意知,函数f(x)的定义域为R,且f(x)是奇函数. 又 f′(x)=(2l3nx+3·1)3x2+1+cos x>0 在 x∈[-2,1]上恒成立,函数 f(x)在 x∈[- 2,1]上单调递增.若存在 x∈[-2,1],使得 f(x2+x)+f(x-k)<0 成立,则 f(x2+x)<-f(x-k)⇒f(x2+x)<f(k-x)⇒x2+x<k-x,故问题转化为存在 x∈[-2,1],k>x2+2x,即 k>(x2+2x)min,当 x∈[-2,1]时,y=x2+2x= (x+1)2-1 的最小值为-1.故实数 k 的取值范围是(-1,+∞).
高考数学二轮复习练习-专题七分类讨论、转化与化归思想练典型习题提数学素养
1.直接转化法 2.换元法 3.数形结合法 4. 构造法 5.坐标法 6.类比法 7.特殊化方法 8.等价问题法 9.加强命题法 10.补集法
转化与化归思想就是在研究和解决有关数学问题时, 进而使问题得到解决的一种数学思想方法
采用某种手段将问题通过变换使之转化,
应用一 一般与特殊的相互转化
[ 典型例题 ] (1) 过抛物线 y= ax2(a>0)的焦点 F,作一直线交抛物线于
第 3 讲 分类讨论、转化与化归思想 一、分类讨论思想
分类讨论的原则
分类讨论的常见类型
1.不重不漏 2.标准要统一,层次要分明 3.能不分类的要尽量避免,决不 无原则的讨论
1.由数学概念而引起的分类讨论 2.由数学运算要求而引起的分类讨论 3.由性质、定理、公式的限制而引起的分类讨论 4.由图形的不确定性而引起的分类讨论 5.由参数的变化而引起的分类讨论
(1)若曲线 y= f( x)在点 (2 ,f(2)) 处的切线斜率为 0,求 a;
(2)若 f(x)在 x= 1 处取得极小值,求 a 的取值范围. 解: (1) 因为 f(x)= [ax2- (3a+ 1)x+3a+ 2]ex,
所以 f′x()= [ax2-(a+1) x+ 1]ex. f′ (2=) (2a-1)e2.
a≠ 0 时 , 设直线方程为
x+ y= 1,则求得 aa
a= 7, 直线方程为
x+ y- 7=0. 2.若函数 f(x)= ax(a>0, a≠ 1)在 [ - 1, 2]上的最大值为 4,最小值为 m,且函数 g(x)= (1
- 4m) x在 [0,+∞ )上是增函数,则 a= ________.
当
q≠ 1
时
,
【高考数学二轮复习】分类讨论是一种重要的解题策略与运用分类讨论法解含参数函数、方程、不等式问题-解析
第59讲分类讨论是一种重要的解题策略分类讨论是数学中一种重要的思想方法,也是一种重要的解题策略,特别是对于含参数字母的问题,由于这类问题的结论大多数是随参数的变化而变化的,故问题的解答不唯一,因此,当解题进行到某一步后不能再以同一方式处理或统一的形式叙述,这时就必须根据参数字母不同的取值范围区别对待,即必须在参数字母总的取值范围(全集)内正确划分成若干个分区域(子集),在各个分区域内方能继续进行解题,有些含参数讨论题,由于所含的参数不止一个,故这类问题要通过多级分类逐级讨论,即在每一个类中还可以继续划分更小的类,直到每一类中能使问题得到解决为止.当然,分类讨论不局限于字母参数,也有对具体问题可能出现的不同情况进行分类.数学之美在于简捷,分类要力求简捷.分类讨论的解题步骤如下:(1)确定讨论的对象;(2)确定讨论对象的取值范围(全集)(3)划分子区域(子集);(4)对于参数字母多于一个的问题则要进行逐级分类,解题时要特别注意讨论的层次,避免重复讨论或讨论不全等现象;(5)对每个子区域讨论的结果整合起来作出结论.其中第(5)步非常重要,分类是把整体化为部分,整合是把各部分加以归纳总结,有“分”必有“合”,因为我们研究的是问题的全体,所以必须做到有“分”有“合”,先“分”后“合”,这不仅是分类与整合的思想解决数学问题的主要过程,也是分类与整合思想的本质属性,数学思维应当注重过程的严谨性与周密性.使用分类讨论思想解题时应当注意以下几点:(1)要有明确的分类标准,所选择的分类标准不同就会有不同的分类方向,尽量合理(2)一旦选定一种分类标准,就必须从同一标准出发,对讨论对象分类层次分明,不重(3)当讨论的对象不止一种时,应分层次进行,分大类时有一个统一的标准,每一大类中再分几小类另有统一的标准.(4)注意把握问题发展的本质趋向,根据解题形势发展的需要,选择分类讨论的时机.(5)在重视分类讨论思想应用的基础上,应防止“逢参就论”的倾向,能整体处理,可避免讨论的则尽量避开,才是解题的上策.本讲就从近年来的高考真题来看分类讨论思想方法在解题中的重要作用.典型例题【例1】已知函数()2()2ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【分析】 第(1)问通过求导研究函数的单调性即可证明;第((2)问,根据函数取得极值的条件,建立关于a 的式子求解.在求解过程中,两问都需要实施分类讨论,第(1)问需要对自变量的取值范围进行分类讨论,第(2)问必须对参数a 的取值范围进行分类讨论. 【解析】(1)证明当0a =时,'()(2)ln(1)2,()ln(1)1x f x x x x f x x x=++-=+-+. 设函数'()()ln(1)1x g x f x x x==+-+,则'2()(1)x g x x =+. 当10x -<<时,'()0g x <;当0x >时'()0g x >. 故当1x >-时,()(0)0g x g =,且仅当0x =时,()0g x =,从而'()0f x ,且仅当0x =时,'()0f x =,()f x ∴在(1,)∞-+单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)①若0a ,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ++->=,这与0x =是()f x 的极大值点矛盾.②若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min x ⎧⎪<⎨⎪⎩时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点.当且仅当0x =是()h x 的极大值点,()()2'22222(12)1()12x ax x ax h x x x ax++-+=-+++()()22222461(1)2x a x ax a x ax x +++=+++如果610a +>,则当6104a x a -+<<,且||min x ⎧⎪<⎨⎪⎩时,'()0h x >,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当()1,0x x ∈,且||min x ⎧⎪<⎨⎪⎩时,'()0h x <,故0x =不是()h x 的极大值点.如果610a +=,则()3'22(24)()(1)612x x h x x x x -=+--,则当(1,0)x ∈-时,'()0h x >;当(0,1)x ∈时,'()0,0h x x <∴=是()h x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-. 【例2】已知{}n a 是首项为2,公比为12的等比数列,n S 为它的前n 项和. (1)用n S 表示1n S +; (2)是否存在正整数c 和k ,使得12k k S cS c+->-成立.【分析】本例第(2)问属于探索性问题,解题时需要灵活运用分类讨论的思想,由于题中含有双参数,k c ,必须轮流分类讨论,应注意思路清晰、讨论到位. 【解析】(1)由1412n nS ⎛⎫=-⎪⎝⎭,得()*111141222n n n S S n ++⎛⎫=-=+∈ ⎪⎝⎭N . (2)要使12k k S c S c +->-,只要3220k kc S c S ⎛⎫-- ⎪⎝⎭<-,()*131414,220.222k kk k k S S S S k ⎛⎫⎛⎫=-∴--=-∈ ⎪ ⎪⎝⎭⎝⎭N故只要()*322k k S c S k -<<∈N ①, ()*1133,221,22k k k S S k S S +>∈∴--=N又4k S <故要使①式成立,c 只能取2或3. 当2c =时,12,S =∴当1k =时,k c S <不成立,从而①式不成立.当2k 时,2352,22S c -=>由()*1k k S S k +<∈N 得13322,22k k S S +-<- 故当2k 时,32,2k S c ->从而①式不成立. 当3c =时,122, 3.S S ==∴当1,2k k ==时,不成立,从而①式不成立.33132,24S c -=>又13322,22k k S S +-<-∴当3k 时,32,2k S c ->从而①式不成立.综上所述,不存在正整数c 和k ,使12k k S cS c+->-成立.【例3】设m R ∈,在平面直角坐标系中,已知向量(),1a mx y =+,向量(),1b x y =-,a b ⊥,动点(),M x y 的轨迹为E .(1)求轨迹E 的方程,并说明该方程所表示曲线的形状; (2)已知14m =,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点,A B ,且(OA OB O ⊥为坐标原点),并求出该圆的方程; (3)已知14m =,设直线l 与圆222:(12)C x y R R +=<<相切于1A ,且l 与轨迹E 只有一个公共点1B ,当R 为何值时,11A B 取得最大值?并求出最大值.【分析】 第(1)问,在求得的轨迹方程中显然含有参数m ,必须对m 的取值分类讨论确定其轨迹;第(2)问,由于是任意一条切线,必定要对其斜率存在与否进行分类讨论;第(3)问,引入直线必然含有双参数,且圆C 中尚有参数R ,由于解题得法,反而避免了分类讨论. 【解析】(1)()(),,1,,1a b a mx y b x y ⊥=+=-,2210,a b mx y ∴⋅=+-=即22 1.mx y +=当0m =时,方程表示两直线方程,方程为1y =±; 当1m =时,方程表示的是圆;当0m >且1m ≠时,方程表示的是椭圆; 当0m <时,方程表示的是双曲线.(2)当14m =时,轨迹E 的方程为2214x y +=,设圆心在原点的圆的一条切线为y =,kx t +解方程组22,1,4y kx t x y =+⎧⎪⎨+=⎪⎩得224()4x kx t ++=.()222148440.k x ktx t +++-=即要使切线与轨迹E 恒有两个交点,A B ,则()()()222222Δ641614116410,k t k t k t =-+-=-+>即22410,k t -+>亦即2t 241,k <+且12221228,144414kt x x kt x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩2121212()()y y kx t kx t k x x =++=+()()22222222122224484.141414k t k t t k kt x x t t k k k --++=-+=+++要使OA OB ⊥,需使12120x x y y +=.即222222224445440,141414t t k t k k k k ----+==+++ 225440,t k ∴--=即22544t k =+且2241,t k <+亦即2244205k k +<+恒成立.又直线y kx t =+为圆心在原点的圆的一条切线,∴圆的半径为()222224145,115k t r r k k +====++所求的圆为224.5x y +=当切线的斜率不存在时,切线为x =与2214x y +=交于点或⎛ ⎝,也满足OA OB ⊥.综上所述,存在圆心在原点的圆2245x y +=,使得该圆的任意一条切线与轨迹E ,,.A B OA OB ⊥恒有两个交点且(3)当14m =时,轨迹E 的方程为2214x y +=,设直线l 的方程为y kx t =+. 直线l 与圆222:(12)C x y R R +=<<相切于1,A 由()2知R =,即()2221t R k =+①l 与轨迹E 只有一个公共点1B ,由()2知2214y kx tx y =+⎧⎪⎨+=⎪⎩得224()4,x kx t ++= 即()222148440k x ktx t +++-=有唯一解,则()()()222222Δ641614116410,k t k t k t =-+-=-+=即22410k t -+=②由①②得2222223,41.4R t RR k R ⎧=⎪⎪-⎨-⎪=⎪⎩此时,,A B 重合为111(,)B x y .12221228,144414kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩中22212122441616,.143t R x x x k R --=∴==+ 点()111,B x y 在椭圆上,22211214143R y x R -∴=-=,故222111245.OB x y R =+=-在直角三角形11OA B 中,222221111224455.A B OB OA R R R R ⎛⎫=-=--=-+ ⎪⎝⎭()2211244,21,2,54 1.R R A B R +=∈∴-=当且仅当时取等号 即当()1,2R =时,11A B 取得最大值,最大值为1.第60讲 运用分类讨论法解含参数函数、方程、不等式问题在求解函数、方程、不等式问题中,由于含有参数,而参数取不同值时会导致不同的结果,因而需要对参数进行分类讨论,即选择一个标准,依次分成几个能用不同形式去解决的小问题,从而使问题获得解决,体现了化整为零、各个击破、积零为整――即分类与整合的思想.典型例题【例1】设a 为实数,函数()21,f x x x a x =+-+∈R .(1)讨论()f x 的奇偶性; (2)求()f x 的最小值.【分析】讨论函数的奇偶性必须对0a =和0a ≠进行分类讨论,去掉绝对值符号必须对x a 和x a 进行分类讨论,求函数的最值又必须进一步对a 的取值与二次函数对称轴的关系进行分类讨论,三次讨论层层深入.【解析】()1当0a =时,()()2()1f x x x f x -=-+-+=,此时()f x 为偶函数,当0a ≠时,()21f a a =+,而()221f a a a -=++,()()()(),.f a f a f a f a ∴-≠-≠-∴此时函数()f x 既不是奇函数,也不是偶函数.(2)对x a -去掉绝对值号进行讨论:①当x a 时,()2213124f x x x a x a ⎛⎫=-++=-++ ⎪⎝⎭,若12a ,则()f x 在(],a ∞-上单调递减,()(]()2, 1.f x a f a a ∞∴-=+在上最小值为若12a >,则()f x 在(],a ∞-上的最小值为1324f a ⎛⎫=+ ⎪⎝⎭,且()12f f a ⎛⎫< ⎪⎝⎭. ②当x a 时,()22131.24f x x x a x a ⎛⎫=+-+=+-+ ⎪⎝⎭若12a -,则()f x 在[),a ∞+上的最小值为1324f a ⎛⎫-=- ⎪⎝⎭,且12f ⎛⎫- ⎪⎝⎭().f a若12a >-,则()f x 在[),a ∞+上单调递增,()[)()2, 1.f x a f a a ∞∴+=+在上的最小值为综上所述,当12a -时,()f x 的最小值为3;4a -当1122a -<时,()f x 的最小值为21a +;当12a >时,()f x 的最小值为34a +. 【例2】 (1)若()()lg 2lg 1kx x =+仅有一个实数根,那么k 的取值范围是__________;(2)函数()2212log 21(0,0)xx x x y aa b b a b =+-+>>,求使y 为负值的x 的取值范围.【分析】 第()1问是含参数的对数方程仅有一个实根,求参数的取值范围,首先转化为方程与不等式的混合组,而所得的是含参数的一元二次方程.由判别式结合混合组中两个不等式进行分类讨论,从而获解.第(2)问,当原问题转化为指数不等式时,必须对底数的取值在()0,1还是()1,∞+进行分类讨论,别忘了特殊情况0a b =>的讨论.【解析】()1由题意知20,10,(1)kx x kx x ⎧>⎪+>⎨⎪=+⎩即()20,10,210kx x x k x ⎧>⎪+>⎨⎪+-+=⎩①②③,对③式由求根公式得((12112,222x k x k =-=-④2Δ4004(0,).k k k k k =-⇒=或不合题意应舍去 ①当0k <时,由(3)式得12121220,,10,x x k x x x x +=-<⎧∴⎨=>⎩同为负根.又由④式知1210,10,x x +>⎧∴⎨+<⎩原方程有一个解1.x②当4k =时,原方程有一个解112kx =-=. ③当4k >时,由(3)式得12121220,,10,x x k x x x x +=->⎧∴⎨=>⎩同为正根且12x x ≠,不合题意,舍去.综上可得,0k <或4k =为所求. (2)()222212log 210(0,0),211x x x x x x x x a a b b a b a ab b +-+<>>∴+-+>,即2220.x x x x a a b b +->两边同除以2xb ,得2210,1x x x a a ab b b ⎛⎫⎛⎫⎛⎫+->∴>-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1xa b ⎛⎫<-- ⎪⎝⎭(舍去).(0,1,log 1;a baa b x b >>>∴>-若则若0a b =>,则1,1xa ab b ⎛⎫== ⎪⎝⎭,而1 1.x -+<∴∈R ;若0a b <<,则(01,log 1bax b α<<∴<-+. 综上所述,当a b>时,(log 1;a ax a b >-+=时,;x a b ∈<R 时,log a bx <(-1).【例3】(1)已知函数()y f x =的图像与函数(0xy a a =>且1a ≠)的图像关于直线()()()()()1,21,,22y x g x f x f x f y g x ⎡⎤⎡⎤==+-=⎣⎦⎢⎥⎣⎦对称记若在区间上是增函数,则实数a 的取值范围是( ). A.[)2,∞+B.()()0,11,2⋃C.1,12⎡⎫⎪⎢⎣⎭D.10,2⎛⎤ ⎥⎝⎦(2)关于x 的方程()222110x x k ---+=,给出下列4个命题:①存在实数k .,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根.其中假命题的个数是( ) A.0B.1C.2D.3【分析】第(1)问,由于底数a 末确定,必须对a 的值在()0,1还是()1,∞+进行分类讨论,若采用换元法,则必须在a 的不同范围内结合对数函数单调性确定新元的范围;第(2)问,若考虑去掉绝对值符号,则必须对x 的取值范围分类讨论,在进一步解答过程中又必须对参数k 的取值分类讨论.【解析】(1)已知函数()y f x =的图像与函数(0xy a a =>且1a ≠)的图像关于直线y x=对称,则()log a f x x =.记()()()()()()221log log 21log a a a g x f x f x f x x ⎡⎤=+-=+-⎣⎦.①当1a >时,()y g x =.在区间1,22⎡⎤⎢⎥⎣⎦上是增函数,log a y x =为增函数,令t =1log ,log ,log 22a a a x t ⎡⎤∈⎢⎥⎣⎦,要求对称轴log 211log 22a a --,矛盾;②当01a <<时,()y g x =在区间1,22⎡⎤⎢⎥⎣⎦上是增函数,log a y x =为减函数,令t1log ,log 2,log 2a a a x t ⎡⎤=∈⎢⎥⎣⎦,要求对称轴log 211log 22a a --,解得1,2a ∴实数a 的取值范围是10,2⎛⎤ ⎥⎝⎦,故选D . (2)解法一 关于x 的方程()222110x x k ---+=可化为()()222110(1xx k x ---+=或1x -)①或2221)(1)+0(11)x x k x -+-=-<<(②①当2k =-时,方程①的解为方程②无解,原方程恰有2个不同的实根;②当14k =时,方程①有两个不同的实根±方程②有两个不同的实根±即原方程恰有4个不同的实根;③当0k =时,方程①的解为1,±方程②的解为0x =,原方程恰有5个不同的实根;④当29k =时,方程①的解为方程②的解为,即原方程恰有8个不同的实根,故选A.解法二 根据题意,可令()210x t t -=,则原方程化为20t t k -+=①,作出函数21t x =-的图像,结合函数的图像可知,当0t =或1t >时原方程有两个不同的根;当01t <<时,原方程有4个根;当1t =时,原方程有3个根,于是:①当2k =-时,方程①有一个正根2t =,相应的原方程的解有2个; ②当14k =时,方程①有两个相等的正根12t =,相应的原方程的解有4个; ③当0k =时,方程①有两个不等根0t =或1t =,故此时原方程有5个根; ④当104k <<时,方程①有两个不等正根,且此时方程①有两个正根且均小于1,故相应满足原方程的解有8个,故选A . 【例4】已知函数()()()e2e e 2.72xx a f x x x --=+-≈.(1)当2a =时,证明:函数()f x 在R 上是增函数; (2)若2a >时,当1x 时,()221exx x f x -+恒成立,求实数a 的取值范围. 【分析】本例是含参数的函数的单调性问题与含参数不等式恒成立问题.第(1)问,在证明单调性过程中对x 的取值分类讨论;第(2)问,为了解决含参数不等式恒成立问题,必须研究新构造的函数的单调性和极值,必须对参数a 的取值范围分类讨论,分类要合理,不重不漏,符合最简原则.总之,分类讨论思想的本质是“化整为零,积零为整”,思维策略与操作过程是:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集). 【解析】(1)证明当2a =时,()()()2e2e ,xx f x x x f x --=+-的定义域为R .()()()()222e e e 2e 1e e x x x x x x f x x x x ------'=-++-=--()()()11e 1e 1e 1x x x x ---=--+.()11,10,e 10,0;x x x f x ---'∴当时()11,10,e 10,0.x x x f x -<-<-<'∴当时()(),0,.x f x f x ∴∴'R 对任意实数在上是增函数(2)当1x 时,()221exx x f x -+恒成立,即()222e 310x ax x x ---+-恒成立. ()()()()()()2222e 311,23e 1.x a x a h x x x x x h x x --=--+-=--'设则 ()()212323e 10,,.22x a ax x x ---===令解得①当3122a <<,即23a <<时,有∴要使结论成立,则()232331551e 10,e 0,e 1,e .2242a a a a h h ----⎛⎫=-+=-+ ⎪⎝⎭即552,3ln ,3ln 322a a a -∴-<解得;②当3,22a =即3a =时(),0h x '恒成立,()h x ∴是增函数,又()11e 10h -=-+>,故结论成立; ③当322a >,即3a >时,有∴要使结论成立,则()221e10,23024aa a h h a -⎛⎫=-+=-+- ⎪⎝⎭,即22e 1,8120.a a a --+解得2,26,36a a a ∴<. 综上所述,若2a >时,当1x 时,()221e xx x f x -+恒成立,实数a 的取值范围是53ln62a -.。
分类讨论思想方法
分类讨论思想1、专题概述分类讨论是一种逻辑方法与数学思想,在高考中占有重要位置,其原因有:〔1〕分类讨论问题一般都覆盖较多知识点,具有较强的综合性、探索性,有利于知识面的考查;〔2〕有关分类讨论思想的数学问题具有明显的逻辑性;〔3〕它需要有一定的分析能力与分类技巧,有利于培养学生思维的条理性和概括性;〔4〕分类讨论思想与生产实践和高等数学都紧密相关。
解分类讨论问题的实质是将整体问题化为假设干个部分解决,从而增加了题设条件,它表达了化整为零、积零为整的思想与归类整理的方法,这正是分类讨论的根本原因。
引起分类讨论的原因主要是以下几个方面:〔1〕问题所涉及到的数学概念是分类进行定义的。
如绝对值的定义、指对数函数的定义、直线的斜率与倾斜角等,这种分类讨论题型可以称为概念型。
〔2〕问题中涉及到的数学定理、公式和运算性质、法那么有X 围或者条件限制,或者是分类给出的。
如等比数列的前n 项和的公式,分q =1和q ≠1两种情况,这种分类讨论题型可以称为性质型。
〔3〕解含有参数的题目时,由于参数的取值不同会导致所得结果不同,或者由于不同的参数值而要不同的求解或证明方法,因此必须根据参数的不同取值X 围进行讨论,这称为含参型。
〔4〕由数学运算要求引起的分类讨论,如利用不等式性质时注意使用条件等。
〔5〕较复杂的或非常规的数学问题,需要采取分类讨论的解题策略来解决的。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都需要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时要遵循的原那么及其须知:〔1〕被分类的对象的集合的全域是确定的;〔2〕每一次分类的标准要统一,要分清主次、科学划分;〔3〕每一次分类必须要“不漏不重〞;〔4〕如需多次分类,必须是逐级进行,不越级讨论;〔5〕要注意简化或避免分类讨论,优化解题过程。
解答分类讨论问题时,我们的基本方法和步骤是:〔1〕确定讨论对象及其X 围;〔2〕确定分类标准,合理分类,分类互斥;〔3〕逐类进行讨论,分级进行,获取阶段性结果;〔4〕最后进行归纳小结,综合得出结论。
专题09 恰当分类,搞定函数中参数讨论题(解析版)
2020高考数学压轴题命题区间探究与突破专题第一篇 函数与导数专题09 恰当分类,搞定函数中参数讨论题一.方法综述1.分类讨论思想的含义分类讨论思想就是当问题所给的对象不能进行统一研究时,需要把研究对象按某个标准分类,然后对每一类分别研究,得出每一类的结论,最后综合各类结果得到整个问题的答案.对问题实行分类,分类标准等于是增加的一个已知条件,实现了有效增设,将大问题分解为小问题,优化了解题思路,降低了问题难度.2.分类讨论思想在解题中的应用(1)由数学概念引起的分类讨论;(2)由性质、定理、公式的限制引起的分类讨论;(3)由数学运算要求引起的分类讨论;(4)由图形的不确定性引起的分类讨论;(5)由参数的变化引起的分类讨论;(6)由实际意义引起的分类讨论,特别是在解决排列、组合中的计数问题时常用.3.函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. 本专题举例说明解答此类问题的方法、技巧.二.解题策略类型一 函数单调性问题中的参数讨论【例1】【2020·新兴一中期末】已知函数()()ln f x x a x a R =-∈(1)当0a >时,求函数()f x 的单调区间;(2)谈论函数()f x 的零点个数【解析】(1)∵()()ln ,0,f x x a x x =-∈+∞,故()1a x a f x x x'-=-=,∵0a >∴()0,x a ∈时,()0f x '<,故()f x 单调递减,(),x a ∈+∞时,()0f x '>,故()f x 单调递增,所以,0a >时,()f x 的单调递减区间是()0,a ,单调递增区间是(),a +∞(2)由(1)知,当0a >时,()f x 在x a =处取最小值()()ln 1ln f a a a a a a =-=-,当0a e <<时,()1ln 0a a ->,()f x 在其定义域内无零点当a e =时,()1ln 0a a -=,()f x 在其定义域内恰有一个零点当a e >时,最小值()()1ln 0f a a a =-<,因为()110f =>,且()f x 在()0,a 单调递减,故函数()f x 在()0,a 上有一个零点,因为a e >,2a e a a >>,()2ln 0a a a a f e e a e e a =-=->,又()f x 在(),a +∞上单调递增,故函数()f x 在(),a +∞上有一个零点,故()f x 在其定义域内有两个零点;当0a =时,()f x x =在定义域()0,∞+内无零点;当0a <时,令()0f x =,可得ln x a x =,分别画出y x =与ln y a x =,易得它们的图象有唯一交点,即此时()f x 在其定义域内恰有一个零点综上,0a e ≤<时,()f x 在其定义域内无零点;a e =或0a <时,()f x 在其定义域内恰有一个零点;a e>时,()f x 在其定义域内有两个零点;【指点迷津】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.【举一反三】【2019·福建莆田一高月考】已知函数1()ln a f x x x +=+. (1)讨论()f x 的单调性;(2)当01a ≤≤时,证明:()(sin 1)xf x a x >+.【解析】(1)由1()ln a f x x x +=+得2211(1)'()(0)a x a f x x x x x +-+=-=>. 当10a +≤即1a ≤-时,'()0f x >,所以()f x 在(0,)+∞上单调递增.当10a +>即1a >-时,由'()0f x >得1x a >+;由'()0f x <得1x a <+,所以()f x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增.(2)要证()(sin 1)xf x a x >+成立,只需证ln 1sin x x a a x a ++>+成立,即证ln sin 1x x a x >-.现证:ln 1x x ax ≥-.设()ln 1g x x x ax =-+.则'()1ln ln 1g x x a x a =+-=+-,所以()f x 在1(0,e )a -上单调递减,在1(e ,)a -+∞上单调递增.所以1111()()(1)11a a a a g x g e a e ae e ----≥=--+=-.因为01a ≤≤,所以110a e --≥,则()0g x ≥,即ln 1x x ax ≥-,当且仅当1x =,1a =时取等号.再证:1sin 1ax a x -≥-.设()sin h x x x =-,则'()1cos 0h x x =-≥.所以()h x 在(0,)+∞上单调递增,则()(0)0h x h >=,即sin x x >.因为01a ≤≤,所以1sin 1ax a x -≥-.当且仅当0a =时取等号,又ln 1x x ax ≥-与1sin 1ax a x -≥-两个不等式的等号不能同时取到,即ln sin 1x x a x >-,所以()(sin 1)xf x a x >+.类型二 函数极值问题中的参数讨论【例2】【2020·山东东营一中月考】已知函数()()20f x lnx ax x a =--+≥. ()1讨论函数()f x 的极值点的个数;()2若函数()f x 有两个极值点1x ,2x ,证明:()()12322f x f x ln +>-.【解析】()1Q 函数()()20f x lnx ax x a =--+≥, ()()2212121210ax x ax x f x ax x x x x-+-+-∴=--+>=-'=, 0x > 0a Q ≥,∴当0a =时,()1x f x x'-=,0x >, 当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;∴当1x =时,()f x 有极小值; 当18a ≥时,0≤V ,故()0f x '≤, ()f x ∴在()0,+∞上单调递减,故此时()f x 无极值; 当108a <<时,0V >,方程()0f x '=有两个不等的正根1x ,2x .可得1x =2x =则当10,4x a ⎛∈ ⎝⎭及1,4x a ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时, ()0f x '<,()f x 单调递减;当x ∈⎝⎭时,()0f x '> ;()f x 单调递增; ()f x ∴在1x x =处有极小值,在2x x =处有极大值.综上所述:当0a =时,()f x 有1个极值点;当18a ≥时,()f x 没有极值点; 当108a <<时,()f x 有2个极值点. ()2由()1可知当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程的两个正根, 则1212x x a +=,1212x x a=. ()()()(()()2121212121211[)2ln 212144f x f x x x a x x x x lnx lnx a lna ln a a⎤∴+=+-+--+=++=+++⎦; 令()1214g a lna ln a=+++, 108a <<Q ;()24104a g x a -'=<, ()g a ∴在10,8⎛⎫ ⎪⎝⎭上单调递减,故()13228g a g ln ⎛⎫>=- ⎪⎝⎭, ()()12322f x f x ln ∴+>-.【指点迷津】1.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )零点的存在;(2)参数是否影响f ′(x )不同零点(或零点与函数定义域中的间断点)的大小;(3)参数是否影响f ′(x )在零点左右的符号(如果有影响,需要分类讨论).2.在研究函数极值问题的时候,要注意可导函数f (x )在点x =x 0处取得极大值的充要条件是:f ′(x 0)=0,且存在一个x 0的邻域(x 0-σ,x 0+σ),当x ∈(x 0-σ,x 0)时,f ′(x )>0,当x ∈(x 0,x 0+σ)时,f ′(x )<0.可导函数在x =x 0处取得极小值的充要条件是:f ′(x 0)=0,且存在一个x 0的邻域(x 0-σ,x 0+σ),当x ∈(x 0-σ,x 0)时,f ′(x )<0,当x ∈(x 0,x 0+σ)时,f ′(x )>0.【举一反三】【2020·福建鹰潭一中月考】已知函数()()e 4ln,,2x x a f x ax g x x-=-= (1)求函数()f x 的极值点;(2)当0a >时,当函数()()()h x f x g x =-恰有三个不同的零点,求实数a 的取值范围.【解析】(1)因为()e ln ,2x f x ax =-所以()ln 12x f x x a =-+, 所以()21112ax f x a a x x x-'=⨯-=-=()0x >, 当0a …时,()0f x '>,所以函数()f x 无极值点;当0a >时,令()0f x '=,解得1x a=. 由()00f x x '⎧>⎨>⎩,解得10x a <<;由()00f x x '⎧<⎨>⎩,解得1x a >. 故函数()f x 有极大值点1a,无极小值点. 综上,当0a …时,函数()f x 无极值点;当0a >时,函数()f x 有极大值点1a,无极小值点. (2)当0a >时,()()()()4ln 02x a h x f x g x ax x x=-=-+>, 所以()()2221440a ax x a h x a x x x x -+-'=--=>, 设()24k x ax x a =-+-,则21 16,a ∆=- ①当00a ∆⎧⎨>⎩…即14a …时,()0h x '…,所以()h x 在()0,∞+单调递减, 所以()h x 不可能有三个不同的零点;②当00a ∆>⎧⎨>⎩即104a <<时,()k x 有两个零点1x =2x = 所以120,0.x x >>又因为()24k x ax x a =-+-开口向下,当10x x <<时,()0,0)(k x h x '<∴<,所以()h x 在()10,x 上单调递减;当12x x x <<时,()()0,0k x h x '>∴>,所以()h x 在()12,x x 上单调递增;当2x x >时,()()0,0k x h x '<∴<,所以()h x 在2(,)x +∞上单调递减.因为()42ln1202a h a =-+=,又124x x =,所以122x x <<,()()()122.0h h h x x ∴<=<3222211141ln ln 22ln 4,12a h a a a a a a a a ⎛⎫=-⋅+=---+ ⎪⎝⎭Q 令()31ln 22ln 4,a a am a =---+ 则()4222221122112 120a a a m a a a a a a-+-'=-++=>>. 所以()m a 在10,4⎛⎫ ⎪⎝⎭单调递增,所以()3ln 211113ln 22ln 404441644m a m ⎛⎫⎛⎫⎛⎫<==-+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭---+,即210h a ⎛⎫ ⎪⎭<⎝. 由零点存在性定理知,()h x 在区间221,x a ⎛⎫ ⎪⎝⎭上有唯一的一个零点0x . ()0000000044ln ln 24404241,a x h x h a a a x x x x x x -++⎛⎫⎛⎫+= ⎪ ⎪⎝⎭-+⎝⋅⋅=⎭Q 又()00h x =,所以040h x ⎛⎫= ⎪⎝⎭. 所以1040x x <<,所以()h x 在区间()10,x 上有唯一的一个零点04x , 故当104a <<时,()h x 存在三个不同的零点004,2,x x . 故实数a 的取值范围是10,4⎛⎫ ⎪⎝⎭.类型三 函数最值问题中的参数讨论【例3】【2020·江苏九江期末】一酒企为扩大生产规模,决定新建一个底面为长方形MNPQ 的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形ABCD (如图所示),其中AD AB ≥.结合现有的生产规模,设定修建的发酵池容积为450米3,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池AD 边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和b 米的走道(b 为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.【解析】(1)由题意知:矩形ABCD 面积4502252S ==米2, 设AD x =米,则225AB x =米,由题意知:2250x x ≥>,得15x ≥, 设总费用为()f x , 则450225()225200150226004500065400f x x x x x ⎛⎫⎛⎫=⨯+⨯⋅+=++≤ ⎪ ⎪⎝⎭⎝⎭, 解得:925x ≤≤,又15x ≥,故[15,25]x ∈,所以发酵池D 边长的范围是不小于15米,且不超过25米;(2)设发酵馆的占地面积为()S x 由(1)知:()2251800(8)2216225,[15,25]S x x b bx b x x x ⎛⎫=++=+++∈ ⎪⎝⎭, ()222900(),[15,25]bx S x x x-'=∈ ①4b ≥时,()0S x '≥,()S x 在[15,25]上递增,则15x =,即15AB AD ==米时,发酵馆的占地面积最小; ②36025b <≤时,()0S x '=,()S x 在[15,25]上递减,则25x =,即25,9AD AB ==米时,发酵馆的占地面积最小; ③36,425b ⎛⎫∈ ⎪⎝⎭时,x b ⎡∈⎢⎣时,()0S x '<,()S x 递减;x b ⎤∈⎥⎦时,()0,()S x S x '>递增, 因此30b x b==3015b b AD AB ==综上所述:当36025b <≤时,25AD =,9AB =米时,发酵馆的占地面积最小;当36,425b ⎛⎫∈ ⎪⎝⎭时,2AD AB b ==时,发酵馆的占地面积最小;当4b ≥时,15AB AD ==米时,发酵馆的占地面积最小.【指点迷津】本题的第(1)问实际上是已知单调性,借助其与导数的关系,求参数的取值范围.求解的策略包括分类讨论和参变分离两大类,法1和法2分别使用了上述两种解法.本题的第(2)问是求函数的最大值和最小值,求最值需依赖于函数的单调性.而含参函数的单调性需要对参数进行分类讨论.在对参数进行讨论的时候,需要从三个层次来分类:第一层次,讨论-2ax -a +1是否是一次式,分两种情况,当其是一次式时,进入第二层次;第二层次,讨论-2ax -a +1的根的位置是否在所考查的范围[0,1]之间,分三种情况,当其根在[0,1]之间时,进入第三层次;第三层次,比较g (0)和g (1)的大小.【举一反三】【2020·山东枣庄八中月考】已知函数2()ln (1)2a f x x x x a x =-+-,其导函数()f x '的最大值为0. (1)求实数a 的值;(2)若()()()12121f x f x x x +=-≠,证明:122x x +>.【解析】(1)由题意,函数()f x 的定义域为()0,+∞,其导函数()()ln 1f x x a x '=--记()()h x f x ='则()1ax h x x ='-. 当0a ≤时,()10ax h x x-'=≥恒成立,所以()h x 在()0,+∞上单调递增,且()10h =. 所以()1,x ∀∈+∞,有()()0h x f x ='>,故0a ≤时不成立;当0a >时,若10,x a ⎛⎫∈ ⎪⎝⎭,则()10ax h x x -'=>;若1,x a ⎛⎫∈+∞ ⎪⎝⎭,则()10ax h x x -'=<. 所以()h x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、分类讨论思想
高考动向
分类讨论是一种重要的逻辑方法,也是中学数学中经常使用的数学思想方法之一.突出考查学生思维的严谨性和周密性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力,能体现“着重考查数学能力”的要求.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.数学中的分类讨论贯穿教材的各个部分,它不仅形式多样,而且具有很强的综合性和逻辑性.
知识升华
1.分类讨论的常见情形
(1)由数学概念引起的分类讨论:主要是指有的概念本身是分类的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、直线斜率、指数函数、对数函数等.
(2)由性质、定理、公式引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定,等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.
(3)由某些数学式子变形引起的分类讨论:有的数学式子本身是分类给出的,如ax2+bx+c >0,a=0,a<0,a>0解法是不同的.
(4)由图形引起的分类讨论:有的图形的类型、位置也要分类,如角的终边所在象限,点、线、面的位置关系等.
(5)由实际意义引起的讨论:此类问题在应用题中常见.
(6)由参数变化引起的讨论:所解问题含有参数时,必须对参数的不同取值进行分类讨论;含有参数的数学问题中,参变量的不同取值,使得变形受限导致不同的结果.
2.分类的原则
(1)每次分类的对象是确定的,标准是同一的;分类讨论问题的难点在于什么时候开始讨论,即认识为什么要分类讨论,又从几方面开始讨论,只有明确了讨论原因,才能准确、恰当地进行分类与讨论.这就要求我们准确掌握所用的概念、定理、定义,考虑问题要全面.函数问题中的定义域,方程问题中根之间的大小,直线与二次曲线位置关系中的判别式等等,常常是分类讨论划分的依据.
(2)每次分类的对象不遗漏、不重复、分层次、不越级讨论.当问题中出现多个不确定因素时,要以起主导作用的因素进行划分,做到不重不漏,然后对划分的每一类分别求解,再整合后得到一个完整的答案.数形结合是简化分类讨论的重要方法.
3.分类讨论的一般步骤
第一,明确讨论对象,确定对象的范围;
第二,确定分类标准,进行合理分类,做到不重不漏;
第三,逐类讨论,获得阶段性结果;
第四,归纳总结,得出结论.
4. 分类讨论应注意的问题
第一,按主元分类的结果应求并集.
第二,按参数分类的结果要分类给出.
第三,分类讨论是一种重要的解题策略,但这种分类讨论的方法有时比较繁杂,若有可
能,应尽量避免分类.
经典例题透析
类型一:不等式中的字母讨论
1、(2010·山东)若对于任意,恒成立,则a的取值范围是________.
举一反三:
【变式1】解关于的不等式:().
【变式2】解关于的不等式:.
类型二:函数中的分类讨论
2、设为实数,记函数的最大值为,
(Ⅰ)设,求的取值范围,并把表示为的函数;
(Ⅱ)求;
(Ⅲ)试求满足的所有实数.
解析:
(I)∵,
∴要使有意义,必须且,即
∵,且……①
∴的取值范围是,
由①得:,
∴,,
(II)由题意知即为函数,的最大值,
∵时,直线是抛物线的对称轴,
∴可分以下几种情况进行讨论:
(1)当时,函数,的图象是开口向上的抛物线的一段,
由知在上单调递增,故;
(2)当时,,,有=2;
(3)当时,,函数,的图象是开口向下的抛物线的一段,
若即时,,
若即时,,
若即时,,
综上所述,有=
(III)当时,;
当时,,,∴,
∴,
故当时,;
当时,,由知:,故;
当时,,故或,从而有或,
要使,必须有,,即,
此时,,
综上所述,满足的所有实数为:或.
举一反三:
【变式1】函数的图象经过点(-1,3),且f(x)在(-1,+∞)上恒有f(x)<3,求函数f(x).
解析:f(x)图象经过点(-1,3),则,
整理得:,解得或
(1)当时,则,此时x∈(-1,+∞)时,f(x)>3,不满足题意;
(2)当,则,此时,x∈(-1,+∞)时,
即f(x)<3,满足题意为所求.
综上,.
【变式2】已知函数有最大值2,求实数的取值.
解析:
令,则().
(1)当即时,,
解得:或(舍);
(2)当即时,,
解得:或(舍);
(3)当即时,,解得(全都舍去).
综上,当或时,能使函数的最大值为2.
举一反三:
【变式1】设,
(1)利用函数单调性的意义,判断f(x)在(0,+∞)上的单调性;
(2)记f(x)在0<x≤1上的最小值为g(a),求y=g(a)的解析式.
解析:
(1)设0<x1<x2<+∞
则f(x2)-f(x1)=
由题设x2-x1>0,ax1·x2>0
∴当0<x1<x2≤时,,∴f(x2)-f(x1)<0,
即f(x2)<f(x1),则f(x)在区间[0,]单调递减,
当<x1<x2<+∞时,,∴f(x2)-f(x1)>0,
即f(x2)>f(x1),则f(x)在区间(,+∞)单调递增.
(2)因为0<x≤1,由(1)的结论,
当0<≤1即a≥1时,g(a)=f()=2-;
当>1,即0<a<1时,g(a)=f(1)=a
综上,所求的函数y=g(a)=.
类型三:数列
4、数列{a n}的前n项和为S n,已知{S n}是各项均为正数的等比数列,试比较与
的大小,并证明你的结论.
解析:设等比数列{S n}的公比为q,则q>0
①q=1时,S n=S1=a1
当n=1时,,a2=0,∴,即
当n≥2时,a n=S n-S n-1=a1-a1=0,,即
(2)q≠1时,S n=S1·q n-1=a1·q n-1
当n=1时,
∴,即.
当n≥2时,
a n=S n-S n-1=a1·q n-1-a1·q n-2=a1·q n-2(q-1)
此时
∴q>1时,,
0<q<1时,.
总结升华:等比数列前n项和公式分q=1或q≠1两种情况进行讨论.
举一反三:
【变式1】求数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,……(其中a≠0)的前n项和S n. 解析:数列的通项a n=a n-1+a n+…+a2n-2
讨论:
(1)当a=1时,a n=n,S n=1+2+…+n=
(2)当a=-1时,,∴,
(3)当a≠±1且a≠0时,,∴
.
【变式2】设{a n}是由正数组成的等比数列,S n是其前n项和,证
明:.
解析:
(1)当q=1时,S n=na1,从而,(2)当q≠1时,,从而
由(1)(2)得:.
∵函数为单调递减函数.
∴
∴.
【变式3】已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n 与b n的大小,并说
明理由.
解析:
(Ⅰ)由题设2a3=a1+a2,即2a1q2=a1+a1q,
∵a1≠0,∴2q2-q-1=0,
∴或,
(Ⅱ)若q=1,则
当n≥2时,
若
当n≥2时,
故对于n∈N+,当2≤n≤9时,S n>b n;当n=10时,S n=b n;当n≥11时,S n<b n.
【变式4】对于数列,规定数列为数列的一阶差分数列,其中
;一般地,规定为的k阶差分数列,其中
且k∈N*,k≥2。
(1)已知数列的通项公式。
试证明是等差数列;
(2)若数列的首项a1=―13,且满足,求数列
及的通项公式;
(3)在(2)的条件下,判断是否存在最小值;若存在,求出其最小值,若不存在,说明理由。
解析:
(1)依题意:,
∴
∴,
∴数列是首项为1,公差为5的等差数列。
(2),
(3)令,
则当时,函数单调递减;
当时,函数单调递增;
又因,
而,
所以当n=2时,数列a n存在最小值,其最小值为-18。