统计学方法的分类和选择
统计学分析方法有哪些

统计学分析方法有哪些
统计学分析方法包括以下几种:
1. 描述统计:描述统计是对收集到的数据进行总结和描述的方法,包括平均数、标准差、中位数、众数、频率分布等。
2. 探索性数据分析(EDA):EDA是一种分析数据的方法,用于发现数据中的模式、异常和关联关系,常用的方法有直方图、散点图、箱线图等。
3. 推断统计:推断统计是从样本数据中得出总体特性的一种方法,常用的方法有假设检验、置信区间估计、相关分析等。
4. 回归分析:回归分析用于研究自变量与因变量之间的关系,可以预测和解释因变量的变化。
线性回归、多元回归、逻辑回归等是常用的回归分析方法。
5. 方差分析:方差分析用于比较不同组之间的平均值是否有显著差异,常用于实验设计和比较研究。
6. 时间序列分析:时间序列分析是对一系列按时间顺序排列的数据进行分析和预测的方法,用于研究数据随时间变化的规律和趋势。
7. 空间统计分析:空间统计分析用于研究地理空间数据的分布和变异规律,常
用的方法包括克里金插值、空间自相关分析等。
8. 因子分析:因子分析是一种数据降维方法,用于发现数据背后的潜在因素和结构,常用于心理学和社会科学等领域。
9. 聚类分析:聚类分析是将数据集中的观测对象分为不同的群组或类别的方法,常用于市场分割、客户分类等。
10. 生存分析:生存分析用于研究个体的生存时间或事件发生的概率,常用于医学、公共卫生和生物学研究。
统计方法总结

统计方法总结统计方法是指有关收集、整理、分析和解释统计数据,并对其所反映的问题作出一定结论的方法。
一、统计方法的选择统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。
对于同一个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
正确选择统计方法的依据是: ①根据研究的目的,明确研究试验设计类型、研究因素与水平数; ②确定数据特征(是否正态分布等)和样本量大小; ③正确判断统计资料所对应的类型(计量、计数和等级资料),同时应根据统计方法的适宜条件进行正确的统计量值计算;最后,还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。
二、统计分析的步骤(一)收集数据 收集数据是进行统计分析的前提和基础。
收集数据的途径众多,可通过实验、观察、测量、调查等获得直接资料,也可通过文献检索、阅读等来获得间接资料。
收集数据的过程中除了要注意资料的真实性和可靠性外,还要特别注意区分两类不同性质的资料:一是连续数据,也叫计量资料,指通过实际测量得到的数据;二是间断数据,也叫计数资料,指通过对(二)整理数据 整理数据就是按一定的标准对收集到的数据进行归类汇总的过程。
由于收集到的数据大多是无序的、零散的、不系统的,在进入统计运算之前,需要按照研究的目的和要求对数据进行核实,剔除其中不真实的部分,再分组汇总或列表,从而使原始资料简单化、形象化、系统化,并能初步反映数据的分布特征。
(三)分析数据 分析数据指在整理数据的基础上,通过统计运算,得出结论的过程,它是统计分析的核心和关键。
数据分析通常可分为两个层次:第一个层次是用描述统计的方法计算出反映数据集中趋势、离散程度和相关强度的具有外在代表性的指标;第二个层次是在描述统计基础上,用推断统计的方法对数据进行处理,以样本信息推断总体情况,并分析和推测总体的特征和规律。
三、统计数据的搜集获取方法统计数据或称统计资料,它是统计分析的基础,是进行经济研究和制定发展计划,作出各种投资、管理决策的依据。
统计学方法的分类和选择

统计学方法的分类和选择一、描述统计方法描述统计方法用于总结和概括数据的定量和定性特征,主要包括以下几种方法:1.频数统计:对数据进行分类,计算各类别的频数或频率。
2.平均数和标准差:计算数据的平均值和离均差的度量,用于描述数据的集中趋势和分散程度。
3.分位数和百分位数:计算数据按大小排序后的位置,用于描述数据的位置和分布。
4.统计图表:如直方图、饼图、散点图等,用于直观地展示数据的分布和关系。
二、推断统计方法推断统计方法用于从样本数据中推断总体的特征和进行假设检验,主要包括以下几种方法:1.参数估计:根据样本数据估计总体的参数,包括点估计和区间估计。
2.假设检验:根据样本数据判断总体参数的假设,包括一般假设检验和相关性检验。
3.方差分析:用于比较多个总体的均值是否有显著差异。
4.回归分析:建立变量之间的数学模型,用于预测因变量。
5.方差分析:用于比较多个总体的均值是否有显著差异。
三、统计学方法的选择选择适当的统计学方法应考虑以下几个方面:1.数据类型:根据数据的类型(定量或定性)选择合适的描述统计和推断统计方法。
2.研究目的:根据研究的目的和问题选择合适的统计学方法。
如果是描述总体特征,可以使用描述统计方法;如果需要推断总体特征或进行假设检验,则需要使用推断统计方法。
3.样本容量:样本容量的大小会影响统计学方法的选择。
当样本容量较大时,可以使用参数估计和假设检验方法;当样本容量较小时,可以使用非参数统计方法。
4.数据分布:数据的分布特征对统计学方法的选择也有影响。
当数据服从正态分布时,可以使用参数统计方法;当数据不服从正态分布时,可以使用非参数统计方法。
5.数据关系:如果数据之间存在关联或依赖关系,可以使用回归分析等方法来研究变量之间的影响。
总之,统计学方法的分类和选择应考虑数据的类型、研究目的、样本容量、数据分布和数据关系等因素。
选用合适的统计学方法能够提供准确的分析结果和科学的结论,从而对问题的解决和决策的制定有着重要的意义。
如何合理选择统计方法——常用统计学方法汇总推荐文档

如何合理选择统计方法——常用统计学方法汇总推荐文档在科学研究和数据分析中,合理选择统计方法是非常重要的。
统计学方法涉及到数据的收集、整理、描述和分析,能够帮助我们得出准确的结论和有效的推断。
本文将介绍一些常用的统计学方法,并给出一些建议来合理选择适当的统计方法。
一、描绘性统计方法描绘性统计方法用于对数据进行整理和描述,以便更好地了解数据的分布、中心趋势和变异程度。
常用的描绘性统计方法包括:均值、中位数、众数、方差、标准差、百分位数等。
在选择描绘性统计方法时,需要根据数据的类型和分布特征来决定使用哪种方法。
如果数据呈正态分布,可以使用均值和标准差进行描述;如果数据分布严重偏斜,可以使用中位数和百分位数。
二、推断统计方法推断统计方法用于对整体的特征进行推断和估计,基于样本数据来推断总体的参数和特征。
常用的推断性统计方法包括:假设检验和置信区间估计。
假设检验用于测试关于总体特征的假设,例如比较两个总体均值是否有显著差异;而置信区间估计用于给出总体参数的估计范围。
在选择推断统计方法时,需要考虑研究问题的特点和数据的类型。
如果对总体均值或比例是否有显著性差异感兴趣,可以选择假设检验方法;如果对总体参数的估计范围感兴趣,可以选择置信区间估计方法。
三、回归分析方法回归分析是一种用于研究变量之间关系的统计方法,常用于预测和解释变量之间的关系。
回归分析方法包括线性回归、多元回归、逻辑回归等。
在选择回归分析方法时,需要考虑自变量和因变量的类型和分布特征,以及变量之间是否存在线性关系。
如果自变量和因变量均为连续变量,并且存在线性关系,可以选择线性回归方法;如果因变量为二分类变量,可以选择逻辑回归方法。
四、方差分析方法方差分析是一种比较多个样本均值是否存在显著差异的统计方法,常用于实验设计和因素分析。
方差分析方法包括单因素方差分析和多因素方差分析。
在选择方差分析方法时,需要考虑自变量的类型和水平数目,以及因变量的类型和数据分布特征。
分类资料组间比较的统计方法选择与应用

分类资料组间比较的统计方法选择与应用在统计学中,分类资料组间比较是指对不同分类资料组之间的差异进行统计分析。
分类资料是指将个体按其中一种特征分组,而分类资料组是指这些不同特征组成的组。
此时,为了确定不同组之间的差异,我们需要选择适当的统计方法进行比较。
下面介绍几种常用的分类资料组间比较的统计方法选择与应用。
1.基本原则:在选择分类资料组间比较的统计方法时,需要根据变量的测定水平来确定,通常可以根据资料的测定水平来进行分类资料分析的方法选择。
对于分类资料,我们可以采用卡方检验分析,对于有序分类资料,我们可以采用秩和检验分析。
2.卡方检验:卡方检验适用于分类资料的比较,其基本思想是比较实际观测频数与理论频数之间的差异。
卡方检验有两种形式:独立性检验和拟合优度检验。
独立性检验用于检验两个或多个分类变量之间是否存在关联;拟合优度检验用于检验观测频数与理论频数之间的差异是否显著。
3.秩和检验:对于有序分类资料,我们可以采用秩和检验进行比较。
秩和检验的基本思想是将不同组之间的观测值按顺序排列,并将其转化为秩次,然后将秩次相加得到秩和,通过比较秩和的大小来判断不同组之间的差异是否显著。
4.t检验:当分类资料分为两个组进行比较时,可以采用t检验。
t检验的基本思想是通过比较两个组的均值差异来判断两个组之间的差异是否显著。
但是需要注意的是,t检验要求数据满足正态分布的假设,所以在进行t检验之前需要进行正态分布检验。
5.方差分析:当分类资料包含多个组时,可以使用方差分析进行比较。
方差分析的基本思想是比较组间方差与组内方差之间的差异,通过计算F值来判断不同组之间的差异是否显著。
方差分析也需要满足正态分布的假设。
6.非参数检验:如果数据不满足正态分布假设,或者样本量较小,可以使用非参数检验。
非参数检验不依赖于总体分布形式的假设,比如Mann-Whitney U检验适用于两个独立样本的比较,Kruskal-Wallis H检验适用于多个独立样本的比较。
5种常用的统计学方法

5种常用的统计学方法常用的统计学方法主要包括描述统计、推断统计、回归分析、方差分析和因子分析。
一、描述统计描述统计是对数据进行总结和展示的一种方法。
它可以通过计算数据的中心趋势和离散程度来揭示数据的特征。
常用的描述统计方法包括均值、中位数、众数、标准差、极差等。
均值是一组数据的平均值,可以用来表示数据的中心位置。
例如,在一组考试成绩中,计算出的均值为80分,说明这组数据整体上呈现出较高的水平。
中位数是将一组数据按照大小顺序排列后,处于中间位置的数值。
对于有偏态的数据,中位数比均值更能反映数据的中心位置。
例如,在一组工资数据中,工资水平差异较大,此时计算中位数更能反映数据的中心趋势。
众数是一组数据中出现次数最多的数值,可以反映数据的分布特征。
例如,在一组人口年龄数据中,出现最多的年龄段是30岁,说明这个年龄段的人口占比较大。
标准差是一组数据与其均值之间的差异程度的度量指标。
标准差越大,说明数据的离散程度越大,反之则说明数据的离散程度较小。
例如,在一组销售额数据中,标准差较大则说明销售额的波动性较大。
极差是一组数据中最大值与最小值之间的差异,可以反映数据的变动范围。
例如,在一组温度数据中,最高温度与最低温度之间的差异较大,则说明温度变动范围较大。
二、推断统计推断统计是通过从样本中获取信息来推断总体特征的一种方法。
它可以通过对样本进行抽样和假设检验来进行推断。
常用的推断统计方法包括置信区间估计和假设检验。
置信区间估计是一种通过样本估计总体参数的方法。
它可以用来估计总体均值、总体比例等参数,并给出一个置信水平的区间估计。
例如,通过对一组产品质量进行抽样,可以计算出产品的平均质量在95%的置信水平下落在某个区间内。
假设检验是一种用来验证关于总体参数的假设的方法。
它可以判断样本观测结果与假设之间是否存在显著差异。
例如,在一组学生考试成绩中,通过假设检验可以判断是否存在某个因素对学生成绩的影响。
三、回归分析回归分析是一种用来研究变量之间关系的方法。
统计中常用的统计方法

统计学是一门研究数据收集、分析、解释和展示的学科。
在统计学中,有许多常用的统计方法用于分析数据、揭示数据间的关系和得出结论。
以下是一些统计学中常用的统计方法:
1. 描述统计方法:用于总结和描述数据的基本特征,包括均值、中位数、众数、标准差、方差等。
常见的描述统计方法有频数分布、直方图、箱线图等。
2. 推论统计方法:基于样本数据推断总体参数的方法,包括参数估计和假设检验。
常见的推论统计方法有置信区间估计、单样本t 检验、双样本t 检验、方差分析、卡方检验等。
3. 相关分析方法:用于研究变量之间的相关性或关联程度的方法。
常见的相关分析方法有皮尔逊相关系数、斯皮尔曼等级相关系数、点二列相关系数等。
4. 回归分析方法:用于研究自变量与因变量之间关系的方法。
常见的回归分析方法有线性回归、多元线性回归、逻辑回归等。
5. 方差分析方法:用于分析两个或多个总体均值是否相等的统计方法。
常见的方差分析方法有单因素方差分析、多因素
方差分析等。
6. 聚类分析方法:用于将数据集中的观测值分成不同的组别的方法。
常见的聚类分析方法有K均值聚类、层次聚类等。
7. 因子分析方法:用于研究变量间存在的潜在结构、简化数据的方法。
常见的因子分析方法有主成分分析、因子分析等。
这些是统计学中常用的一些统计方法,它们在不同情境下有着不同的应用和适用范围。
在实际应用中,根据所面临的具体问题和数据特点,选择适当的统计方法是十分重要的。
统计学常用方法及应用场景

统计学常用方法及应用场景统计学是一门研究数据收集、分析和解释的学科,它在各个领域中有着广泛的应用。
本文将介绍一些统计学常用方法及其在不同场景中的应用。
一、描述统计方法描述统计方法是统计学中最基本的方法之一,它用于总结和描述数据的基本特征。
常用的描述统计方法包括:1. 平均值:用于计算一组数据的平均数,它能够反映数据的集中趋势。
应用场景:在市场调研中,平均值可以用于分析消费者的购买能力,从而为企业制定正确的市场推广策略提供依据。
2. 方差和标准差:用于衡量数据的离散程度。
应用场景:在质量控制中,方差和标准差可以帮助检查产品的品质稳定性,并找出生产过程中的问题所在。
3. 频数分布表和直方图:用于将数据分组并展示出每组的频数。
应用场景:在人口统计学中,频数分布表和直方图可以清晰地展示不同年龄段的人口数量分布情况,为社会政策的制定提供依据。
二、推断统计方法推断统计方法是基于样本数据对总体特征进行推测的方法,它通过从样本中得出结论,并推断出总体的特性。
常用的推断统计方法包括:1. 抽样方法:用于从总体中选择样本的方法,以代表总体。
应用场景:在市场调查中,通过从全国范围的消费者中抽取样本,可以推断出整个市场的消费偏好和需求。
2. 参数估计:基于样本数据,估计总体的未知参数。
应用场景:在医学研究中,通过对一部分病例的观察,可以估计整个人群中的患病率,为疾病预防和治疗提供依据。
3. 假设检验:用于对总体参数的假设进行检验,以确定研究结果的显著性。
应用场景:在药物实验中,通过对实验组和对照组的数据进行比较,可以判断药物的疗效是否显著,从而决定是否批准上市。
三、相关分析方法相关分析方法用于研究两个或更多变量之间的关系,并评估它们之间的相关性。
常用的相关分析方法包括:1. 相关系数:用于衡量两个变量之间的线性关系的强度和方向。
应用场景:在金融领域中,相关系数可以用于分析不同资产之间的相关性,为投资组合的配置提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
45
如何对数据资料进行一般性统计分析
.
46
.
47
成组
.
48
.
49
.
50
.
51
.
52
.
53
.
54
4-1
.
55
.
56
4-2
.
57
5
.
58
.
59
6
.
60
.
61
谢 谢!
.
62
同理,结果为定性资料时,很多人不管结果变量的具体情况,也不 管原因变量有多少个,甚至不管统计分析的目的是什么,一律盲目 套用χ2 检验。在采用其他统计分析方法时,也存在盲目套用的问题。 正因如此,使得我国乃至全世界生物医学杂志论文的质量令人担忧 (错误率平均约为80%),大大降低了科研工作的科学性和严谨性。
.
2
□
.
3
.
4
配对设计
.
5
.
6
.
7
.
8
.
9
.
10
.
11
.
12
数值变量
正态性检验
正态
数据转换
非正态
参数检验
非参数检验
.
13
分类变量
单因素分析 多因素分析
.
14
数据的转换
.
15
.
16
.
17
.
18
.
19
.
20
.
21
.
22
.
23
.
24
.
25
.
26
.
27
.
28
.
43
表4-1是统计数据库所要求的数据记录格式。各种试验和调查的原始记 录,无论数据是否录入计算机,都应该按表4-1的格式整理。整理后的 数据包括4种类型的变量:①标识变量,如动物编号、姓名等;②干预 变量,即试验性研究的处理因素,或观察性研究的危险因素;③协变量, 即需要进行控制和均衡性检查的因素;④反应变量,反映干预后的生物 效应,大多数研究同时记录多个反应变量。表4-1中,患者编号是标识 变量;治疗分组是干预变量;年龄、性别、职业是协变量;收缩压、舒 张压、心电图、疗效是反应变量。
.
42
统计资料类型
• 计量资料最为多见。统计上将计量资料又划分为 正态分布资料、偏态分布资料等类型。对于偏态 分布资料,统计指标不宜用平均数、标准差,而 应用中位数、几何均数、四分位间距离等。
• 统计资料类型的判断失误是医学论文中统计误用 的根源之一。常见的问题有:不能正确区分资料 类型;计数资料比、率不分;计量资料不管是否 正态分布,一律计算均数、标准差;等级资料当 做分类资料,配对资料和成组资料混淆等。
.
29
.
30
.
31
.
32
.
33
.
34
.
35
.
36
.
37
.
38
.
39
• 实例及解析
.
40
如何正确区分资料类型
.
41
• 一项研究在完成了设立对照、随机分组和 样本大小估计等实验设计工作后,接下来 就是收集资料。在医学论文中一些统计描 述和统计分析方法的误用中,不能够正确 区分统计资料类型是一个重要原因。
正常
3
43
男 干部 乙药
17.33
10.93
正常
┇
┇
┇
…
┇
┇
┇
┇
100
54
女 其它 乙药
16.80
11.73
正常
疗效 显效 有效 有效
┇ 有效
• 通常所说的资料三种类型,即计数资料、计量资料、等级资料,是针对协 变量和反应变量而言,尤其是指反应变量的类型。计数资料是定性观察结 果,如表4-1中的性别、职业、心电图检查结果,统计指标是各个属性或 类别的计数、率、结构百分比等;计量资料是定量观察结果,通常有度量 单位,如表4-1中的年龄、收缩压、舒张压,统计指标常用例数、平均数、 标准差等;等级资料介于定性观察和定量观察之间,观察结果有等级或程 度上的差别,但不能用数量表示,如表4-1中的疗效评价。
表 4-1 100 名高血压患者治疗 2 周后的临床记录
患者编号 年龄(岁) 性别 职业 治疗分组 收缩压(kPa) 舒张压(kPa) 心电图
1
37 男 工人 甲药
18.67
2
45 女 农民 对照
20.00
3
43 男 干部 乙药
17.33
┇
┇ ┇…
┇
┇
100
54 女 其它 乙药
16.80
11.47 12.35 10.93
┇ 11.73
正常 正常 正常
┇ 正常
.
疗效 显效 有效 有效
┇ 有效
44
表 4-1 100 名高血压患者治疗 2 周后的临床记录
患者编号 年龄(岁) 性别 职业 治疗分组 收缩压(kPa) 舒张压(kPa) 心电图
1
37
男 工人 甲药
18.67
11.47
正常
2
45
女 农民 对照
20.00
12.35
.
1
在阅读生物医学杂志论文时,不难发现如下的现象:只要结果是定 量资料,人们普遍运用“t 检验”、“单因素方差分析”或“秩和检 验”来处理。
事实上,在人们用前述方法处理的定量资料中,有相当多的定量资 料同时受到多个因素(通常包括实验因素和重要的非实验因素)的 影响,即定量资料来自某种特定的多因素实验设计类型。这种用单 因素设计定量资料的统计分析方法处理原本属于多因素实验设计的 定量资料,其结论的可信度大为降低,有时,甚至会不可避免地得 出错误的结论。