抽屉原理公式及例题

合集下载

抽屉原理公式

抽屉原理公式

抽屉原理公式
抽屉原理是一种概率统计学的原理,它指的是从一个抽屉中任意抽取一个物体的概率等于抽到此物体的概率与总数相等。

抽屉原理的公式为:
P(A)=P(A|B)*P(B)
其中,P(A)是抽到A物体的概率,P(A|B)是在B物体被抽出的情况下,抽出A物体的概率,P(B)是抽出B物体的概率。

抽屉原理在日常生活中有着广泛的应用,比如你从一个抽屉中抽取一个黑色的物体,那么抽到黑色物体的概率就等于所有物体中黑色物体的数量与总数的比例。

此外,抽屉原理也可以应用于一些概率统计学的问题,比如一个抽屉里有N个物体,现在要求从这N个物体中抽出2个,那么根据抽屉原理,抽到这2个物体的概率就等于每个物体被抽出来的概率相乘。

因此,可以用抽屉原理解决一些概率问题。

此外,抽屉原理还可以用于计算一些组合问题,比如抽屉里有N 个物体,要计算出从中抽出2个不同的物体的组合数,可以用抽屉原理,即N*(N-1),即N的阶乘减1。

总而言之,抽屉原理是一种有效的概率统计学原理,在日常生活和
统计学问题中都有着广泛的应用,它可以帮助我们精确地计算出各种概率和组合问题。

抽屉原理例题

抽屉原理例题

抽屉原理例题
抽屉原理(也称为鸽巢原理)是数学中的一个基本原理,它在许多领域都有广泛应用。

简而言之,抽屉原理指出,当n+1
个物体放入n个抽屉中时,至少存在一个抽屉中放有至少两个物体。

以下是一个抽屉原理的实际例子:
假设有一所学校有30个班级,每个班级有30个学生。

现在要将这些学生按照年龄分别放入不同的班级。

根据抽屉原理,我们可以得出结论:至少有两个班级的学生年龄相同。

为了证明这个结论,我们可以设定每个班级代表一个抽屉,30个学生代表30个物体。

由于学生数量超过了班级数量,根据抽屉原理,至少有一个班级中会有两个或更多个学生的年龄相同。

这个例子说明了抽屉原理在实际中的应用。

无论是年龄还是其他属性,当数量超过容器的容量时,必然会出现某些容器内包含了相同的属性。

抽屉原理在计算机科学、概率论、组合数学等领域都有重要的应用。

抽屉原理精解

抽屉原理精解

第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。

原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。

第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。

四年级抽屉原理初步主要内容及解题思路

四年级抽屉原理初步主要内容及解题思路

四年级抽屉原理初步主要内容及解题思路四年级抽屉原理初步主要内容及解题思路一、抽屉原理研究对象:放苹果最多的抽屉研究方法:平均分核心思想:使最多的至少计算公式:苹果数÷抽屉数=?1)有余数苹果数÷抽屉数=商...余数➢有一个抽屉至少有商+1个苹果2)无余数苹果数÷抽屉数=商➢有一个抽屉至少有商个苹果问法:1)放苹果最多的抽屉至少有()个苹果;2)总有一个抽屉至少有()个苹果;3)至少有一个抽屉至少有()个苹果;题型:1)求商;2)求苹果数,至少几个苹果才能保障有一个抽屉至少有a个苹果苹果数=抽屉数×(a-1)+13)构造抽屉区分苹果和抽屉,通常情况下,苹果数>抽屉数二、最不利原则关键字:“保证...至少...”;“至少...才能保证...”从最不利的情况考虑,考虑最倒霉的情况。

生活中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最糟糕的情况出发解决问题,这就是最不利原则。

做题时,当题目遇到“保证”等文字时,我们就一定要从最坏的角度出发,直到最终满足要求为止。

【举例】比如,小明买了7个肉包,8个素包,那么他吃几个包子,才能保证他一定能吃到肉包?这个时候我们想,他可能吃第一个包子就吃到了肉包,这个很幸运,但是我们能说他一定这么幸运吗?当然不能。

他那一天就是十分倒霉,吃一个是素包,再吃一个还是素包,再吃一个仍然是素包,直到吃完所有的8素包,还是没吃到肉包,生活中是有可能会出现这个情况的,但是这个时候,如果小明再吃1个包子,一定吃到的是肉包。

所以我们要保证小明一定吃到肉包,需要他吃8+1=9(个)。

所以,对于这种“保证”类的问题,我们就从最倒霉,最坏的角度出发,直到最终达到要求为止。

【典型例题】类型一:抽屉原理例:有10个苹果,放进9个抽屉里,一定有个抽屉至少有两个苹果,对吗?【分析】对的。

10个苹果要放进9个抽屉里,每个放一个这样还剩下一个,随便放进那个抽屉里,这样就可以找到一个抽屉至少有2个苹果。

抽屉原理教师讲解及练习市公开课获奖课件省名师示范课获奖课件

抽屉原理教师讲解及练习市公开课获奖课件省名师示范课获奖课件

练习
1. 一幅扑克牌有54张,至少要抽取几张牌, 方能确保其中至少有2张牌有相同旳点数? 【解析】 点子页数1为1(A)、2、3、4、5、6、7、8、9、 10、11(J)、12(Q)、13(K)旳牌各取1张,再 取大王、小王各1张,一共15张,即15个抽 屉子页。3这么,假如任意再取1张旳话,它旳点数 必为1~13中旳一种,于是有2张点数相同.
(二)利用最值原了解题
将题目中没有阐明旳量进行极限讨论,将复 杂旳题目变得非常简朴,也就是常说旳极限 思想“任我意”措施、特殊值措施.
子页1
子页3
模块一、利用抽屉原理公式解题
(一)直接利用公式进行解题 (1)求结论 【例1】 6只鸽子要飞进5个笼子,每个笼子 里都必须有1只,一定有一1种笼子里有2只鸽 子.对吗? 【解析】把鸽笼看作“抽屉”,把鸽子看作 “苹果”,6/5=1…1,1+1=2(只),也就 是一定有一种笼子里有2只鸽子.
(二)构造抽屉利用公式进行解题
【例9】在一只口袋中有红色、黄色、蓝色球 若干个,小聪和其他六个小朋友一起做游戏 ,每人能够从口袋中随意取出2个球,那么不 论怎样挑选,总有两个小朋友取出旳两个球 旳子页颜1色完全一样.为何?
【解析】可能情况有6种,把6种搭配方式看 成子页63个“抽屉”,把7个小朋友看成7个“苹果 ”,根据抽屉原理,至少有两个人挑选旳颜 色完全一样.
⑵假如在这n个小朋友中,每位小朋友都至少遇到一 种熟人,这么熟人数目只有n-1种可能:1,2,3, ……,n-1,也是n-1种情况。根据抽屉原理,至少 有子两页1个小朋友,他们遇到旳熟人数目相等. 总之, 必有两个小朋友遇到旳熟人数目相等.
子页3
处理抽屉原理类型旳题目关键:题目中有抽 屉时,找准题目中旳“抽屉‘、”苹果“, 然后利用抽屉原理公式处理问题;没有抽屉 旳要发明抽屉。

抽屉原理公式及例题

抽屉原理公式及例题

抽屉原理公式及例题抽屉原则一:如果把n+1个物体放在n个抽屉里;那么必有一个抽屉中至少放有2个物体..例:把4个物体放在3个抽屉里;也就是把4分解成三个整数的和;那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式;我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体;也就是说必有一个抽屉中至少放有2个物体..
抽屉原则二:如果把n个物体放在m个抽屉里;其中n>m;那么必有一个抽屉至少有:①k=n/m +1个物体:当n不能被m整除时..
②k=n/m个物体:当n能被m整除时..
理解知识点:表示不超过X的最大整数..
键问题:构造物体和抽屉..也就是找到代表物体和抽屉的量;而后依据抽屉原则进行运算..
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个;若蒙眼去摸;为保证取出的球中有两个球的颜色相同;则最少要取出多少个球
解:把3种颜色看作3个抽屉;若要符合题意;则小球的数目必须大于3;故至少取出4个小球才能符合要求..
例2.一幅扑克牌有54张;最少要抽取几张牌;方能保证其中至少有2张牌有相同的点数
解:点数为1A、2、3、4、5、6、7、8、9、10、11J、12Q、13K的牌各取1张;再取大王、小王各1张;一共15张;这15张牌中;没有两张的点数相同..这样;如果任意再取1张的话;它的点数必为1~13中的一个;于是有2张点数相同..。

奥数-18抽屉原理+答案

奥数-18抽屉原理+答案
解析:每个人最少交一个朋友,最多可以交 19 个朋友,20 大于 19,所以至少有 两名游客,他们的朋友人数一样多。 练习一 1. 把 9 条金鱼任意放在 8 个鱼缸里面,至少有一个鱼缸放有两条或两条以上金鱼,
请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。

初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。

一般地,我们将它表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

使用抽屉原理解题,关键是构造抽屉。

一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

例1从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有2个数的差为50;(3)有8个数,它们的最大公约数大于1。

证明:(1)将100个数分成50组:{1,2},{3,4},…,{99,100}。

在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

(2)将100个数分成50组:{1,51},{2,52},…,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即{2,4,…,100};第二组:3的倍数,即{3,6,…,99};第三组:5的倍数,即{5,10,…,100};第四组:7的倍数,即{7,14,…,98};第五组:1和大于7的质数即{1,11,13,…,97}。

第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,...,r500。

由于余数只能取0,1,2, (499)499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。

一般地,我们将它表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

使用抽屉原理解题,关键是构造抽屉。

一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

例1从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有2个数的差为50;(3)有8个数,它们的最大公约数大于1。

证明:(1)将100个数分成50组:{1,2},{3,4},…,{99,100}。

在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

(2)将100个数分成50组:{1,51},{2,52},…,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即{2,4,…,100};第二组:3的倍数,即{3,6,…,99};第三组:5的倍数,即{5,10,…,100};第四组:7的倍数,即{7,14,…,98};第五组:1和大于7的质数即{1,11,13,…,97}。

第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,...,r500。

由于余数只能取0,1,2, (499)499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

抽屉原理公式及例题

抽屉原理公式及例题

抽屉道理公式及例题“至少……才干包管(必定)…最晦气原则抽屉原则一:假如把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分化成三个整数的和,那么就有以下四种情况:抽屉原则二:假如把n个物体放在m个抽屉里,个中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不克不及被m整除时.②k=n/m个物体:当n能被m整除时.例1.木箱里装有红色球3个.黄色球5个.蓝色球7个,若蒙眼去摸,为包管掏出的球中有两个球的色彩雷同,则起码要掏出若干个球?解:把3种色彩看作3个抽屉,若要相符题意,则小球的数量必须大于3,故至少掏出4个小球才干相符请求.例2.一幅扑克牌有54张,起码要抽取几张牌,方能包管个中至少有2张牌有雷同的点数?解:点数为1(A).2.3.4.5.6.7.8.9.10.11(J).12(Q).13(K)的牌各取1张,再取大王.小王各1张,一共15张,这15张牌中,没有两张的点数雷同.如许,假如随意率性再取1张的话,它的点数必为1~13中的一个,于是有2张点数雷同. 15+1=16例3:从一副完全的扑克牌中,至少抽出()张牌,才干包管至少6张牌的花色雷同?解:完全的扑克牌有54张,算作54个“苹果”,抽屉就是6个(黑桃.红桃.梅花.方块.大王.小王),为包管有6张花色一样,我们假设如今前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时刻再随意率性抽取1张牌,那么前4个“抽屉”里必定有1个“抽屉”里有6张花色一样.答案选C.例4:2013年国考:某单位组织4项培训A.B.C.D,请求每人介入且只介入两项,无论若何安插,都有5人介入培训完全雷同,问该单位有若干人?每人一共有6种介入办法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4小我选了,所以4*6=1=25例5:有300名求职者介入高端人才专场雇用会,个中软件设计类.市场营销类.财务治理类和人力资本治理类分离有100.80.70和50人.问至少有若干人找到工作,才干包管必定有70名找到工作的人专业雷同?用最晦气原则解题.四个专业相当于4个抽屉,该题要有70名找到工作的人专业雷同,那最倒霉的情况是每个专业只有69小我找到工作,值得留意的是人力专业一共才50小我,是以软件.市场.财务各有69小我找到工作,人力50小我找到工作才是本题中最晦气的情况,最后再加1,就肯定使得某专业有70小我找到工作.即答案为69×3+50+1=258.例6:调研人员在一次市场查询拜访运动中收回了435份查询拜访询卷,个中80%的查询拜访询卷上填写了被查询拜访者的手机号码.那么调研人员须要从这些查询拜访询卷中随机抽若干份,才干包管必定能找到两个手机号码后两位雷同的被查询拜访者?答:在435份查询拜访询卷中,没有填写手机号码的为435×(1-80%)=87份.要找到两个手机号码后两位雷同的被查询拜访者,起首要肯定手机号码后两位有几种不合的分列方法.因为每一位号码有0-9共10种选择,所今后两位的分列方法共有10×10=100种.斟酌最坏的情况,先掏出没有填写手机号码的87份查询拜访询卷,再掏出后两位各不雷同的问卷100份,此时再掏出一份问卷,就能包管找到两个手机号码后两位雷同的被查询拜访者,那么至少要从这些问卷中抽取100+87+1=188份例7:有编号为1-13的卡片,每个编号有四张,共有52张卡片.问至少摸出若干张,才干包管必定有3张卡片编号相连?若取的是:1.2.4.5.7.8.10.11.13编号的四张,则应当是36张,再取一张就知足了.故应当是至少取37张.。

抽屉原理

抽屉原理

抽屉原理一、抽屉原理的定义(1)举例桌上有10个苹果,要把这10个苹果放到9个抽展里,无论怎样放,有的抽屉可以放1个,有的可以放2个,有的可以放5个,但最终我们会发规至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

二、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论至少有“商”个苹果在同一个抽屉里(ニ)、利用最值原理解题(最不利原则:一切最不利情况+1=成功)将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法。

类型:“必有2个”原理;必有m+1个”原理要点:最不利原则;保证与至少精讲例题一:某校六年级有367名学生,请问有没有2名学生的生日是在同一天?为什么?【思路导航】把一年的天数看成是抽屉,把学生数看成是元素即至少有2名学生的生日是在同一天。

把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,至少在一个抽屉里有2名学生,因此肯定有2名学生的生日是在同一天。

试一试:1.某校有370名1992年出生的学生,其中至少有2名学生的生日是在同一天,为什么?2.某校有30名学生是2月份出生的。

能否至少有2名学生的生日是在同一天?3.15个小朋友中,至少有几个小朋友在同一个月出生?精讲例题二:某班学生去买语文书、数学书、英语书。

买书的情况是:有买一本的、两本的,也有买三本的,问至少要去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)试一试:1.某班学生去买数学书、语文书、美术书、自然书。

买书的情况是:有买一本的,有买两本的,有买三本、四本的。

问至少去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)2学校图书室有历史、文艺、科普三种图书。

掌握抽屉数学的一般原理、例题,习题

掌握抽屉数学的一般原理、例题,习题

课题抽屉数学学习目标与分析掌握抽屉数学的一般原理。

学习重点抽屉原理一:将多与n见的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于两件。

抽屉原理二:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于m+1.基本方法:运用抽屉原理阶梯的基本思路和步骤是:1.确定把什么当做“抽屉”;2.确定把什么当做“苹果”,即“元素”。

3.如果条件满足“抽屉少”、“苹果多”,则根据抽屉原理得出结论。

例题讲解:例题一:学校有366名同学出生于1999年,这其中必有两名或两名以上的同学出生于一天。

这是为什么呢?例题2:一副扑克牌有四种花色,每种花色有13张,从中任意抽牌,最少要抽多少张,才能保证有四张牌是同一花色?例题3:(甲)班有50位同学,现在有各种图书353册。

把这些图书分发给班上的每一位同学,是否会有人得到8册或8册以上的图书呢?例题4:如下图画的是3×n的方格中(n是自然数),其中每一列的3个方格中分别用红、白、蓝3种颜色任意染色(每列中三格的颜色各不相同)。

试问至少需要多少列才能保证至少有两列染色方式相同?例题5:一只口袋中有红色、黄色、蓝色球若干个,现在请7个同学过来,每个可从口袋中任意取出2个球,那么不管怎么挑选,中有两个同学取出的两个球颜色完全一样(完全一样指甲抽出红、黄。

乙也抽出红、黄;或者甲抽出红、红,乙也抽出红、红)。

你能说明这个理由吗?例题6:将一些围棋子分成黑白相混的若干堆,如果你一定可以找到这样的两堆,其白子和黑子的总数都是偶数,那么最少应把这些围棋子分成几堆?基础巩固1、在任何13人中,至少有2人在同一月份过生日为什么?2、某校有29名学生是2月份出生的,那么,其中不一定有两名学生的生日是在同一天,为什么?3、在一条100米长的跑道上面插11面彩旗,是否至少存在这样的两面彩旗,它们之间的距离不大于10米?4、四(1)班有48人参加植树活动,共植树100株,是否可以肯定有一个学生植了3株树或者更多株树?5、幼儿园买来了猴、狗、熊、兔四种玩具若干个,每个小朋友任意选择两个,那么不管怎么挑选,在任意11个小朋友中总有两个彼此选的玩具是相同的,试说明理由。

抽屉原理——精选推荐

抽屉原理——精选推荐

抽屉原理抽屉原理⼀、抽屉原理的定义(1)举例桌上有10个苹果,要把这10个苹果放到9个抽展⾥,⽆论怎样放,有的抽屉可以放1个,有的可以放2个,有的可以放5个,但最终我们会发规⾄少我们可以找到⼀个抽屉⾥⾯⾄少放两个苹果。

(2)定义⼀般情况下,把n+1或多于n+1个苹果放到n个抽屉⾥,其中必定⾄少有⼀个抽屉⾥⾄少有两个苹果。

我们称这种现象为抽屉原理。

⼆、抽屉原理的解题⽅案(⼀)、利⽤公式进⾏解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:⾄少有(商+1)个苹果在同⼀个抽屉⾥(2)余数=x⾄少有(商+1)个苹果在同⼀个抽屉⾥(3)余数=0,结论⾄少有“商”个苹果在同⼀个抽屉⾥(ニ)、利⽤最值原理解题(最不利原则:⼀切最不利情况+1=成功)将题⽬中没有阐明的量进⾏极限讨论,将复杂的题⽬变得⾮常简单,也就是常说的极限思想“任我意”⽅法、特殊值⽅法。

类型:“必有2个”原理;必有m+1个”原理要点:最不利原则;保证与⾄少精讲例题⼀:某校六年级有367名学⽣,请问有没有2名学⽣的⽣⽇是在同⼀天?为什么?【思路导航】把⼀年的天数看成是抽屉,把学⽣数看成是元素即⾄少有2名学⽣的⽣⽇是在同⼀天。

把367个元素放到366个抽屉中,⾄少有⼀个抽屉中有2个元素,⾄少在⼀个抽屉⾥有2名学⽣,因此肯定有2名学⽣的⽣⽇是在同⼀天。

试⼀试:1.某校有370名1992年出⽣的学⽣,其中⾄少有2名学⽣的⽣⽇是在同⼀天,为什么?2.某校有30名学⽣是2⽉份出⽣的。

能否⾄少有2名学⽣的⽣⽇是在同⼀天?3.15个⼩朋友中,⾄少有⼏个⼩朋友在同⼀个⽉出⽣?精讲例题⼆:某班学⽣去买语⽂书、数学书、英语书。

买书的情况是:有买⼀本的、两本的,也有买三本的,问⾄少要去⼏名学⽣才能保证⼀定有2名学⽣买到相同的书?(每种书最多买⼀本)试⼀试:1.某班学⽣去买数学书、语⽂书、美术书、⾃然书。

买书的情况是:有买⼀本的,有买两本的,有买三本、四本的。

小学六年级奥数抽屉原理(含答案)

小学六年级奥数抽屉原理(含答案)

抽屉原理知识重点1. 抽屉原理的一般表述2 个苹果。

它的一般表述为:(1) 假定有 3 个苹果放入 2 个抽屉中,必然有一个抽屉中起码有n 个抽屉,此中必有一个抽屉中起码有(m+1) 个物体。

第一抽屉原理:(mn+ 1) 个物体放入(2)若把 3 个苹果放入 4 个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn- 1) 个物体放入n 个抽屉,此中必有一个抽屉中至多有(m-1) 个物体。

2.结构抽屉的方法常有的结构抽屉的方法有:数的分组、染色分类、图形的切割、节余类等等。

例 1 自制的一副玩具牌合计 52 张 ( 含四种牌:红桃、红方、黑桃、黑梅,每种牌都有 1 点, 2 点, 13 点牌各一张 ) ,洗好后反面向上放。

一次起码抽取张牌,才能保证此中必然有 2 张牌的点数和颜色都同样。

假如要求一次抽出的牌中必然有 3 张牌的点数是相邻的 ( 不计颜色 ) ,那么起码要取张牌。

点拨关于第一问,最不利的状况是两种颜色都取了1~ 13 点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都同样。

4 张,此时再取一张,点拨关于第二问,最不利的状况是:先抽取了1, 2, 4, 5,7, 8, 10, 11, 13各3 张的点数相邻。

这张牌的点数是3,6, 9, 12 中的一张,在已抽取的牌中必有解(1)13×2+1=27(张)(2)9×4+1=37(张)例 2证明:37人中,(1)起码有4人属相同样;(2)要保证有 5 人属相同样,但不保证有 6 人属相同样,那么人的总数应在什么范围内?点拨能够把12个属相看做12 个抽屉,依据第一抽屉原理即可解决。

解(1)因为37÷12=3 1,所以,依据第一抽屉原理,起码有3+ 1= 4( 人 ) 属相同样。

(2) 要保证有 5 人的属相同样的最少人数为4×12+ 1= 49( 人 )不保证有 6 人属相同样的最多人数为5×12 =60( 人 ) 所以,总人数应在49 人到 60 人的范围内。

抽屉原理原理及典型例题

抽屉原理原理及典型例题
解:“至少有1名男生”,最不利的情况是尽 可能多取女生,这样只有1名男生,那么对应 的女生人数是9,男生人数至少有30-(10-1) =21人。
常见题型(1)——找最不利情况
例1-2. 一副扑克牌有54张,至少抽取( )张扑克牌,方 能使其中至少有两张牌有相同点数。(大小鬼不相同)
解: “至少抽取()张扑克牌”,最不利的情况是尽可能 让每次取出的点数都不相同,最多一共可以取 1,2,3,……,9,10,J,Q,K,小鬼,大鬼,15张不一样点数的牌, 那么当取第16张时,一定会与之前的某一张点数相同。答案 16。
常见题型(2)——排列组合问题
例2-2.新年晚会上,老师让每位同学从一个装有许多玻璃球 的口袋中摸2个球,这些球给人的手感相同,只有红、黄、 白、蓝、绿之分,结果发现总有2个人取的球颜色相同。由 此可知,参加取球的至少有( )人。
解:摸出2个球,两球颜色组合一共有15种。
(红、红),(黄、黄),(白、白),(蓝、蓝),(绿、绿),
抽屉原理
基本概念
• 将多于n个苹果任意放到n个抽屉里,那么至 少有一个抽屉中的苹果个数不少于2个。
• 将多于m*n个苹果任意放到n个抽屉中,那么 至 少 有 一 个 抽 屉 中 的 苹 果 的 件 数 不 少 于 m+1 。
• 将无穷多个苹果任意放到n个抽屉中,那么至 少有一个抽屉中有无穷多个苹果。(很少用)
最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第 一、二组内,那么至少有9个数在同一组。所以这9个数的最大公约数为2或3或它 们的倍数,显然大于1。
常见题型(3)——数列问题
例3-4.有49个小孩,每人胸前有一个号码,号码从1到49各 不相同。现在请你挑选若干个小孩,排成一个圆圈,使任何 相邻的两个小孩的号码数的乘积小于100,那么你最多能挑 选出多少个孩子?

抽屉原理

抽屉原理

抽屉原理:抽屉×(至少-1)+1多次相遇问题第N次相遇,两人共走了2*N-1个S,经过了2*N-1个相遇时间单岸型公式:S=(3S1+S2)/2双岸型公式:S=3S1-S2【例题1】无论什么文章,一旦选进语文教材,就不再是原来意义上的、独立存在的作品,而是整个教材系统中一个有机组成部分,是“基本功训练的凭借”。

“基本功训练的凭借”是()。

A.收入语文教材中的各类作品B.那些保持原来意义、独立存在的作品C.整个教材系统中的一个有机组成部分D.那些不再是原来意义上的、独立存在的作品中公解析:题干是一个复句,抓住句子的谓语,句子的层次为:“……不再是……而是……是……”。

三个谓语动词为并列关系。

也就是说,作为最后一个“是”的宾语,“基本功训练的凭借”与“不再是”、“而是”的宾语是并列关系,而非主宾关系。

由此可以很快排除作“不再是”、“而是”宾语的B、C、D三项。

答案为A。

例题5:小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄的和是44岁。

今年父亲多少岁?A.33 B.34 C.35D.36中公解析:此题答案为B。

一家人的年龄和今年与10年前比较增加了72-44=28岁,而如果按照三人计算10年后应增加10×3=30岁,只能是小芬少了2岁,即小芬8年前出生,今年是8岁,今年父亲是(72-8+4)÷2=34岁两点到三点钟之间,分针与时针什么时候重合?( )A.2点10分B.2点30分C.2点40分D.2点50分【答案】A。

解析:时钟问题属于行程问题中的追及问题。

钟面上按“时”分为12大格,按“分”分为60小格。

每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的1/12。

此题中,两点钟的时候,分针指向12,时针指向2,分针在时针后(5×2)小格。

而分针每分钟可追及1-1/12=11/12(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷11/12)≈10(分钟),因此,2点10分时两针重合。

抽屉原理

抽屉原理

抽屉原理内容提要:第一抽屉原理:把(mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。

第二抽屉原理:把(mn -1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m —1)个物体。

(1)如果用{}n m 表示不小于n m 的最小整数,例如{37=3,{}236= 。

那么抽屉原则可定义为:m 个元素分成n 个集合(m 、n 为正整数m>n ),则至少有一个集合里元素不少于{}n m 个。

(2)根据{}n m 的定义,己知m 、n 可求{}nm ; 己知{}n m ,则可求n m 的范围,例如己知{}n m =3,那么2<nm ≤3;己知{}3x =2,则 1<3x ≤2,即3<x ≤6,x 有最小整数值4。

例题:例1某校有学生2000人,问至少有几个学生生日是同一天?分析:我们把2000名学生看作是苹果,一年365天(闰年366天)看作是抽屉,即把m (2000)个元素,分成n(366)个集合,至少有一个集合的元素不少于{n m个 解:∵=3662000536617 ∴{}3662000=6 答:至少有6名学生的生日是同一天例2.从1到10这十个自然数中,任意取出6个数,其中至少有两个是倍数关系,试说明这是为什么。

解:我们把1到10的奇数及它们的倍数放在同一集合里,则可分为5个集合,它们是:{1,2,4,8,},{3,6,},{5,10},{7},{9}。

∵要在5个集合里取出6个数,∴至少有两个是在同一集合,而在同一集合里的任意两个数都是倍数关系。

(本题的关键是划分集合,想一想为什么9不能放在3和6的集合里)。

例3.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。

我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若m ∈N+,K ∈N+,n ∈N,则m=(2k-1)·2n ,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,…… 证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):(1){1,1×2,1×22,1×23,1×24,1×25,1×26};(2){3,3×2,3×22,3×23,3×24,3×25};(3){5,5×2,5×22,5×23,5×24};(4){7,7×2,7×22,7×23};(5){9,9×2,9×22,9×23};(6){11,11×2,11×22,11×23};……(25){49,49×2};(26){51};…… (50){99}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理公式及例题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
抽屉原理公式及例题“至少……才能保证(一定)…最不利原则
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。

这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

15+1=16
例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同
解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。

答案选C.
例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人
每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25
例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。

问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同
用最不利原则解题。

四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。

即答案为69×3+50+1=258。

例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。

那么调研人员需要从这些调
查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者
答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。

要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。

因为每一位号码有0-9共10种选择,所以后两位的排列方式共有10×10=100种。

考虑最坏的情况,先取出没有填写手机号码的87份调查问卷,再取出后两位各不相同的问卷100份,此时再取出一份问卷,就能保证找到两个手机号码后两位相同的被调查者,那么至少要从这些问卷中抽取100+87+1=188份
例7:有编号为1-13的卡片,每个编号有四张,共有52张卡片。

问至少摸出多少张,才能保证一定有3张卡片编号相连
若取的是:1、2、4、5、7、8、10、11、13编号的四张,则应该是36张,再取一张就满足了.故应该是至少取37张.。

相关文档
最新文档