定理与证明 课件

合集下载

命题、定理、证明-ppt课件

命题、定理、证明-ppt课件
添加“如果”“那么”后,命题的意义不能改变;改写的句子要 完整,语句要通顺,使命题的题设和结论更明朗,易于分辨;改写过 程中,可以适当增加词语,切不可生搬硬套.
知识点3 命题的真假 例3 下列命题是真命题的是( A ) A.同位角相等,两直线平行 B.同角的余角互补 C.方程2x+4=0的解为x=2 D.在同一平面内,过一点有且只有一条直线与已知直线平行
1.下列语句中,是命题的是( A ) A.有公共顶点的两个角是对顶角 B.作∠A的平分线 C.用量角器量角的度数 D.直角都相等吗
2.命题“互为相反数的两个数的和为零”是___真_____命题(填 “真”或“假”),将其改写成“如果……那么……”的形式:如果 ___两__个__数__互__为__相__反__数_______,那么___这__两__个__数__的__和__为__零_____.
课前预习
1.命题的定义:判断一件事情的语句,叫做命题.命题由___题__设___和___结__论___ 两部分组成. 2.命题的真假:如果题设成立,那么结论一定成立,这样的命题叫做____真____命 题;如果题设成立时,不能保证结论一定成立,这样的命题叫做___假_____命题. 3.定理:经过推理证实的___真_____命题叫做定理.定理也可以作为继续推理 的依据. 4.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这 个推理过程叫做证明.
训练 4.判断下列命题是真命题还是假命题.如果是假命题,请举 出一个反例.
(1)对顶角相等; (2)三条直线两两相交,总有三个交点; (3)如果ac=bc,那么a=b. 解:(1)真命题. (2)假命题.反例:三条直线交于一点. (3)假命题.反例:当c=0时,1×0=2×0,但是1≠2.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.

《命题、定理、证明》课件(22张ppt)

《命题、定理、证明》课件(22张ppt)
判断一件事情的语句叫做命题。
注意: 1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
下列语句是命题吗?
①熊猫没有翅膀.
②大象是红色的
③同位角相等.
④连接A、B两点.
⑤你多大了?
句子 ① ② ③ 能判断一件事情. 是命题
句子 ④ ⑤ ⑥ 不能判断一件事情. 不是命题
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
命题的概念
⑥请你吃饭。
问题2 判断下列语句是不是命题? (1)你饭吃了吗?( ) (2)两点之间,线段最短。( ) (3)请画出两条互相平行的直线。 ( ) (4)过直线外一点作已知直线的垂线。 ( ) (5)如果两个角的和是90º,那么这两个角互余。( ) (6)对顶角不相等。( )
(1)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
(2)你能结合图形用几何语言表述命题的题设和结论吗?
命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.
已知:b∥c, a⊥b .
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断? 1、对顶角相等; 2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的小明; 6、玫瑰花是动物;

华师大版八年级数学上册《定理与证明》优质课课件

华师大版八年级数学上册《定理与证明》优质课课件

• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/292021/7/292021/7/297/29/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/292021/7/29July 29, 2021
(两直线平行,同位角相等)
∵ ∠3=∠1 ( 对顶角相等 )
∴∠1=∠2 ( 等量代换 )
命题证明的步骤: 1.根据题意,画出图形; 2.根据题设、结论,结合图形,写出
已知、求证; 3.经过分析,找出由已知推出求证的
途径,写出证明过程.
根据下列命题,画出图形,并结合 图形写出已知、求证(不写证明过程): 1)垂直于同一直线的两直线平行; 2)内错角相等,两直线平行; 3)一个角的平分线上的点到这个角的两边
OE平分∠AOB, OF平分∠BOC
求证:OE⊥OF
E
B
证明:∵OE平分∠AOB,
12 F
∴∠1=
OF平分∠BOC
1
2∠AOB,
∠2= 1
2
A ∠BOC
O
C
又∠AOB、∠BOC互为邻补角
∵ ∠AOB+∠BOC=180° ∴∠1+∠2= 1 (∠AOB+∠BOC)=90° ∴ OE⊥OF 2
如何判断一个命题是假命题?
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021

华师大版八年级上册1命题、定理与证明课件

华师大版八年级上册1命题、定理与证明课件

∵ DF 平分∠ CDO,BE 平分∠ ABO(已知),
∴∠ 1= 1 ∠ CDO,∠ 2= 1 ∠ ABO(_角__平__分__线__的__定__义_ ).
2
2
∴∠ 1= ∠ 2(等量代换).
解题秘方:根据上一步的因为条件填写下一步的根据.
感悟新知
4-1. 如图, 已知: 点A,B,C 在同一条直线上.
感悟新知
知1-练
解:条件:两个角互为补角;结论:这两个角相等. 假命题. 条件:a=b;结论:a+c=b+c. 真命题. 条件:两个长方形的周长相等;结论:这两个长方
形的面积相等. 假命题.
感悟新知
知1-练
2-1. 下列命题是真命题的是( A ) A. 如果两个角不相等,那么这两个角不是对顶角 B. 如果a2=b2, 那么a=b C. 两个互补的角一定是邻补角 D. 如果两个角是同位角,那么这两个角一定相等
知2-练
感悟新知
知识点 3 命题证明的一般步骤
知3-讲
1. 证明 根据条件、定义以及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过程叫做 证明.
感悟新知
知3-讲
2. 命题证明的一般步骤 第一步:分清命题的条件和结论,若命题与图形有关,则
根据题意,画出图形,并在图形上标出相关的字母和符号; 第二步:根据条件、结论,结合图形,写出已知、求证; 第三步:视察图形,分析证明思路,找出证明方法; 第四步:写出证明的过程,并注明根据.
结论不成立,像这样的命题,称为假命题.
感悟新知
知1-练
例 1 把下列命题改写成“如果……,那么……”的情势: 对顶角相等; 平行于同一条直线的两条直线平行; 同角或等角的余角相等. 解题秘方:紧扣命题的结构情势进行改写.

《命题、定理、证明》相交线与平行线精品课件

《命题、定理、证明》相交线与平行线精品课件
相交线的性质
相交线两端的点之间的距离叫做相交线的长度。相交线在数轴上的投影叫做相交 线的斜度。
相交线的判定方法
斜度法
通过测量两条直线的斜度是否相等来判断它们是否相交。
端点距离法
通过测量两条直线两端的点之间的距离是否相等来判断它们是否相交。
相交线在生活中的应用
建筑学
在建筑设计中,相交线被用来 确定点、线、面之间的位置关 系,以及建筑物的立体形状和
命题和定理都是数学中重要的 概念,它们之间有着密切的联
系。
许多重要的数学定理是由一系 列相关的命题组成的,这些命 题在证明过程中被逐步验证和
确认。
命题可以作为定理的中间步骤 或组成部分,而定理则是命题
的最终结论或推论。
02
相交线的性质与判定
相交线的定义与性质
相交线的定义
两条直线在同一平面内,如果它们不平行且不重合,那么这两条直线就叫做相交 线。
感谢您的观看
THANKS
增强学习兴趣
命题、定理、证明具有挑 战性和趣味性,可以增强 学生对数学的学习兴趣。
促进创新思维
命题、定理、证明鼓励学 生发挥创新思维,尝试解 决新的问题,推动数学的 发展。
命题、定理、证明在其他学科中的应用
自然科学
在物理学、化学、生物学 等自然科学中,命题、定 理、证明被广泛应用于建 立实验方法和理论框架。
命题、定理、证明在实际问题中的应用案例三
案例名称
设计一个高效、稳定的网络系统
应用定理解决问题
根据证明的定理,构建出符合要求
01
02
已知条件
网络系统的用途、用户数量、数据流 量等。
03
建立命题和定理
根据已知条件,设计出网络系统的架 构,并确定各部分的功能和连接方式 。

13.定理与证明PPT课件(华师大版)

13.定理与证明PPT课件(华师大版)

是( )
A.40°
B.50°
C.60°
D.140°
2 完成下面的证明过程,并在括号内填上理由.已知:如图所
示,AD∥BC,∠BAD=∠BCD.求证:AB∥CD.
证明:因为AD∥BC( ),
所以∠1=________(
),
又因为∠BAD=∠BCD(
),
所以∠BAD-∠1=∠BCD-∠2(
),
即∠3=∠4,所以AB∥________(
2 × 3 + 1 =7, 2 × 3 × 5+! =31, 2 × 3 × 5 × 7 + l = 211.
计算一下 2×3×5×7×
11+1与 2×3×5×7× 11×13+1,你 发现了什么?
于是,他根据上面的结果并利 用质数表得出结论:从 质数2开始, 排在前面的任意多个质数的乘积加1 一定 也是质数.他的结论正确吗?
例2 填写下列证明过程中的推理根据.
如图13.1-2:已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分∠ABO与AC相交
于点E,∠A=∠C.
求证:∠1=∠2.
证明:∵∠A=∠C(已知),
∴AB∥CD(________).
图13.1-2
∴∠ABO=∠CDO(________).
又∵DF平分∠CDO,BE平分∠ABO(已知),
).
获取证明思路的方法: (1)从已知条件出发,结合图形,根据前面学过的定
义、基本事实、定理、公式逐步推理求证的结论,这 种方法叫做“综合法”. (2)从结论出发,去探求其成立的原因,直到与已知 条件相吻合为止,这种方法叫“分析法”. (3)“两头凑”,即在解决问题时,将上面的两种方 法结合起来用.

三角形内角和定理的证明证明教学PPT课件

三角形内角和定理的证明证明教学PPT课件
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
1 2 1800 BDC(等式性质).
BDC BAC ABD ACD(等量代换).
即BDC BAC B C.
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
M
B
N
C
F
D
练一练
A
1、 如图,已知AD是△ABD
34
和△ACD的公共边.求证:
∠BDC=∠BAC+∠B+∠C
12
B
D
证法一:
∵在△ABD中, ∠1=180°-∠B-∠3,
C
在△ADC中, ∠2=180°-∠C-∠4(三角形内角和定理),
又∵∠BDC=360°-∠1-∠2(周角定义)
∴∠ BDC =360°-( 180°-∠B-∠3 )-( 180°-∠C-∠4 )
= ∠B+∠C+∠3+∠4.
又 ∵ ∠BAC = ∠3+∠4,
∴ ∠ BDC = ∠B+∠C+ ∠BAC (等量代换)
A
证法二:
连接BC.
B
1
D
2
C
在ABC中,BAC ABD ACD 1 2 1800,

318.45.北师大版八年级数学上册7.2 第2课时 定理与证明(课件)

318.45.北师大版八年级数学上册7.2 第2课时 定理与证明(课件)

香 。 雪 入 窗 , 今
苍 茫 , 罂 粟 纷 纷
不 若 笑 醉 一 回 。
一 杯 ? 前 尘 旧 梦
繁 华 , 怎 敌 我 浊
古 韵 清

中 幽 舞
梦明
国 落 月
花, 间 。
开离留去不念倾一为夜 古
始,不别成,了丝何静 去,终下离双道天纠泪谧 ;陌是相相,是涯缠悄,
路缠思思抹相的,落佳
韵 风 味
梦明
国 落 月
花, 间 。
…… …… ……


恰惆壶红拾夜飘忆,酒世
生 茫 茫 。
只 叹 伊 人 已 去 ,
雪 , 茫 然 又 一 岁
举 杯 独 醉 , 饮 罢
如 流 年 负 了 青 春
怅 泪 溶 了 雪 ,
月 光 ? 谁 酒 三 尺
颜 刹 那 ? 谁 饮 一
弹 指 雪 花 ? 谁 痴
无 月 亦 无 殇 。 谁
想一想:说明一个命题是假命题,通常举出一个例子就可以了, 使之具备命题的条件,而不具有命题的结论,这种例子称为反例。 如何证实一个命题是真命题呢?
读一读
在数学发展史上,数学家们也遇到过类 似的问题。公元前3世纪,人们已经积累了 大量知识,在此基础上,古希腊数学家 欧几里得(公元前300前后)编写了一本书, 书名叫《原本》,为了说明每一结论的正确性,他在 编写这本 书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真 命题作为证实其他命题的起始依据,其中的数学名词称为原名, 公认的真命题称为公理,除了公理外,其他真命题的正确性都通 过推理的方法证实,推理的过程称为证明,经过证明的真命题称 为定理,而证明所需要的定义、公理和其他定理都编写在要证明 的这个定理的前面。《原本》问世之前,世界上还没有一本数学 书籍像《原本》这样编排,因此,《原本》是一部具有划时代意 义的著作。

华师大版八年级数学上册《命题、定理与证明2.定理与证明》优课件

华师大版八年级数学上册《命题、定理与证明2.定理与证明》优课件
谢谢观赏
You made my day!
我们,还在路上……
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月14日星期一2022/2/142022/2/142022/2/14 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/142022/2/142022/2/142/14/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/142022/2/14February 14, 2022 4、享受阅读快乐,提高生活质量。2022/2/142022/2/142022/2/142022/2/14
13.1.2 定理与证明
2.学会证明 填空,把下列解题过程补充完整. 如图 13-1-4 所示,直线 A⊥直线 C,直线 B⊥直线 C, 判断∠1 和∠2 是否相等?并说明理由.
图 13-1-4
13.1.2 定理与证明
解:∠1 和∠2 相等.理由如下:∵A⊥C,B⊥C(已知), ∴A∥B在(__同一平面内,垂直于同一条直线的两条直__线),平行
13.1.2 定理与证明
解:因为 AE∥BC(已知), 所以∠EAC=∠C(__ 两直线平行,内错角相等 __). 因为∠C=30°(三角板角的度数), 所以∠EAC=30°(等量代换). 因为∠DAE=45°(三角板角的度数), 所 以 ∠ DAF = ∠DAE - ∠EAC = 45 ° - 30 ° = 15 ° ( 角 的 和 差). 因为∠AFD+∠ADE+∠DAF=180°(三__角形内角和定_理), 所以∠AFD=180°-∠ADE-∠DAF=180°-90°-15° =75°(等式的性质). 你认为所填写的两个依据都是些什么命题?它们的共同作用 是什么? ◆知识链接——[新知梳理]知识点一

命题定理与证明课件

命题定理与证明课件

详细描述
在命题的证明练习中,学生需要学习如何根据已知条件 和定义,通过逻辑推理和演绎法,推导出结论。这种练 习有助于学生理解命题证明的基本步骤和技巧,培养他 们的逻辑推理能力。
定理的证明练习
总结词
通过定理的证明练习,学生可以深入理解定理的证明过程,掌握定理的应用方法和技巧。
详细描述
在定理的证明练习中,学生需要学习如何根据定理的证明过程,理解和应用定理。这种练习有助于学生深入理解 定理的本质和应用,提高他们的数学素养和解决问题的能力。
相对论
在相对论中,光速不变原理、质能方程等都是重要的命题 和定理,它们为理解宇宙的基本规律提供了基础。
在计算机科学中的应用
数据结构
在数据结构中,各种排序和查找 算法的效率定理、图的遍历定理 等都是关键的命题和定理,它们 为设计和分析算法提供了依据。
算法分析
在算法分析中,时间复杂度、空 间复杂度等概念都是重要的命题 和定理,它们为评估算法的效率 和可行性提供了标准。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
命题与定理的应用
在数学中的应用
代数
概率统计
命题和定理在代数中有着广泛的应用 ,例如在解决方程、不等式和函数问 题时,需要运用各种基本定理和推论 。
在概率和统计中,命题和定理的应用 也十分重要,例如大数定律、中心极 限定理等,都是解决概率统计问题的 基石。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
命题定理与证明课件
目录
CONTENTS
• 命题与定理的基本概念 • 命题的证明方法 • 定理的证明技巧 • 命题与定理的应用 • 命题与定理的实践练习

正弦定理课件ppt

正弦定理课件ppt

提习题
要点一
提升习题1
已知三角形ABC中,角A、B、C所对的边分别为a、b、c, 且sin(A+C)=2sinBcosA,求证:b²=ac。
要点二
提升习题2
已知三角形ABC中,角A、B、C所对的边分别为a、b、c ,且cosB=1/3,b=3,求边长a和c的值。
综合习题
综合习题1
已知三角形ABC中,角A、B、C所对的边分别为a、b、c,且sin²A+sin²B-sinA=sin²C ,求证:三角形ABC是直角三角形。
确定三角形形状
通过正弦定理,我们可以 判断三角形的形状,例如 是否为直角三角形、等腰 三角形等。
求解三角形角度
已知三角形的两边及其夹 角,可以使用正弦定理求 出其他角度。
求解三角形边长
已知三角形的两角及其夹 边,可以使用正弦定理求 出其他边长。
在三角函数中的应用
求解三角函数值
已知三角形的两边及其夹角,可 以使用正弦定理求出三角函数值 。
VS
三角函数的和差公式
利用正弦定理推导出三角函数的和差公式 ,例如sin(α+β)和sin(α-β)的公式。
05
CHAPTER
习题与解答
基础习题
基础习题1
已知三角形ABC中,角A、B、C所对的边分别为a、b、c,且A=60°,a=3,b=4,求角C。
基础习题2
已知三角形ABC中,角A、B、C所对的边分别为a、b、c,且sinA=2sinBcosC,求证:三角形ABC是 等腰三角形。
正弦定理是解决三角形问题的重要工具之一,可以用于解决 各种与三角形相关的数学问题。
02
CHAPTER
正弦定理的证明
利用三角形的面积证明正弦定理

命题、定理与证明(教学课件)七年级数学下册(人教版)

命题、定理与证明(教学课件)七年级数学下册(人教版)

在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于 另一条. 例3.如图,已知直线b∥c,a⊥b. 求证a⊥c. 证明:∵ a⊥b (已知) ∴ ∠1=90°(垂直的定义) 又∵ b∥c (已知) ∴ ∠1=∠2 (两直线平行,同位角相等) ∴ ∠2=∠1=90°(等量代换) ∴ a⊥c (垂直的定义)
一般地,命题由题设和结论两部分组成. 题设:是已知事项; 结论:是由已知事项推出的事项. 数学中的命题常可以写成“如果……,那么……”的形式,这时“如果” 后接的部分是_题__设__,“那么”后接的部分是_结__论__. 例如,命题(1)中,“两条直线都与第三条直线平行”是_题__设__,“这两条 直线也互相平行”是_结__论__. (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截. 在下面四个式
子中,请你选择其中三个作为题设,剩下的一个作为结论,组成一个真命题
并证明.①AB⊥BC; ②CD⊥BC; ③BE//CF; ④∠1=∠2.
题设(已知):_____②__③__④_______. 结论(求证):_______①_________.
有些命题的题设和结论不明显,要经过分析才能找出题设和结论,从而将它 写成“如果……,那么……”的形式.例如,命题(3)“对顶角相等”可以写 成“如果两个角是对顶角,那么这两个角相等”.
(2)两条平行线被第三条直线所截,同旁内角互补; _如__果__两__条__平__行__线__被__第__三__条__直__线__所__截__,__那__么__同__旁__内__角__互__补__._______________ (4)等式两边加同一个数,结果仍是等式. _如__果__等__式__两__边__加__同__一__个__数__,__那__么__结__果__仍__是__等__式__._______________________

勾股定理的证明(比较全的证明方法)课件

勾股定理的证明(比较全的证明方法)课件
毕达哥拉斯证明法虽然不如欧几里得证明法那么简洁明了,但它也具有其独特的数 学美感和哲学思考。
总统证明法
美国总统加菲尔德在1876年独 立发现了勾股定理的一种新的 证明方法,后来被称为“总统 证明法”。
总统证明法利用了代数和三角 恒等式来证明勾股定理,这种 方法与前两种几何证明方法有 所不同。
总统证明法不仅证明了勾股定 理,而且也展示了数学中代数 和三角学的紧密联系。
05
勾股定理的推广
勾股定理的逆定理
勾股定理的逆定理
如果三角形三边满足勾股定理, 则这个三角形是直角三角形。
证明方法
利用勾股定理和三角形的性质, 通过反证法证明。假设三角形不 是直角三角形,则其三边不满足 勾股定理,与已知条件矛盾。
勾股定理的推广形式
勾股定理的推广
对于任意多边形,如果其内角和为 180度,则其边长满足勾股定理。
对未来研究的展望
深入研究和探索
勾股定理的证明方法有很多种,但还有很多 值得探索和研究的地方。例如,如何将不同 的证明方法进行比较和整合,如何进一步简 化证明过程等。这些问题的研究和探索,有 助于推动数学教育的发展和进步。
与其他学科的交叉研究
勾股定理不仅在数学中有应用,在其他学科 如物理学、工程学、经济学等也有广泛的应 用。如何将勾股定理与其他学科进行交叉研 究,发挥其在解决实际问题中的作用,也是 未来研究的一个重要方向。
03
勾股定理的代数证明方法
哈里奥特证明法
哈里奥特证明法是一种基于无穷小差分的代数证明方法。它 通过将直角三角形转化为等腰直角三角形,利用无穷小差分 的性质,推导出勾股定理。
哈里奥特证明法不仅证明了勾股定理,还为微积分学的发展 奠定了基础。
欧拉证明法

人教版《命题、定理、证明》PPT精品课件

人教版《命题、定理、证明》PPT精品课件

余角的性质: 补角的性质: 对顶角的性质: 垂线的性质: 平行公理推论:
4.下列说法正确地是( ) A.命题是定理,定理是命题 B.命题不一定是定理,定理不一定是命题 C.真命题可以是定理,假命题不可能为定理 D.定理可能是真命题,也可能是假命题
性质总结
3 定理与证明
定义: 在很多情况下,一个命题的正确性需要经过推理才能
作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤: 1.明确命题中的_已__知___和__求__证__; 2.根据题意,画__出__图__形___,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证 明过程.
典例分析
例 已知:如图,直线b∥c, a⊥b.求证:a⊥c. ①如图,∠A+ ∠B=180°,求证:∠C+ ∠D=180°。
观察下面的命题由几个部分组成? 如果+(题设),那么+(结论)
②内错角相等;
在下面的括号内,填上推理的依据.
③画一条直线; 只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.
如:画线段AB=CD. 下面的语句是不是命题?
④四边形是正方形;
根据题意,_________,并用数学符号表示已知和求证;
下面哪些语句是命题,哪些不是命题:
下列说法正确地是( )
①同旁内角互补( × ) ∵ CB ∥ DE,
②画一个角等于已知角. 观察下列命题,你能发现这些命题有什么不同的特点吗? ②只要对一件事情作出了判断,不管正确与否,都是命题.
归纳:
②一个角的补角大于这个角( × ) ⑥同角的余角相等( )
⑦互为邻补角的两个角的平分线互相垂直( ) 过推理证实的,这样得到的真命题叫做定理.

13.1 命题、定理与证明 课件 2024-2025学年 华东师大版数学八年级上册

 13.1 命题、定理与证明 课件 2024-2025学年 华东师大版数学八年级上册

本课结束
【举一反三】 1.(2024·来宾期中)下列命题中,是真命题的是( B ) A.相等的角是对顶角 B.垂线段最短 C.三角形的外角和等于180° D.三角形的外角大于它的内角 2.(2024·吴忠期末)命题“等角的余角相等”的题设是____两__个__角__是_等__角__的__余__角_____, 结论是___它__们__相__等_____.
2.下列说法正确的是( C ) A.命题是定理,定理是命题 B.命题不一定是定理,定理不一定是命题 C.真命题有可能是定理,假命题不可能是定理 D.定理可能是真命题,也可能是假命题
3. 如 图 , 有 如 下 四 个 论 断 : ① AC ∥ DE; ② DC ∥ EF; ③ CD 平 分 ∠ BCA; ④ EF 平 分 ∠BED,请你选择四个论断中的三个作为条件,余下的一个作为结论,构成一个正 确的数学命题并证明它.
5.(8分·推理能力、几何直观)如图,有下列三个条件:①DE∥BC;②∠1=∠2; ③∠B=∠C. (1)若从这三个条件中任选两个作为题设,另一个作为结论, 组成一个命题,一共能组成几个命题?请你都写出来; 【解析】(1)一共能组成三个命题: ①如果DE∥BC,∠1=∠2,那么∠B=∠C; ②如果DE∥BC,∠B=∠C,那么∠1=∠2; ③如果∠1=∠2,∠B=∠C,那么DE∥BC.
13.1 命题、定理与证明 1.命题 2.定理与证明
基础 主干落实 重点 典例研析 素养 当堂测评
课时学习目标 1.了解命题的概念,理解命题的结构,会区分命题的条件 和结论,会将命题改写成“如果……,那么……”的形式 2.掌握已学的5个基本事实,理解定理的概念 3.理解证明的概念,掌握推理证明的格式,并会证明简单 命题的真假
2.五个基本事实: (1)两点确定一条直线; (2)两点之间,__线__段__最__短__; (3)过一点__有__且__只__有__一__条__直__线__与已知直线垂直; (4)过直线外一点__有__且__只__有__一__条__直__线__与这条 直线平行; (5)两条直线被第三条直线所截,如果同位角 相等,那么这两条直线_平__行___.

2 定义与命题 第2课时 定理与证明 公开课获奖课件

2 定义与命题 第2课时 定理与证明 公开课获奖课件

【变式训练】 3. 已知∠1+∠2=90°,∠3+∠2=90°,则∠1=∠3,理由是 ___同__角__或__等__角__的__余__角__相__等_____. 4. 如图,已知a∥b,小亮把三角板的直角顶点放在直线b上,求证:∠1+ ∠2=90°.
解:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).又∵∠BAC =90°(已知),∠1+∠3+∠BAC=180°(平角的定义),∴∠1+∠3=90°, ∴∠1+∠2=90°(等量代换)
A.公理和定理都是真命题
B.公理就是定理,定理也是公理
C.公理和定理都可以作为推理论证的依据
D.公理的正确性不需证明,定理的正确性需证明
知识点二:证明
【典例导引】 【例2】 在下面的括号内,填上推理的根据: 如图,已知AB∥CD,BE∥CF,求证:∠B+∠C=180°.
证明:∵AB∥CD(已知), ∴∠B=∠BGC(两直线平行,内错角相等), 又∵BE∥CF(已知), ∴∠BGC+∠C=180°(两直线平行,同旁内角互补), ∴∠B+∠C=180°(等量代换). 【方法点拨】 证明题步骤:(1)审题,分清命题的条件和结论;(2)画图, 结合图形写出已知、求证;(3)分析因果关系,找出证明途径;(4)有条理地 写出证明过程.
撪撬撮撯撱揿撴撵撶撷撸撹 撺挞撼撽挝擀擃掳擅擆擈擉 擌擎擏擐擑擓携擖擗擘擙擛
擜擝擞擟抬擢擤擥举擨
9. (揭阳模拟)已知命题“两条直线被第三条直线所截,如果同位 角的平分线互相平行,那么这两条直线也互相平行”.
(1)画出符合命题的几何图形; (2)用几何符号表述这个命题; (3)证明这个命题是真命题.
北师版
第七章 平行线的证明
2 定义与命题
第2课时 定理与证明

华东师大版数学八年级上册1第2课命题、定理与证明课件

华东师大版数学八年级上册1第2课命题、定理与证明课件
“内错角相等,两直线平行”是平行线的判定定理.
定理揭示了客观事物的本质属性.
基本事实、定理、命题、真命题、假命题之间有什关系?
命题
真命题
假命题
基本事实
定理
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
解:当n=1时,n2-3n+7=5,是质数, 当n=2时,n2-3n+7=5,是质数, 当n=3时,n2-3n+7=7,是质数, 当n=4时,n2-3n+7=11,是质数, 当n=5时,n2-3n+7=17,是质数,
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
所以,当n=1,2,3,4,5时,代数式n2-3n+7的值
全都是质数.
当n=6时,n2-3n+7=62-18+7=25=52. 所以,对于所有自然数,式子n2-3n+7的值不都是质数.
已知:如图,已知AB∥CD, OP,MN分别平分∠BOM, ∠OMD,OP、MN交于G点, 求证:MN⊥OP.
证明:∵AB∥CD, ∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补), ∵OP 、 MN分别平分∠BOM,∠OMD, ∴2∠POM+2∠NMO=180°. ∴∠POM+∠NMO=90°. ∴∠MGO=90°. ∴MN⊥OP.
新知讲授
上面这些命题是通过长期实践总结出来,被大家公认的真 命题.我们将这些命题视为基本事实.
它们是我们在继续学习过程中用来判断其他命题真假的原 始根据,即出发点. “同位角相等,两直线平行”是基本事实,那么七年级我 们学过的命题“内错角相等,两直线平行”是什么呢?

最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)

最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)
(1)同位角相等,两直线平行; 真命题 (2)多边形的内角和等于 180°; 假命题 (3)三角形的外角和等于 360°; 真命题
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断下列命题是真命题还是假命题. 如果是假命题,举出一个反例:
6)不等式的两边都乘以同一个数,不
等号的方向不变;
7)在平面内,经过一点有且只有一条 直线与已知直线垂直;
8)两个锐角的和是锐角.
小结:
(1)画图;
定 1.命题证明的 (2)写已知、求证; 一般步骤 (3)写推理过程. 理 与 2.命题的证明 证 明 3.判断假命题的方法:举反例
3) 平行公理:
举例:
经过直线外一点,有且只有一条 直线与已知直线平行.
4) 平行线判定公理:
同位角相等,两直线平行.
5) 平行线性质公理:
两直线平行,同位角相等.
2. 定理: 1) 补角的性质: 同角或等角的补角相等. 2) 余角的性质: 同角或等角的余角相等. 对顶角相等 3) 对顶角的性质:
D
例2.证明:邻补角的平分线互相垂直.
已知:如图,∠AOB、∠BOC互为邻补角, OE平分∠AOB, OF平分∠BOC B 求证:OE⊥OF E 1 2 F 证明:∵OE平分∠AOB, OF平分∠BOC 1 A O C 1 ∴∠1= ∠AOB, ∠2= ∠BOC 2 2 又∠AOB、∠BOC互为邻补角 ∵ ∠AOB+∠BOC=180° 1 ∴∠1+∠2= (∠AOB+∠BOC)=90° 2 ∴ OE⊥OF 练习:P108-2
如何判断一个命题是假命题?
只要举出一个例子(反例), 它符合命题的题设,但不满足 结论就可以了.
判断下列命题是真命题还是假命题. 如果是假命题,举出一个反例:
1)相等的角是对顶角; 2)同位角相等; 3)邻补角是互补的角; 4)互补的角是邻补角; 5)如果一个数能被2整除,那么这个数 也能被4整除;

2.构成:

1.定义: 判断一件事情的语句.
1)每个命题都是由题设、结论两部分组成.
2)命题常写成“如果··那么······”的形式. ·· ··
3.分类:
1)真命题:正确的命题; 2)假命题:错误的命题.
判断下列命题的真假: √ 1.过两点有且只有一条直线; 2.如果两个角是同位角,那么这两个 角相等; × 3.两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平 行; √ 4.如果两个角互补,那么它们是邻补 角;× 5.垂直于同一条直线的两直线平行. √
3.经过分析,找出由已知推出求证的
途径,写出证明过程.
根据下列命题,画出图形,并结合图形
写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
2)内错角相等,两直线平行; 3)一个角的平分线上的点到这个角的两边
的距离相等;
4)两条平行线的一对内错角的平分线互相
平行.
根据下列命题,画出图形,并结合图形
1.公理: 人们在长期实践中总结出来的, 并作为判定其他命题真假的根据. 2.定理: 用推理的方法得到的真命题. 3.证明: 除公理外,一个命题的正确性 需要经过推理,才能作出判断,这 个推理的过程叫做证明.
1. 公理: 1) 直线公理: 过两点有且只有一条直线. 2) 线段公理: 两点之间,线段最短.
4) 垂线的性质:
举例:
①过一点有且只有一条直线与已知直线垂直;
பைடு நூலகம்
②垂线段最短.
5) 平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行.
举例:
2. 定理:
6) 平行线的判定定理:
内错角相等,两直线平行. 同旁内角互补,两直线平行.
7) 平行线的性质定理:
两直线平行,内错角相等. 两直线平行,同旁内角互补.
写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
已知:直线b⊥a , c⊥a
求证:b∥c
a
b
c
根据下列命题,画出图形,并结合图形
写出已知、求证(不写证明过程):
2)内错角相等,两直线平行;
已知:如图,直线a、b被直线 c所截, 且∠1=∠2
c
1
求证:a∥b
2
a
b
根据下列命题,画出图形,并结合图形 写出已知、求证(不写证明过程): 3)一个角的平分线上的点到这个角的两边 的距离相等; 已知:如图,OC是∠AOB的平分线, A F EF⊥OA于F ,
EG⊥OB于G
求证:EF=EG
O
E G
B
C
根据下列命题,画出图形,并结合图形 写出已知、求证(不写证明过程): 4)两条平行线的一对内错角的平分线互相 平行.
已知:如图,AB、CD被直线EF所截,且 AB∥CD,EG、FH分别是∠AEF和 ∠EFD的平分线 E 求证:EG∥FH A B
G C
H F
举例:
3. 证明:
例1.已知:如图,a∥b, c是截线c. 求证:∠1=∠2 3 证明:∵a∥b ( 已知 )
1
a
∴∠3=∠2 (两直线平行,同位角相等) ∵ ∠3=∠1 ( 对顶角相等 ) ∴∠1=∠2 ( 等量代换 )
2
b
练习:P106-1、2
命题证明的步骤: 1.根据题意,画出图形;
2.根据题设、结论,结合图形,写出 已知、求证;
相关文档
最新文档