MATLAB神经网络工具箱函数拟合
(完整word版)Matlab的神经网络工具箱入门
Matlab的神经网络工具箱入门在command window中键入help nnet>> help nnetNeural Network ToolboxVersion 7.0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能。
nnstart - 神经网络启动GUInctool - 神经网络分类工具nftool - 神经网络的拟合工具nntraintool - 神经网络的训练工具nprtool - 神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。
查看- 查看一个神经网络。
网络的建立功能。
cascadeforwardnet - 串级,前馈神经网络。
competlayer - 竞争神经层。
distdelaynet - 分布时滞的神经网络。
elmannet - Elman神经网络。
feedforwardnet - 前馈神经网络。
fitnet - 函数拟合神经网络。
layrecnet - 分层递归神经网络。
linearlayer - 线性神经层。
lvqnet - 学习矢量量化(LVQ)神经网络。
narnet - 非线性自结合的时间序列网络。
narxnet - 非线性自结合的时间序列与外部输入网络。
newgrnn - 设计一个广义回归神经网络。
newhop - 建立经常性的Hopfield网络。
newlind - 设计一个线性层。
newpnn - 设计概率神经网络。
newrb - 径向基网络设计。
newrbe - 设计一个确切的径向基网络。
patternnet - 神经网络模式识别。
感知- 感知。
selforgmap - 自组织特征映射。
timedelaynet - 时滞神经网络。
利用网络。
网络- 创建一个自定义神经网络。
SIM卡- 模拟一个神经网络。
初始化- 初始化一个神经网络。
MATLAB函数拟合指令MATLAB拟合函数使用说明
MATLAB函数拟合指令MATLAB拟合函数使用说明一维数据拟合:在MATLAB中,可以使用polyfit和fit函数进行一维数据的拟合。
1. polyfit函数:polyfit函数用于将数据集拟合到一个多项式模型。
语法如下:```[p, S] = polyfit(x, y, n)```其中,x和y表示数据集的x轴和y轴值,n是一个整数,表示拟合的多项式阶数。
p是一个包含多项式系数的向量,S是一个结构体,包含了拟合误差和其他信息。
2. fit函数:fit函数用于将数据集拟合到自定义的非线性函数模型。
语法如下:```f = fit(x, y, model)```其中,x和y表示数据集的x轴和y轴值,model表示自定义的非线性函数模型。
可以使用fittype函数创建一个函数模型对象,例如:```model = fittype('a * exp(b * x)');```然后,将这个函数模型传递给fit函数即可。
多维数据拟合:在MATLAB中,可以使用fit函数进行多维数据的拟合。
1. fit函数:fit函数也可以用于多维数据的拟合,只需将数据集转换为table格式。
语法如下:```f = fit(x, y, model)```其中,x和y表示多维数据集的自变量和因变量,model表示自定义的非线性函数模型。
自定义函数模型的建立:除了使用内置的多项式模型和其他简单模型,也可以自定义非线性函数模型。
需要定义一个函数句柄,例如:``````然后,将这个函数句柄传递给fittype函数,创建一个函数模型对象,例如:```model = fittype(func);```最后将这个函数模型对象传递给fit函数。
拟合结果的可视化:拟合结果可以通过绘制原始数据和拟合函数来进行可视化。
可以使用plot函数绘制原始数据点,使用plot函数、plotfit函数或者ezplot函数绘制拟合函数曲线。
总结:MATLAB提供了多种函数拟合方法,可以用于一维和多维数据拟合。
matlab神经网络工具箱简介和函数及示例
目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本
在Matlab中使用神经元网络进行数据拟合的技巧
在Matlab中使用神经元网络进行数据拟合的技巧在Matlab中使用神经网络进行数据拟合的技巧引言:在现代数据科学领域中,数据拟合是一项非常重要的任务。
数据拟合可以理解为通过数学模型来拟合已知的数据,以便更好地理解和预测未知的数据。
在数据拟合方法中,神经网络被广泛应用。
神经网络是一种模拟生物神经网络的人工智能方法,以其灵活性和强大的拟合能力受到了广大研究者的青睐。
在本文中,将探讨如何在Matlab中使用神经网络进行数据拟合,并分享一些技巧和经验。
一、Matlab中的神经网络工具箱Matlab提供了强大的神经网络工具箱,使得我们能够轻松地构建并训练神经网络模型。
该工具箱包含了多种神经网络类型,如前馈神经网络、递归神经网络等,并提供了丰富的功能和参数调整选项。
在使用神经网络进行数据拟合之前,首先需要导入神经网络工具箱,并了解一些基本的函数和工具。
二、数据准备和预处理在进行数据拟合之前,我们需要准备和预处理原始数据,以确保数据的完整性和准确性。
数据准备的过程包括数据收集、数据清洗、数据变换等。
在Matlab中,可以使用一些内置函数和工具箱来帮助我们进行数据准备和预处理。
例如,可以使用Matlab的数据导入工具箱来导入和预览数据,使用数据清洗工具箱来清洗和去除异常值,使用数据变换方法来调整数据的规模和分布。
三、神经网络模型设计神经网络模型的设计是数据拟合中的重要步骤。
在设计模型时,需要选择适当的网络结构和参数设置。
常见的网络结构包括单层感知器、多层感知器、径向基函数网络等。
在选择网络结构时,需要考虑数据的特点和需求,以及模型的复杂度和计算效率。
此外,还需要确定模型的激活函数、误差函数和学习算法等参数。
这些参数的选择将直接影响到模型的拟合效果和性能。
在Matlab中,可以使用图形化界面或编程的方式来构建和调整神经网络模型。
四、神经网络的训练和验证神经网络的训练是数据拟合过程中的核心步骤。
训练过程通过不断调整网络的权重和偏置值,使得网络能够逼近目标函数。
MATLAB拟合函数使用说明
MATLAB拟合函数使用说明MATLAB是一种强大的数学计算和数据分析软件,其中的拟合函数可以用来对实验数据进行拟合以获得一个数学模型,进而预测和分析数据。
使用MATLAB进行数据拟合可以帮助我们理解数据的规律和趋势,进行预测和决策。
在MATLAB中,有多种不同的拟合函数可以使用,包括线性拟合、多项式拟合、非线性拟合等。
下面将对其中几种常用的拟合函数进行介绍,并说明如何使用这些函数进行数据拟合。
1. 线性拟合:使用polyfit函数可以进行线性拟合。
该函数的基本语法为:```p = polyfit(x, y, n)```其中x和y是待拟合的数据,n是拟合多项式的次数。
函数返回一个多项式系数向量p,可以用polyval函数将该多项式应用于其他数据进行预测。
2. 多项式拟合:在MATLAB中,可以使用polyfitn函数进行多项式拟合。
该函数的基本语法为:```p = polyfitn(x, y, n)```其中x和y是待拟合的数据,n是拟合多项式的次数。
函数返回一个多项式系数向量p,可以用polyvaln函数将该多项式应用于其他数据进行预测。
3. 非线性拟合:MATLAB提供了curve fitting toolbox工具箱,其中的cftool函数可以进行非线性拟合。
使用cftool函数可以通过交互界面进行拟合,也可以通过脚本进行自定义拟合。
该工具箱提供了多种非线性模型,如指数模型、对数模型、幂函数模型等。
在进行拟合之前,首先需要准备好待拟合的数据。
常见的方式是将数据存储在一个数组或矩阵中,然后将数组或矩阵传递给拟合函数进行处理。
拟合函数的参数列表中各个参数的选择对拟合结果有一定的影响,一般情况下需要根据具体问题选择合适的参数。
例如,在多项式拟合中,选择合适的拟合多项式的次数n可以避免过度拟合或欠拟合的问题。
进行数据拟合后,可以使用plot函数将原始数据和拟合结果进行可视化比较。
此外,还可以使用拟合结果进行预测,通过polyval或polyvaln函数将拟合多项式应用于其他数据,得到预测结果。
MATLAB神经网络工具箱函数
18
3. 神经网络某一层的权值和偏值初始化函数initwb( ) 利用初始化函数initwb( )可以对一个已存在的
神经网络的NET某一层i的权值和偏值进行初始化修 正,该网络对每层的权值和偏值是按照设定的每层 的初始化函数来进行修正的。其调用格式为:
net=initwb(NET,i) 4. 神经网络训练函数train( )
5
人工神经元模型
神经元是构成神经网络的最基本单元 (构件)。
人工神经元模型应该具有生物神经元的 基本特性。
人工神经元模型
网络结构—神经元的层
输入
S个神经元的层
p1
w1,1
n1
f
a1
p2
b1 1
p3
n2
f
a2
b2 1
pR
wS,R
nS
f
aS
bS 1
多层神经网络(3层)
输入
p1 w11,1
p2
Z=concur(b,q) 式中,b为N1维的权值向量;q为要达到一致化所需要 的长度;Z为一个已经一致化了的矩阵。
22
例1-1 利用netsum( )函数和netprod( )函数,对两个加权
输入向量Z1和Z2进行相加和相乘。
解 MATLAB的程序如下。
Z1=[1 2 4;3 4 1];Z2=[-1 2 2;-5 -6 1]; %提供两个加权输入向量
2到2)单神经元感知器。而一旦建立了模型我们就可
以得到其权值和阈值。
net = newp([0 1;-2 2],1);
net.iw{1,1}
net.b{1}
对感知器进行训练,改变其权值和阈值。
matlab拟合工具箱拟合方法
matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个功能强大的工具箱,它提供了多种拟合方法,用于拟合数据集并找到最佳的拟合曲线。
本文将介绍Matlab拟合工具箱的几种常用的拟合方法。
一、线性拟合(Linear Fit)线性拟合是最简单和最常用的拟合方法之一。
线性拟合假设拟合曲线为一条直线,通过最小二乘法求解最佳拟合直线的斜率和截距。
线性拟合可以用于解决一些简单的线性关系问题,例如求解两个变量之间的线性关系、求解直线运动的速度等。
二、多项式拟合(Polynomial Fit)多项式拟合是一种常见的拟合方法,它假设拟合曲线为一个多项式函数。
多项式拟合可以适用于一些非线性的数据集,通过增加多项式的阶数,可以更好地拟合数据。
在Matlab拟合工具箱中,可以通过设置多项式的阶数来进行多项式拟合。
三、指数拟合(Exponential Fit)指数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个指数函数。
指数拟合可以用于拟合一些呈指数增长或指数衰减的数据集。
在Matlab拟合工具箱中,可以使用指数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
四、对数拟合(Logarithmic Fit)对数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个对数函数。
对数拟合可以用于拟合一些呈对数增长或对数衰减的数据集。
在Matlab拟合工具箱中,可以使用对数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
五、幂函数拟合(Power Fit)幂函数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个幂函数。
幂函数拟合可以用于拟合一些呈幂函数增长或幂函数衰减的数据集。
在Matlab拟合工具箱中,可以使用幂函数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
六、指数幂函数拟合(Exponential Power Fit)指数幂函数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个指数幂函数。
指数幂函数拟合可以用于拟合一些呈指数幂函数增长或指数幂函数衰减的数据集。
matlab拟合工具箱计算函数值
matlab拟合工具箱计算函数值MATLAB拟合工具箱是MATLAB软件中的一个重要组件,它提供了一系列函数和算法,可用于对数据进行拟合。
拟合是一种通过数学模型来描述和预测实际数据的方法,通过与实际数据的对比,我们可以得出一些结论和预测。
在使用MATLAB拟合工具箱进行数据拟合之前,我们首先需要准备一组已知的数据。
假设我们有一组测量数据,包括了自变量X和因变量Y。
我们想要通过拟合来找到一个数学模型,使得模型预测的Y值与实际测量的Y值尽可能接近。
在MATLAB中,我们可以使用fit函数来进行数据拟合。
fit函数接受两个参数,一个是用于数据拟合的模型类型,另一个是包含自变量X和因变量Y的数据表。
模型类型可以是预定义的模型,比如多项式模型、指数模型等,也可以是自定义的模型。
数据表可以通过MATLAB的数据导入工具或手动创建。
以下是一个使用MATLAB拟合工具箱进行数据拟合的示例代码:```matlab% 准备数据X = [1, 2, 3, 4, 5];Y = [2, 4, 6, 8, 10];% 创建数据表data = table(X', Y', 'VariableNames', {'X', 'Y'});% 进行数据拟合model = fit(data, 'poly1');```在上述代码中,我们首先准备了一组自变量X和因变量Y的数据。
然后,我们使用table函数将数据存储在一个数据表中,数据表有两列,分别命名为'X'和'Y'。
最后,我们使用fit函数进行数据拟合,指定模型类型为'poly1',表示多项式模型中的一次多项式。
通过上述代码,我们成功地使用MATLAB拟合工具箱进行了数据拟合。
拟合的结果存储在变量model中,我们可以使用model对象来进行预测和分析。
除了多项式模型,MATLAB拟合工具箱还支持其他模型类型,比如指数模型、对数模型、幂函数模型等。
matlab拟合工具箱计算函数值
matlab拟合工具箱计算函数值
MATLAB 是一款功能强大的数学计算和可视化软件,其中包含了一个拟合工具箱,可以用于拟合各种类型的函数。
下面是使用 MATLAB 拟合工具箱计算函数值的步骤:
1. 准备数据:首先,需要准备要拟合的数据。
这些数据应该是函数的输入值和对应的输出值。
可以将这些数据存储在一个 MATLAB 变量中,例如`x`和`y`。
2. 选择拟合函数:根据数据的特点,选择一个合适的拟合函数。
MATLAB 提供了多种拟合函数,例如线性函数、多项式函数、指数函数、对数函数等。
可以通过`fit`函数来选择拟合函数,例如`fit(x,y,'poly1')`表示使用一次多项式函数进行拟合。
3. 进行拟合:使用`fit`函数进行拟合,例如`[fitresult,goodness]=fit(x,y,'poly1')`。
其中,`fitresult`是拟合的结果,包含了拟合函数的系数;`goodness`是拟合的优度指标,可以用来评估拟合的效果。
4. 计算函数值:得到拟合函数的系数后,可以使用`polyval`函数来计算函数值,例如`yhat=polyval(fitresult,xnew)`。
其中,`xnew`是新的输入值,`yhat`是对应的输出值。
需要注意的是,拟合工具箱只是一种工具,它并不能保证得到的拟合函数是完全准确的。
在使用拟合工具箱计算函数值时,需要对结果进行适当的评估和验证,以确保结果的准确性和可靠性。
matlab实施函数拟合的较完整描述示例
matlab实施函数拟合的较完整描述示例以MATLAB实现函数拟合的较完整描述示例函数拟合是一种常见的数据分析方法,它可以通过拟合一个数学函数来描述数据的趋势和规律。
MATLAB是一种强大的数学计算软件,它提供了许多函数拟合工具,可以帮助用户快速、准确地进行函数拟合分析。
在MATLAB中,函数拟合的基本步骤包括:导入数据、选择拟合函数、设置拟合参数、进行拟合计算、评估拟合结果和可视化拟合曲线。
下面我们将以一个简单的示例来介绍如何使用MATLAB实现函数拟合。
假设我们有一组数据,表示某个物体的运动速度随时间的变化情况。
我们想要通过函数拟合来描述这个物体的运动规律。
首先,我们需要将数据导入MATLAB中。
可以使用MATLAB的导入工具,将数据从Excel或文本文件中导入到MATLAB的工作区中。
接下来,我们需要选择一个适合的拟合函数。
在MATLAB中,有许多内置的拟合函数可供选择,如多项式拟合、指数拟合、对数拟合、幂函数拟合等。
在本例中,我们选择使用二次多项式拟合函数,因为它可以较好地拟合这组数据的曲线。
然后,我们需要设置拟合参数。
对于二次多项式拟合函数,需要设置三个参数:a、b和c。
这些参数可以通过MATLAB的拟合工具箱中的函数进行设置。
在本例中,我们将a、b和c的初值分别设置为1、1和1。
接下来,我们进行拟合计算。
可以使用MATLAB的拟合工具箱中的函数,如polyfit和fit函数,进行拟合计算。
在本例中,我们使用polyfit函数进行拟合计算。
拟合计算完成后,我们需要评估拟合结果。
可以使用MATLAB的拟合工具箱中的函数,如polyval和feval函数,进行拟合结果的评估。
在本例中,我们使用polyval函数进行拟合结果的评估。
我们需要可视化拟合曲线。
可以使用MATLAB的绘图工具,如plot函数,将拟合曲线绘制出来。
在本例中,我们使用plot函数将拟合曲线绘制出来,并将其与原始数据进行比较。
MATLAB神经网络工具箱(函数拟合)
模式分类
函数拟合 模式分类 函数拟合
收敛最快
收敛较快 性能稳定 收敛较快
较小
中等
较大
模式分类
收敛较慢
较小
BP网络的训练
利用已知的”输入—目标”样本向量数据对网络进行训练, 采用train 函数来完成. 训练之前, 对训练参数进行设置 net = train(net, P, T)
newp默认权值和阈值为零(零初始化函数initzero). net = newp([-2,+2;-2,+2],2); W=net.IW{1,1} %显示网络的权值 b=net.b{1} %显示网络的阈值 W= 0 0 b= 0
0 0
0
改变默认初始化函数为随机函数rands net.inputweights{1,1}.initFcn = ‘rands’; net.biases{1}.initFcn = ‘rands’; net =init(net); %重新初始化
实验一 利用感知器进行分类(2)
Step3
hold on linehandle = plotpc(net.IW{1},net.b{1}); //plotpc函数用来画分类线
添加神经元的初始化值到分类图
初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会 出现在这个图中,不用害怕,我们会继续训练这个神经网。
学习算法 trainlm 适用问题类型
函数拟合
收敛性能
收敛快,误差小
占用存储空间
大
其他特点
性能随网络规模 增大而变差 性能随网络训练 误差减小而变差 尤其适用于网络 规模较大的情况 计算量岁网络规 模的增大呈几何 增长 适用于提前停止 的方法
第9章 MATLAB神经网络工具箱函数(教育课件)
研究学习
7
表1-1 神经网络的通用函数和功能
使网络的平均绝对误差和性能最小。平均绝对误 差性能函数的调用格式为:
perf=mae(E,w,pp) 式中 E为误差矩阵或向量(E=T-Y)。
研究学习
17
2.硬限幅传输函数hardlim( ) 硬限幅传输函数hardlim( )通过计算网络的输入得到
该层的输出。如果网络的输入达到门限,则硬限幅传 输函数的输出为1,否则为0。这表明神经元可用来作 出判断或分类。其调用格式为:
a= 1 -1 -1 1 11
研究学习
20
例1-2 建立一个感知机网络,使其能够完成“或”的 功能。 解 为了完成“或”函数,建立一个两输入、单输出 的一个单层感知机网络。 设输入向量为:X=[0 0 1 1;0 1 0 1],
目标向量为:T=[0 1 1 1]。 激活函数取硬限幅传输函数。
根据感知机学习算法的计算步骤,利用MATLAB 的神经网络工具箱的有关函数编写的程序如下。
>>N=-5:0.1:5; >>a=hardlim(N);plot(N,a)
研究学习 图2-1 硬限幅传输函数曲线 19
3.对称硬限幅传输函数hardlims( ) 对称硬限幅传输函数hardlims( )通过计算网络的
输入得到该层的输出。如果网络的输入达到门限, 则硬限幅传输函数的输出为1,否则为-1。例 >>w=eye(3);b=-0.5*ones(3,1); >>X=[1 0;0 1;1 1]; >>a=hardlims(w*X,b) 结果显示:
MATLAB拟合函数
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
下面给你简单介绍一下它的使用方法。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:x=(0:0.02:0.98)';二胡与施工的计划的风光好舒服很多国家法规和积分高科技y=sin(4*pi*x+rand(size(x)));此时x-y之间的函数近似的为正弦关系,频率为2,但是存在一个误差项。
可以通过作图看出它们的大体分布:plot(x,y,'*','markersize',2);打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets 页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。
第2章MATLAB神经网络工具箱函数
10
5. 网络自适应训练函数adapt( ) 另一种通用的训练函数是自适应函数adapt( )。自适应
函数在每一个输入时间阶段更新网络时仿真网络,而这 在进行下一个输入的仿真前完成,其调用格式为:
[net,Y,E,Xf,Af,tr]= adapt(NET,X,T,Xi,Ai)
b=[0;-1];q=3;
%权值向量和一致化所需要的长度
Z=concur(b,q)
%计算一致化了的矩阵
X1=netsum(Z1,Z2),X2=netprod(Z1,Z2) %计算向量的和与积
结果显示:
Z= 0 0 0
-1 -1 -1
X1 = 0 4 6
-2 -2 2
X2 = -1 4 8
-15 -24 1
1 -1 -1 1 11
20
例2-2 建立一个感知机网络,使其能够完成“或”的 功能。 解 为了完成“或”函数,建立一个两输入、单输出 的一个单层感知机网络。 设输入向量为:X=[0 0 1 1;0 1 0 1],
目标向量为:T=[0 1 1 1]。 激活函数取硬限幅传输函数。
根据感知机学习算法的计算步骤,利用MATLAB 的神经网络工具箱的有关函数编写的程序如下。
14
2.1.2 感知机神经网络工具箱函数
MATLAB神经网络工具箱中提供了大量的与 感知机相关的的函数。在MATLAB工作空间的命 令行键入“help percept”,便可得到与感知机 (Perceptron)相关的函数,进一步利用help命令又能 得到相关函数的详细介绍。表2-2列出了这些函数 的名称和基本功能。
如果T只含一元矢量,目标0的输入矢量画为 “o”; 目标1的输入矢量画为“+”; 如果T含二元 矢量,则输入矢量对应如下:[0 0]用“o”;[0 1]用 “+”;[1 0]用“*”;[1 1]用“”。例
matlab数据拟合函数
matlab数据拟合函数数据拟合是一种通过寻找最佳拟合曲线来近似描述给定数据的统计技术。
在Matlab中,有多种方法可以用于数据拟合,包括线性拟合、多项式拟合、曲线拟合等。
下面将介绍其中几种常用的数据拟合函数。
1. polyfit函数:多项式拟合polyfit函数可以用于进行多项式拟合。
它接受两个参数:x为自变量数据,y为因变量数据。
拟合结果是一个多项式的系数向量,可以通过polyval函数将其用于预测。
例如:```matlabx=[1,2,3,4,5];y=[2,3,5,7,9];degree = 2; % 设置多项式的次数为2p = polyfit(x, y, degree);fitted_y = polyval(p, x);```2. fit函数:通用拟合fit函数是一个通用的拟合函数,可以用于拟合各种类型的曲线模型,包括线性、非线性、统计分布等。
它接受四个参数:x和y为数据,model为拟合模型,method为求解方法。
示例:```matlabx=[1,2,3,4,5];y=[2,3,5,7,9];model = 'a*x^b'; % 使用指数模型进行拟合f = fit(x', y', model);fitted_y = f(x);```3. lsqcurvefit函数:曲线拟合lsqcurvefit函数用于曲线拟合,可以拟合各种非线性函数。
它接受五个参数:fun为拟合函数,x0为初始参数值,xdata和ydata为数据,lb和ub为参数范围(可选)。
示例:```matlabx=[1,2,3,4,5];y=[2,3,5,7,9];x0=[1,1];%初始参数值[fitted_params, resnorm] = lsqcurvefit(fun, x0, x, y);fitted_y = fun(fitted_params, x);```4. cftool工具箱:交互式拟合cftool是一个交互式的拟合工具箱,可以通过图形界面直观地进行数据拟合。
matlab拟合工具箱拟合方法
matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个重要功能模块,它提供了多种拟合方法,用于拟合数据并得到最佳的拟合曲线。
拟合是一种通过拟合函数来描述数据间关系的方法,可以用于数据分析、模型建立和预测等各个领域。
在Matlab拟合工具箱中,常用的拟合方法包括线性拟合、多项式拟合、非线性拟合、曲线拟合等。
下面将介绍其中几种常用的拟合方法。
线性拟合是一种通过线性函数来拟合数据的方法,其数学表达式为y = a * x + b。
线性拟合方法适用于数据呈现线性关系的情况,通过最小二乘法可以求得最佳拟合直线的参数。
多项式拟合是一种通过多项式函数来拟合数据的方法,其数学表达式为y = a0 + a1 * x + a2 * x^2 + ... + an * x^n。
多项式拟合方法适用于数据呈现非线性关系的情况,通过最小二乘法可以求得最佳拟合曲线的系数。
非线性拟合是一种通过非线性函数来拟合数据的方法,其数学表达式为y = f(x, a1, a2, ..., an),其中f为非线性函数,a1, a2, ..., an为待拟合参数。
非线性拟合方法适用于数据呈现复杂非线性关系的情况,通过最小二乘法或其他优化算法可以求得最佳拟合曲线的参数。
曲线拟合是一种通过拟合曲线来拟合数据的方法,其数学表达式可以是任意复杂的函数形式。
曲线拟合方法适用于数据呈现特殊形状或复杂关系的情况,通过最小二乘法或其他优化算法可以求得最佳拟合曲线的参数。
除了上述介绍的几种常用的拟合方法,Matlab拟合工具箱还提供了其他一些拟合方法,如指数拟合、对数拟合、幂函数拟合等。
这些拟合方法可以根据实际需求选择合适的函数形式进行拟合。
在使用Matlab拟合工具箱进行拟合时,首先需要准备好待拟合的数据。
数据可以通过实验测量、观测记录或其他方式获得。
然后,在Matlab中调用拟合工具箱的相应函数,选择合适的拟合方法,传入待拟合的数据,即可得到最佳拟合曲线的参数。
MATLAB技术神经网络拟合
MATLAB技术神经网络拟合导言:神经网络是一种重要的机器学习技术,具有强大的模式识别和函数拟合能力。
MATLAB作为一种专业的科学计算软件,提供了丰富的工具箱和功能,用于设计和实现神经网络模型。
本文将介绍MATLAB技术在神经网络拟合方面的应用,以及相关的算法原理和实践案例。
一、神经网络概述神经网络是受到人类神经系统启发的一种计算模型,可以通过构建具有多个神经元层的网络结构来实现模式识别和函数拟合。
每个神经元通过权重和激活函数来计算输入信号的输出,多个神经元按照特定的连接方式形成网络。
神经网络的训练过程可以通过调整权重和激活函数的参数来优化模型的性能。
二、MATLAB神经网络工具箱MATLAB提供了神经网络工具箱,用于方便地设计和实现神经网络模型。
工具箱包含了各种神经网络算法和函数,支持多种拓扑结构和学习算法,提供了丰富的可视化和调试工具。
通过使用神经网络工具箱,用户可以快速构建自己的神经网络模型,并进行训练和测试。
三、神经网络拟合问题神经网络拟合是指通过神经网络模型来逼近某个未知函数的过程。
这种拟合方法可以应用于多个领域,如数据挖掘、金融预测、图像处理等。
在MATLAB中,可以通过使用神经网络工具箱中的函数和工具来解决各种拟合问题。
1. 函数拟合问题函数拟合是神经网络最常见的应用之一。
给定一组输入输出的样本数据,神经网络可以通过训练来拟合出输入和输出之间的关系。
MATLAB提供了fitnet函数,可以用于构建并训练一个前馈神经网络,并实现函数拟合。
例如,我们可以使用MATLAB生成一组正弦函数的样本数据,然后通过神经网络进行拟合。
首先,我们创建一个包含若干样本点的数据集,并将其划分为训练集和测试集。
然后,使用fitnet函数选择合适的网络结构和训练参数,并利用训练集对神经网络进行训练。
最后,使用测试集评估神经网络的拟合效果。
2. 数据挖掘问题数据挖掘是指从大量数据中提取有用信息的过程。
神经网络可以应用于数据挖掘问题,例如模式识别、分类、聚类等。
matlab拟合工具箱拟合方法
matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个功能强大的工具,可以用于拟合和分析数据。
它提供了多种拟合方法,能够满足不同类型数据的拟合需求。
拟合是数据分析中常用的一种技术,它可以根据已知数据点,通过数学模型来预测未知数据点的值。
拟合方法的选择对拟合结果的准确性和稳定性有重要影响。
Matlab拟合工具箱提供了多种拟合方法,包括线性拟合、多项式拟合、非线性拟合等。
线性拟合是最简单的拟合方法之一,它假设数据与模型之间存在线性关系。
在Matlab拟合工具箱中,可以使用polyfit函数进行线性拟合。
该函数可以根据给定的数据点,求解出最佳的一次多项式拟合曲线。
通过调整多项式的阶数,可以得到更高阶的多项式拟合曲线。
多项式拟合是一种常用的拟合方法,它通过多项式函数来拟合数据。
在Matlab拟合工具箱中,可以使用polyfit函数进行多项式拟合。
该函数可以根据给定的数据点和多项式的阶数,求解出最佳的多项式拟合曲线。
多项式拟合可以适用于各种类型的数据,但是需要注意选择合适的多项式阶数,避免过拟合或者欠拟合的问题。
非线性拟合是一种更加通用的拟合方法,它可以拟合出更加复杂的数据模型。
在Matlab拟合工具箱中,可以使用fit函数进行非线性拟合。
该函数可以根据给定的数据点和初始参数值,求解出最佳的非线性拟合曲线。
非线性拟合可以通过选择不同的函数模型和调整参数值来适应不同类型的数据。
除了上述的拟合方法,Matlab拟合工具箱还提供了其他一些拟合方法,如曲线拟合、样条拟合等。
这些拟合方法可以根据不同的数据特点和拟合需求,选择合适的方法进行拟合。
在使用Matlab拟合工具箱进行数据拟合时,需要注意以下几点:1. 数据准备:首先需要将原始数据整理成适合拟合的格式,即独立变量和因变量的向量形式。
2. 拟合方法选择:根据数据类型和拟合需求,选择合适的拟合方法。
3. 参数调整:对于非线性拟合,需要给定初始参数值,并根据拟合效果进行参数调整,以获得最佳拟合结果。
利用神经网络进行曲线拟合,MATLAB实现
利用神经网络进行曲线拟合,MATLAB实现闲来无事,利用神经网络进行曲线拟合目的:拟合正弦曲线;数据源:正弦曲线+扰动,来自y=sin(x)+n;测试数据:来自y=sin(x);神经网络:BP神经网络,nntool工具箱;网络:1×10×1;即单隐含层,且隐含层有10个节点;MATLAB代码:%%%本例使用神经网络模拟曲线拟合%%clcclear%%x=linspace(-2*pi,2*pi,100);%生成输入数据y=sin(x);%求出输入数据对应的目标值n=0.1*rand(1,length(x));%对目标值加入干扰y=y+n;%求出实际目标值%%[xx,ps]=mapminmax(x);%对x进行归一化Data_input=xx;%网络训练输入Data_target=y;%网络训练输入对应的目标值Data_test=linspace(-5,5,20);%网络测试数据Data_t=mapminmax('apply',Data_test,ps);%网络测试数据归一化Data_true=sin(Data_test);%网络测试数据对应的目标值%%%打开nntool,利用输入输出数据训练网络,网络命名为network%%Data_y=sim(network,Data_t);%利用训练好的网络求出测试数据对应的实际输出值%%figure(1)e=Data_true-Data_y;plot(e)%绘制误差曲线xlabel('X轴');ylabel('Y轴');legend('误差')%%figure(2)plot(Data_test,network1_outputs,'*',x,y)xlabel('X轴');ylabel('Y轴');legend('预测值','实际值','location','NorthEast')下面具体说明nntool工具箱的使用:命令行输入nntool:打开工具箱界面:单击Import,导入训练数据,并选择对应的训练类型,如图所示:新建网络,命名为network,采用BP神经网络,即误差反向算法,选择Input data和Target data,其他选项默认,点击Create创建BP神经网络,如下图所示:点击View,可以预览网络结构,如下图所示:返回主界面,选中新建的network,然后点击Open打开,选择Train,再次选择Inputs 和Targets,开始训练网络,点击Tarin netwrk训练过程和结果如下图所示:为了便于在M文件中使用新建的network,可以将其导出到工作空间,点击Export:工作空间中出现network,如下图所示:接下来可以使用sim函数求网络对测试数据的输出,并绘制误差曲线:结果:可以看出,拟合效果很好更多资料请访问:徐文力_新浪博客/mybigdata利用神经网络进行曲线拟合,MATLAB实现/s/blog_824188eb0102wep6.html。
Matlab的神经网络工具箱入门
Matlab的神经网络工具箱入门在command window中键入help nnet>> help nnetNeural Network ToolboxVersion 7.0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能。
nnstart - 神经网络启动GUInctool - 神经网络分类工具nftool - 神经网络的拟合工具nntraintool - 神经网络的训练工具nprtool - 神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。
查看- 查看一个神经网络。
网络的建立功能。
cascadeforwardnet - 串级,前馈神经网络。
competlayer - 竞争神经层。
distdelaynet - 分布时滞的神经网络。
elmannet - Elman神经网络。
feedforwardnet - 前馈神经网络。
fitnet - 函数拟合神经网络。
layrecnet - 分层递归神经网络。
linearlayer - 线性神经层。
lvqnet - 学习矢量量化(LVQ)神经网络。
narnet - 非线性自结合的时间序列网络。
narxnet - 非线性自结合的时间序列与外部输入网络。
newgrnn - 设计一个广义回归神经网络。
newhop - 建立经常性的Hopfield网络。
newlind - 设计一个线性层。
newpnn - 设计概率神经网络。
newrb - 径向基网络设计。
newrbe - 设计一个确切的径向基网络。
patternnet - 神经网络模式识别。
感知- 感知。
selforgmap - 自组织特征映射。
timedelaynet - 时滞神经网络。
利用网络。
网络- 创建一个自定义神经网络。
SIM卡- 模拟一个神经网络。
初始化- 初始化一个神经网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wS1
w1R
w2
R
wSR
b1
b
b2
bS
a f (Wp + b)
多层神经网络模型
前馈神经网络
前馈神经网络(feed forward NN):各神经元 接受前级输入,并输出到下一级,无反馈, 可用一有向无环图表示。
前馈网络通常分为不同的层(layer),第i层的 输入只与第i-1层的输出联结。
常用传递函数
阈值函数
1 a f (n) hardlim(n) 0
(n 0) (n 0)
MATLAB函数: hardlim
a 1 -1 -b Wp
a
f
(n)
hard lim s(n)
1 1
(n 0)
(n 0) MATLAB函数:
hardlims
线性函数
感知器的权值和阈值初始化
newp默认权值和阈值为零(零初始化函数initzero).
net = newp([-2,+2;-2,+2],2);
W= b=
W=net.IW{1,1} %显示网络的权值 0 0 0
b=net.b{1} %显示网络的阈值 0 0 0
改变默认初始化函数为随机函数rands
net: 函数返回参数,表示生成的感知器网络
pr: 一个R×2矩阵, 由R维输入向量的每维最小值和最 大值组成
s: tf: lf:
神经元的个数 感知器的传递函数, 默认为hardlim, 可选hardlims 感知器的学习函数,默认为learnp, 可选learnpn
net = newp([-2,+2;-2,+2],2) %生成一个二维输入,两个神经元的感知器
权值增量: W (t a) pT epT
阈值增量: b t a e
权值更新: 阈值更新:
W new W old W bnew bold b
Байду номын сангаас
算法改进
(t a) pT epT
W
p
p
输入样本归一化
权值和阈值训练与学习函数
设计好的感知器并不能马上投入使用. 通过样本训练, 确定感知器的权值和阈值.
net.inputweights{1,1}.initFcn = ‘rands’;
net.biases{1}.initFcn = ‘rands’;
net =init(net);
%重新初始化
直接初始化定义权值和阈值 net.IW{1,1}=[1 2;3 4];
net.b{1}=1
感知器学习
感知器学习算法
train
net=train(net, P, T)
被训练网络 输入向量 目标向量
net.trainParam.epochs=10 ; %预定的最大训 练次数为10, 感知器经过最多训练10次后停止,
adapt
net=adapt(net, P, T) 自适应训练函数
权值和阈值学习函数
learnp
dW=learnp(W,P,Z,N,A,T,E,D,gW,gA,LP,LS)
%已知样本输入向量 %已知样本目标向量 %创建感知器 %返回划分类线的句柄 % 设置训练最大次数 %训练网络 %已知待分类向量 %二元分类仿真结果 %新建图形窗口 %画输入向量 %画分类线
实验一 利用感知器进行分类(1)
一个经过训练的感知器对5个输入向量进行分类(2类)。 Step 1 画输入向量的图像
两个长度为5的向量构成输入样本矩阵P,行向量T为目标向量。利用PLOTPV画 出这个向量的图像。例如: P = [-0.5 -0.5 +0.3 -0.1 -4; -0.5 +0.5 -0.5 +1.0 5]; T = [1 1 0 0 1]; plotpv(P,T); % plotpv函数利用感知器的输入向量和目标向量来画输入向量的图像
dW:权值或阈值的增量矩阵 W:权值矩阵或阈值向量 P:输入向量 T:目标向量 E:误差向量 其他可以忽略,设为[ ]
learnpn 归一化学习函数
网络仿真函数
sim
a = sim(net, P)
网络输出
输入向量
分类结果显示绘图函数
plotpv
plotpv(P,T)
画输入向量的图像
plotpc
plotpc(W,b)
对数Sigmoid函数
a
f
(n)
1
1 en
正切Sigmoid函数
a
tanh(n)
en en
en en
MATLAB函数: logsig(对数), tansig(正切)
单层神经网络模型
R维输入, S个神经元的单层神经网络模型
w11 w12
W
w21
w21
wS1
画分类线
例: 创建一个感知器
根据给定的样本输入向量P和目标向量T, 以及需分类 的向量组Q, 创建一个感知器, 对其进行分类.
P=[-0.5 -0.6 0.7;0.8 0 0.1]; T=[1 1 0]; net=newp([-1 1;-1 1],1); handle=plotpc(net.iw{1},net.b{1}); net.trainParam.epochs=10; net=train(net,P,T); Q=[0.6 0.9 -0.1;-0.1 -0.5 0.5]; Y=sim(net,Q); figure; plotpv(Q,Y); handle=plotpc(net.iw{1},net.b{1},handle)
可见层:输入层(input layer)和输出层(output layer)
隐藏层(hidden layer) :中间层
感知器(perceptron):
单层前馈网络 传递函数为阈值函数
主要功能是模式分类
感知器的生成
函数newp用来生成一个感知器神经网络
newp
net = newp( pr, s, tf, lf )
MATLAB神经网络工具箱 介绍及实验要求
神经元模型
Neuron Model: 多输入,单输出,带偏置
输入:R维列向量 p [ p1, pR ]T
权值:R维行向量 w [w11, w1R ] 阈值:标量 b
求和单元
R
n piw1i b
i 1
传递函数 f
输出
a f (wp b)
Purelin Transfer Function : a f (n) n
a n
MATLAB函数: purelin
Sigmoid函数
Sigmoid Function : 特性:
值域a∈(0,1) 非线性,单调性 无限次可微 |n|较小时可近似线性
函数
|n|较大时可近似阈值 函数