宁夏2013中考数学试题

合集下载

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。

2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。

3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。

2013年宁夏中考数学试卷和答案

2013年宁夏中考数学试卷和答案
数学试题参考答案及评分标准
说明:1.除本参考答案外,其它正确解法可根据评分标准相应给分。
2.涉及计算的题,允许合理省略非关键步骤。
3.以下解答中右端所注的分数,表示考生正确做到这步应得的累计分。
一、选择题(3分×8=24分)
二、填空题(3分×8=24分)
9. 2(a-12;10. 0<a<3;11. 3;12.2;13. -6;14. ①②③;15.α2;16. a>-1.三.解答题(共24分)17.解:2330tan 627
∴当M点在原点O时,△MBC是等腰三角形
∴M点坐标(0,0)………………………………………………………………5分
B
②BC=BM时
在Rt △BOC中, BO=CO=3,由勾股定理得OB BC +=2 ∴BC=2 ∴BM=23
∴M点坐标(0, 323-…………………………………………………………8分
25.解(1)设y=kx+b
数学试卷第页(共8页)
2
7如图是某几何体的三视图,其侧面积()
A.6
B.π4
C.π6
D.π12
8.如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.
4
π B.
2π C.2
2π D.π2
二、填空题(每小题3分,共24分)
(3)图2平均每平方米产量:(21×3+18×4+15×5+12×4 ÷9=258÷9≈28.67(千克)…9分30>28.67 ∴按图(1)的种植方式更合理……………………………………10分26.解:(1延长PE交CD的延长线于F设AP = x , △CPE的面积为y

【初中数学】宁夏吴忠市青铜峡市2013年初三联考数学试卷 人教版

【初中数学】宁夏吴忠市青铜峡市2013年初三联考数学试卷 人教版

青铜峡市2013年初三联考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1.下列各数0.1010010001,2π,4,cos30°,310中无理数有( )个 A.1个B.2个C.3个D.4个2.下列运算正确的是( )3= B.2)2(2-=-C.222-=- 3=±3.如图,一个四棱锥(底面是矩形,四条侧棱等长) ,它的俯视图是( )4. 如图,小虎在篮球场上玩, 从点O 出发, 沿着O →A →B →O 的路径匀 速跑动,能近似刻画小虎所在位置距出发点O 的距离S 与时间t 之间 的函数关系的大致图象是 ( )5.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32, 2AC =,则sin B 的值是( )A .23B .32C .34D .436.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个B .6个C .34个D .36个7.边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A.m+3 B.m+6 C.2m+3 D.2m+68.如图,在平面直角坐标系中,A⊙与y轴相切于原点O,平行于x轴的直线交A⊙于M、N两点,若点M的坐标是(42)--,,则点N的坐标为()A.(1,-2)B.(-1,-2)C.(-1.5,-2)D.(1.5,-2)二、填空题(本大题共8小题,每小题3分,满分24分)9.2008年北京奥运会全球共选拔21880名火炬手,将这个数据精确到千位,用科学记数法表示为______________.10.一罐饮料净重500克,罐上标注脂肪含量≤0.5%,则这罐饮料中脂肪含量最多_______克11.若622=-nm,且2m n-=,则=+nm33.12.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后得到正方形A1B2C3D,点B1的坐标为___________13. 为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如图.按上述分段收费标准,小明家三月份交水费26元,则三月份用水__________吨.14.如图,要制作底边BC的长为44cm,顶点A到BC的距离与BC长的比为1:4的等腰三角形木衣架,则腰AB的长_______cm(结果保留根号的形式).15.如图,将一块含45°角的直角三角尺ABC在水平桌面上绕点B按顺时针方向旋转到A1BC1的位置,若AB=8cm,那么点A旋转到A1所经过的路线长为_______cm.16.如图,点A、B是双曲线3yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,空白矩形面积分别为S1,S2,若1S=阴影,则12S S+=.三、解答题(本大题共6小题,每小题6分,满分36分) 17.计算:1021********-⎪⎭⎫⎝⎛-+--⨯+-.18.解不等式组⎪⎩⎪⎨⎧-≤->-x x x x 31211435并把解集在数轴上表示出来.19.解方程:xx 2111122-=--20.袋子中装有三个完全相同的球,分别标有:“1”“2”“3”,小颖随机从中摸出一个球不放..回.,并以该球上的数字作为十位数;小颖再摸一个球,以该球上的数字作为个位数,那么,所得数字是偶数的概率是多少?(要求画出树状图或列出表格进行解答.)21.某市根据2010年农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)2010年全市农林牧渔业的总产值为 亿元;(2)扇形统计图中林业所在扇形的圆心角为 度(精确到度);(3)根据本地实际,市政府大力发展林业产业,计划2012年林业产值达60.5亿元,求这两年林业产值的年平均增长率.22.如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA.求证:△ADE ≌△BCE四、(本大题共2小题,每小题8分,满分16分)23.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且CB=CD ,CF⊥AB 于点F ,CE ⊥AD 的延长线于点E . (1)试说明:DE =BF ;(2)若∠DAB =60°,AB =6,求CF 的长.24.如图,直线y=x+m 和抛物线y=x 2+bx+c 都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式; (2)求抛物线的对称轴和顶点坐标;(3)若此抛物线与y 轴交于点C ,点P 是x 轴上的一个动点,当点P 到C 、B 两点的距离之和最小时,求出点P 的坐标.五、(本大题共2小题,每小题10分,满分20分)25.如图所示,电工李师傅借助梯子安装天花板上距地面 2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)26.已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时t 的值;若不存在,说明理由.图①AP青铜峡市2013年初三联考数学参考答案17. 解:原式=-1+2-2-2---------------------------------4分 =-3 ------------------------------------6分 18. 解:由①得:345>-x x3>x ----------------------------1分由②得:x x 236-≤-623-≤+-x x6-≤-x --------------------------------3分-----------5分∴原不等式组的解集为:6≥x --------------- ---6分19. 解:去分母得2-2x+1=-1----------------------------3分 整理方程得:-2x=-4x=2----------------------------5分经检验x=2是原方程的解.∴原方程的解为x=2----------------------------6分 分P(两位数)=31-----------------------6分21.解:(1) 221 (2) 81 (每空1分)(3)设今明两年林业产值的年平均增长率为x .--------------------3分根据题意,得250(1)60.5x += ----------------------------4分解得:10.1x ==10% ,2 2.1x =-(不合题意,舍去) ---------------5分答:今明两年林业产值的年平均增长率为10%.------------------6分22.解:(1)∵四边形ABCD 是正方形,∴∠ADC=∠BCD=90°,AD=BC .----------------------------2分∵△CDE 是等边三角形,∴∠CDE=∠DCE=60°,DE=CE .---------------------------4分∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,∴∠ADE=∠BCE=30°.---------------------------5分在△ADE 和△BCE .∵AD=BC ,∠ADE=∠BCE ,DE=CE ,∴△ADE ≌△BCE .---------------------------6分23.(1)∵ 弧CB=弧CD∴ CB=CD ,∠CAE=∠CAB---------------------------2分 又∵ CF ⊥AB ,CE ⊥AD∴ CE=CF ---------------------------3分∴ △CED ≌△CFB---------------------------4分 ∴ DE=BF---------------------------5分(2)易得:△CAE ≌△CAF---------------------------6分易求:323=CF ---------------------------8分24.解:(1)把点A (1,0)代入直线y=x+m 得: 0=1+m ,解得m=-1 ………………………………………1分 把点A (1,0)B (3,2)代入抛物线y=x 2+bx+c⎩⎨⎧=++=++2901c b c b 解得⎩⎨⎧=-=23c b 所以y=x-1,y=x 2-3x+2;………………………………………3分(2)由(1)知,该抛物线的解析式为:y=x 2-3x+2,∴y=(x-23)2-41,∴抛物线的对称轴是:x=23;顶点坐标是(23,-41);………………………………………5分(3)作C (0,2)关于x 轴的对称点C 1(0,-2)。

宁夏青铜峡市2013届九年级联考数学试题及答案

宁夏青铜峡市2013届九年级联考数学试题及答案

青铜峡市2‎013年初 三联考数 ‎试卷一、选择题(下列每小题‎所给的四 ‎答案中只 ‎一 是正 ‎的,每小题3 ‎,共24 ) 1.下列各数0‎.10100‎10001‎,2π,4,cos30‎°,310中无理数 ‎( ) A.1B.2C.3D.42.下列运算正‎ 的是( )A.3273-= B.2)2(2-=-C.222-=-D.93=±3.如图,一 四棱 ‎(底面是矩 ‎,四条侧棱 ‎长) ,它的俯视图‎是( )4. 如图,小虎在篮 ‎场上玩, 从点O 出 ‎, 沿着O →A →B →O 的路径 ‎ 速跑动,能近似刻 ‎小虎所在 ‎置距出 点‎O 的距离S ‎与时间t ‎间的函数关 ‎的大致图 ‎是 ( )5.如图,O ⊙是的外接 ‎ABC △,AD 是O ⊙的直径,若的半径 ‎O⊙32, 2AC =,则sin B 的值是( )A .23B .32C .34D .436.在一 不 ‎明的布袋中‎装 红色、白色玻璃 ‎共40 ,除颜色外 ‎他完全相 ‎.小明通过 ‎ 次摸 试 ‎后 现, 中摸到红‎色 的频 ‎稳定在15‎%左右,则口袋中红‎色 可能 ‎( ) A .4B .6C .34D .367.边长 (m+3)的正方 ‎片剪出一 ‎边长 m 的‎正方 后‎,剩余部 可‎剪拼成一 ‎矩 (不重叠无 ‎隙),若拼成的矩‎ 一边长 ‎3,则另一边长‎是( )A.m+3 B.m+6 C.2m+3 D.2m+68.如图,在平面直 ‎坐标 中,A⊙与轴相切 ‎y原点O,平行 x轴的直线交 ‎A⊙M、N两点,若点的坐标‎M是(42)--,,则点N的坐标 ()A.(1,-2)B.(-1,-2)C.(-1.5,-2)D.(1.5,-2)二、填空题(本大题共8‎小题,每小题3‎,满24‎)9.2008年‎北京奥运 ‎全 共选 ‎21880‎名火炬手,将这 数 ‎精到千 ‎,用科 记数‎法表示 _‎_____‎_____‎___.10.一罐饮料 ‎重500‎,罐上标注 ‎肪含量≤0.5%,则这罐饮料‎中肪含量‎最___‎____‎11.若622=-nm,且2m n-=,则=+nm33.12.正方 AB‎C D在坐标‎中的 置‎如图所示,将正方 A‎B CD绕D‎点顺时针旋转9‎0°后得到正方‎A1B2‎C3D,点B1的坐‎标___‎_____‎___13. 了增强 ‎民节水意 ‎,某市自来水‎公司对 民‎用水采用 ‎户单 段 ‎费的方法 ‎费,每月 取水‎费y(元)与用水量x‎(吨)间的函数‎关如图.按上述 段‎费标准,小明家三月‎份交水费26元,则三月份用‎水____‎_____‎_吨.14.如图,要制作底边‎B C的长 ‎44cm,顶点A到B‎C的距离与‎B C长的比 1‎:4的 腰三‎ 木衣 ‎,则腰AB的‎长____‎___cm(结果保留 ‎号的 式).15.如图,将一块含4‎5° 的直 三‎尺ABC‎在水平桌面‎上绕点B按‎顺时针方 ‎旋转到A1‎B C1的 ‎置,若AB=8cm,那么点A旋‎转到A1所‎经过的路线‎长___‎____c‎m.16.如图,点A、B是双曲线上‎3yx=的点, 别经过A、B两点 x轴、y轴作垂线段‎,空白矩 面‎积别 S‎1,S2,若1S=阴影,AB C则12S S += .三、解答题(本大题共6‎小题,每小题6 ‎,满 36 ‎) 17. 算:12123622012-⎪⎭⎫⎝⎛-+--⨯+-.18.解不 式组 ⎪⎩⎪⎨⎧-≤->-x x x x 31211435并把解集在数轴上表示 出来.19.解方程:xx 2111122-=--20.袋子中装 ‎三 完全相‎ 的 , 别标 :“1”“2”“3”,小颖随机从‎中摸出一 ‎ 不放回...,并 该 上‎的数字作 ‎十 数;小颖再摸一‎ , 该 上的‎数字作 ‎ 数,那么,所得数字是‎偶数的概 ‎是 少?(要求 出 ‎状图或列出‎表格进行解‎答.)21.某市 2‎010年 ‎林牧渔业 ‎值的情况,绘制了如下‎两幅统 图‎,请你结合图‎中所给信 ‎解答下列 ‎题:(1)2010年‎全市 林牧‎渔业的总 ‎值 亿元;(2)扇 统 图‎中林业所在‎扇 的 ‎ 度(精 到度);(3) 本地 ‎际,市政府大 ‎ 展林业 ‎业, 划201‎2年林业 ‎值达60.5亿元,求这两年林‎业 值的年‎平均增长 ‎.22.如图,点E 是正方‎ A BCD ‎内一点,△CDE 是 ‎边三 ,连接EB 、EA.求证:△ADE ≌△BCE四、(本大题共2‎小题,每小题8 ‎,满 16 ‎)23.已知:如图,AB 是⊙O 的直径,点C 、D 上两‎点,且CB=CD ,CF⊥AB 点F ‎,CE ⊥AD 的延长‎线 点E . (1)试说明:DE =BF ;(2)若∠DAB =60°,AB =6,求CF 的长‎.24.如图,直线y=x+m 和抛物线‎y =x 2+bx+c 都经过点‎A (1,0),B (3,2). (1)求m 的值和‎抛物线的解‎析式; (2)求抛物线的‎对称轴和顶‎点坐标;(3)若此抛物线‎与y 轴交 ‎点C ,点P 是x 轴‎上的一 动‎点,当点P 到C ‎、B 两点的距‎离 和最小‎时,求出点P 的‎坐标.五、(本大题共2‎小题,每小题10‎ ,满 20 ‎)25.如图所示,电工李师 ‎借助梯子 ‎装天花板上‎距地面2 .90m 的顶‎灯.已知梯子 ‎两 相 的‎矩 面组成‎,每 矩 面‎的长都被 ‎条踏板七 ‎ ,使用时梯 ‎的固定跨度‎ 1m .矩 面与地‎面所成的 ‎α 78°.李师 的 ‎高 l.78m ,当他攀升到‎头顶距天花‎板0.05~0.20m 时, 装起来比‎较方便.他现在竖直‎站立在梯子‎的第三级踏‎板上,请你通过 ‎算判断他 ‎装是否比较‎方便?(参考数 :sin78‎°≈0.98,cos78‎°≈0.21,tan78‎°≈4.70.)26.已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点 出 沿‎P B BA 方 点 ‎A 速运动,速度 1c ‎m /s ;点 出 沿‎Q A AC 方 点 ‎C 速运动,速度 2c ‎m /s ;连接PQ .若设运动的‎时间 (s)t (02t <<),解答下列 ‎题: (1)当 何值时‎t ,PQ BC ∥?(2)设的面积 ‎AQP △y (2cm ),求与 间的‎y t 函数关 式‎;(3)如图②,连接PC ,并把沿翻 ‎PQC △QC ,得到四边 ‎PQP C ',那么是否 ‎在某一PBC PB时刻‎t,使四边 ‎PQP C 菱 ?若 在,求出此时的‎t值;若不 在,说明理 .青铜峡市2‎013年初‎三联考数 ‎参考答案题号1 2 3 4 5 6 7 8 答案 BC C B A B C B17. 解:原式=-1+2-2-2---------------------------------4 =-3 ------------------------------------6 18. 解: ①得:345>-x x3>x ----------------------------1②得:x x 236-≤-623-≤+-x x6-≤-x --------------------------------3-----------5∴原不 式组‎的解集 :6≥x --------------- ---6 19. 解:去 母得2‎-2x+1=-1----------------------------3 整理方程得‎:-2x=-4x=2----------------------------5经检 x=2是原方程‎的解.∴原方程的解‎ x=2----------------------------6 20. 1 2 3 1 11 12 13 2 21 22 23 3 31 32 33 列出表格或‎ 出 状图‎得----------------- -----4P(两 数)=31-----------------------621.解:(1) 221 (2) 81 (每空1 )(3)设今明两年‎林业 值的‎年平均增长‎ x .--------------------3 题意,得题号 91011 12131415 16 答案 2.2×104 25 9(4,0) 125116π4250(1)60.5x += ----------------------------4解得:10.1x ==10% ,2 2.1x =-(不合题意,舍去) ---------------5答:今明两年林 业 值的年 平均增长 10%.------------------622.解:(1)∵四边 AB ‎CD 是正方‎ ,∴∠ADC=∠BCD=90°,AD=BC .----------------------------2∵△CDE 是 ‎边三 ,∴∠CDE=∠DCE=60°,DE=CE .---------------------------4∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,∴∠ADE=∠BCE=30°.---------------------------5在△ADE 和△BCE .∵AD=BC ,∠ADE=∠BCE ,DE=CE ,∴△ADE ≌△BCE .---------------------------623.(1)∵ 弧CB=弧CD∴ CB=CD ,∠CAE=∠CAB---------------------------2 又∵ CF ⊥AB ,CE ⊥AD∴ CE=CF ---------------------------3∴ △CED ≌△CFB---------------------------4 ∴ DE=BF---------------------------5(2)易得:△CAE ≌△CAF---------------------------6易求:323=CF ---------------------------824.解:(1)把点A (1,0)代入直线y ‎=x+m 得: 0=1+m ,解得m=-1 ………………………………………1 把点A (1,0)B (3,2)代入抛物线‎y =x 2+bx+c⎩⎨⎧=++=++2901c b c b 解得⎩⎨⎧=-=23c b 所 y=x-1,y=x 2-3x+2; (3)(2) (1)知,该抛物线的‎解析式 :y=x 2-3x+2,∴y=(x-23)2-41,∴抛物线的对‎称轴是:x=23;顶点坐标是‎(23,-41); (5)(3)作C (0,2)关 x 轴的‎对称点C1‎(0,-2)。

宁夏中考《数学》试题及答案完整篇.doc

宁夏中考《数学》试题及答案完整篇.doc

2013宁夏中考《数学》试题及答案-中考文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第2页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第3页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第4页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第5页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第6页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第7页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第8页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第9页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第10页-
中考
文章责编:zhongzexing
2013宁夏中考《数学》试题及答案第11页-
中考
文章责编:zhongzexing。

2013年宁夏回族自治区中考数学试卷及答案(word解析版)

2013年宁夏回族自治区中考数学试卷及答案(word解析版)

宁夏回族自治区2013年中考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1(3分)(2013•宁夏)计算(a2)3的结果是()A a5B a6C a8D3a2考点:幂的乘方与积的乘方分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案解答:解:(a2)3=a6故选B点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键2(3分)(2013•宁夏)一元二次方程x(x﹣2)=2﹣x的根是()A﹣1 B 2 C1和2 D﹣1和2考点:解一元二次方程-因式分解法专题:计算题分析:先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可解答:解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x 1=2,x2=﹣1故选D点评:本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程3(3分)(2013•宁夏)如图是某水库大坝横断面示意图其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A 25m B25m C25m Dm考点:解直角三角形的应用-坡度坡角问题分析:首先过点C作CE⊥AB于点E,易得∠CBE=60°,在Rt△CBE中,BC=50m,利用正弦函数,即可求得答案解答:解:过点C作CE⊥AB于点E,∵∠ABC=120°,∴∠CBE=60°,在Rt△CBE中,BC=50m,∴CE=BC•sin60°=25(m)故选A点评:此题考查了坡度坡角问题注意能构造直角三角形,并利用解直角三角形的知识求解是解此题的关键4(3分)(2013•宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处若∠A=22°,则∠BDC等于()A44°B60°C67°D77°考点:翻折变换(折叠问题)分析:由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案解答:解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°故选C点评:此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用5(3分)(2013•宁夏)雅安地震后,灾区急需帐篷某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A BC D考点:由实际问题抽象出二元一次方程组分析:等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案解答:解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000列方程组为:故选:D点评:此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程6(3分)(2013•宁夏)函数(a≠0)与y=a (x ﹣1)(a≠0)在同一坐标系中的大致图象是()A B C D考点:反比例函数的图象;一次函数的图象分析:首先把一次函数化为y=ax﹣a,再分情况进行讨论,a>0时;a<0时,分别讨论出两函数所在象限,即可选出答案解答:解:y=a(x﹣1)=ax ﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第二、三、四象限,故选:C点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小7(3分)(2013•宁夏)如图是某几何体的三视图,其侧面积()A 6 B4πC6πD12π考点:由三视图判断几何体分析:先判断出该几何体为圆柱,然后计算其侧面积即可解答:解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2π×3=6π故选C点评:本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体8(3分)(2013•宁夏)如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A B C D考点:扇形面积的计算;相切两圆的性质分析:根据题意可判断⊙A与⊙B是等圆,再由直角三角形的两锐角互余,即可得到∠A+∠B=90°,根据扇形的面积公式即可求解解答:解:∵⊙A与⊙B恰好外切,∴⊙A与⊙B是等圆,∵AC=2,△ABC是等腰直角三角形,∴AB=2,∴两个扇形(即阴影部分)的面积之和=+==πR2=故选B点评:本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般二、填空题(每小题3分,共24分)9(3分)(2013•宁夏)分解因式:2a2﹣4a+2=2(a﹣1)2考点:提公因式法与公式法的综合运用专题:计算题分析:先提公因式2,再利用完全平方公式分解因式即可解答:解:2a2﹣4a+2,=2(a2﹣2a+1),=2(a﹣1)2点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止10(3分)(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3考点:点的坐标;解一元一次不等式组分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可解答:解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3故答案为:0<a<3点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)11(3分)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种考点:概率公式;轴对称图形分析:根据轴对称的概念作答如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处故答案为:3点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合12(3分)(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm考点:垂径定理;勾股定理分析:通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长解答:解:过点O作OD⊥AB交AB于点D,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm点评:本题综合考查垂径定理和勾股定理的运用13(3分)(2013•宁夏)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6考点:反比例函数图象上点的坐标特征;菱形的性质专题:探究型分析:先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k 的值解答:解:∵菱形的两条对角线的长分别是6和4,∴A(﹣3,2),∵点A在反比例函数y=的图象上,∴2=,解得k=﹣6故答案为:﹣6点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式14(3分)(2013•宁夏)△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1:4;④△ADE的周长与△ABC的周长之比为1:4;其中正确的有①②③(只填序号)考点:相似三角形的判定与性质;三角形中位线定理分析:根据题意做出图形,点D、E分别是AB、AC的中点,可得DE∥BC,DE=BC=2,则可证得△ADE∽△ABC,由相似三角形面积比等于相似比的平方,证得△ADE的面积与△ABC的面积之比为1:4,然后由三角形的周长比等于相似比,证得△ADE 的周长与△ABC的周长之比为1:2,选出正确的结论即可解答:解:∵在△ABC中,D、E分别是AB、AC的中点,∴DE∥BC,DE=BC=2,∴△ADE∽△ABC,故①②正确;∵△ADE∽△ABC,=,∴△ADE的面积与△ABC的面积之比为1:4,△ADE的周长与△ABC的周长之比为1:2,故③正确,④错误故答案为:①②③点评:此题考查了相似三角形的判定与性质以及三角形中位线的性质,难度不大,注意掌握数形结合思想的应用,要求同学们掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方15(3分)(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a考点:旋转的性质分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案解答:解:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=2α即旋转角的大小为2α故答案为:2α点评:此题考查了旋转的性质、等腰三角形的性质以及三角形内角和定理此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用16(3分)(2013•宁夏)若不等式组有解,则a的取值范围是a>﹣1考点:不等式的解集分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围解答:解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1故答案为:a>﹣1点评:考查了不等式组的解集,求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围三、解答题(共24分)17(6分)(2013•宁夏)计算:考点:实数的运算;负整数指数幂;特殊角的三角函数值专题:计算题分析:分别进行负整数指数幂、二次根式的化简及绝对值的运算,代入特殊角的三角函数值合并即可解答:解:原式===点评:本题考查了实数的运算,涉及了绝对值、负整数指数幂及特殊角的三角函数值,属于基础题18(6分)(2013•宁夏)解方程:考点:解分式方程分析:观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解解答:解:方程两边同乘以(x﹣2)(x+3),得6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),6x+18=x2﹣2x﹣x2﹣x+6,化简得,9x=﹣12x=,解得x=经检验,x=是原方程的解点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定要验根19(6分)(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A 1B1C1三条边放大为原来的2倍后的△A2B2C2考点:作图-位似变换;作图-旋转变换分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A 2B2C2解答:解:如图:(1)△A1B1C1即为所求;(2)△A 2B2C2即为所求点评:此题考查了位似变换的性质与旋转的性质此题难度不大,注意掌握数形结合思想的应用20(6分)(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 38(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取考点:方差;加权平均数;中位数;极差;统计量的选择分析:(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班解答:解:(1)一班的方差=[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=32;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:班级平均数方差中位数极差一班168 32 168 6二班168 38 168 6(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取点评:本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好四、解答题(共48分)21(6分)(2013•宁夏)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率考点:频数(率)分布直方图;列表法与树状图法分析:(1)根据班级总人数有50名学生以及利用条形图得出m的值即可;(2)根据在6~10小时的5名学生中随机选取2人,利用树形图求出概率即可解答:解:(1)m=50﹣6﹣25﹣3﹣2=14;(2)记6~8小时的3名学生为,8~10小时的两名学生为,P(至少1人时间在8~10小时)=点评:此题主要考查了频数分布表以及树状图法求概率,正确画出树状图是解题关键22(6分)(2013•宁夏)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC考点:矩形的性质;全等三角形的判定与性质专题:证明题分析:根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE然后利用全等三角形的性质解决问题解答:证明:连接DE(1分)∵AD=AE,∴∠AED=∠ADE(1分)∵有矩形ABCD,∴AD∥BC,∠C=90°(1分)∴∠ADE=∠DEC,(1分)∴∠DEC=∠AED又∵DF⊥AE,∴∠DFE=∠C=90°∵DE=DE,(1分)∴△DFE≌△DCE∴DF=DC(1分)点评:此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题23(8分)(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F且BD=BF(1)求证:AC与⊙O相切(2)若BC=6,AB=12,求⊙O的面积考点:切线的判定;相似三角形的判定与性质分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)证△AEO∽△ACB,得出关于r的方程,求出r即可解答:证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π点评:本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想24(8分)(2013•宁夏)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标考点:二次函数综合题专题:综合题分析:(1)根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点理由待定系数法求解即可;(2)首先求得点B的坐标,然后分CM=BM时和BC=BM时两种情况根据等腰三角形的性质求得点M的坐标即可解答:解:(1)设抛物线的解析式把A(2,0)C(0,3)代入得:解得:∴即(2)由y=0得∴x1=1,x2=﹣3∴B(﹣3,0)①CM=BM时∵BO=CO=3 即△BOC是等腰直角三角形∴当M点在原点O时,△MBC是等腰三角形∴M点坐标(0,0)②BC=BM时在Rt△BOC中,BO=CO=3,由勾股定理得∴BC=∴BM=∴M点坐标(点评:本题考查了二次函数的综合知识,第一问考查了待定系数法确定二次函数的解析式,较为简单第二问结合二次函数的图象考查了等腰三角形的性质,综合性较强25(10分)(2013•宁夏)如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点)上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克)受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株)的影响情况统计如下表:x(株) 1 2 3 4y(千克)21 18 15 12(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;(2)根据种植示意图填写下表,并求出这块地平均每平方米的产量为多少千克?y(千克)21 18 15 12频数(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?考点:一次函数的应用分析:(1)设y=kx+b,然后根据表格数据,取两组数x=1,y=21和x=2,y=18,利用待定系数法求一次函数解析式解答;(2)根据图1查出与它周围距离为1米的农作物分别是1株、2株、3株、4株棵树即为相应的频数,然后利用加权平均数的计算方法列式进行计算即可得解;(3)先求出图2的面积,根据图形查出与它周围距离为1米的农作物分别是1株、2株、3株、4株棵树即为相应的频数,然后利用加权平均数的计算方法列式进行计算求出平均每平方米的产量,然后与(2)的计算进行比较即可得解解答:解(1)设y=kx+b,把x=1,y=21和x=2,y=18代入y=kx+b得,,解得,则y=﹣3x+24,当x=3时y=﹣3×3+24=15,当x=4时y=﹣3×4+24=12,故y=﹣3x+24是符合条件的函数关系;(2)由图可知,y(千克)21、18、15、12的频数分别为2、4、6、3,图1地块的面积:×4×4=8(m2),所以,平均每平方米的产量:(21×2+18×4+15×6+12×3)÷8=30(千克);(3)图2地块的面积:×6×3=9,y(千克)21、18、15、12的频数分别为3、4、5、4,所以,平均每平方米产量:(21×3+18×4+15×5+12×4)÷9=258÷9≈2867(千克),∵30>2867,∴按图(1)的种植方式更合理点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,(2)(3)两个小题,理解“频数”的含义并根据图形求出相应的频数是解题的关键26(10分)(2013•宁夏)在▱ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值(2)试探究当△CPE≌△CPB时,▱ABCD的两边AB与BC应满足什么关系?考点:四边形综合题专题:计算题分析:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,由四边形ABCD 为平行四边形,利用平行四边形的对边相等得到AB=DC,AD=BC,在直角三角形APE中,根据∠A的度数求出∠PEA的度数为30度,利用直角三角形中30度所对的直角边等于斜边的一半表示出AE与PE,由AD﹣AE表示出DE,再利用对顶角相等得到∠DEF为30度,利用30度所对的直角边等于斜边的一半表示出DF,由两直线平行内错角相等得到∠F为直角,表示出三角形CPE的面积,得出y与x的函数解析式,利用二次函数的性质即可得到三角形CPE面积的最大值,以及此时AP的长;(2)由△CPE≌△CPB,利用全等三角形的对应边相等,对应角相等得到BC=CE,∠B=∠PEC=120°,进而得出∠ECD=∠CED,利用等角对等边得到ED=CD,即三角形ECD为等腰三角形,过D作DM垂直于CE,∠ECD=30°,利用锐角三角形函数定义表示出cos30°,得出CM与CD的关系,进而得出CE与CD的关系,即可确定出AB与BC满足的关系解答:解:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=8,∵Rt△APE,∠A=60°,∴∠PEA=30°,∴AE=2x,PE=x,在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD﹣AE=8﹣2x,∴DF=DE=4﹣x,∵AB∥CD,PF⊥AB,∴PF⊥CD,∴S△CPE=PE•CF,即y=×x×(10﹣x)=﹣x2+5x,配方得:y=﹣(x﹣5)2+,当x=5时,y有最大值,即AP的长为5时,△CPE的面积最大,最大面积是;(2)当△CPE≌△CPB时,有BC=CE,∠B=∠PEC=120°,∴∠CED=180°﹣∠AEP﹣∠PEC=30°,∵∠ADC=120°,∴∠ECD=∠CED=180°﹣120°﹣30°=30°,∴DE=CD,即△EDC是等腰三角形,过D作DM⊥CE于M,则CM=CE,在Rt△CMD中,∠ECD=30°,∴cos30°==,∴CM=CD,∴CE=CD,∵BC=CE,AB=CD,∴BC=AB,则当△CPE≌△CPB时,BC与AB满足的关系为BC=AB点评:此题考查了四边形的综合题,涉及的知识有:平行四边形的性质,含30度直角三角形的性质,平行线的判定与性质,以及二次函数的性质,是一道多知识点综合的探究题。

2013全国中考数学试题分类汇编 二元一次方程(组)

2013全国中考数学试题分类汇编 二元一次方程(组)

(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程.解答:解:设买了甲种药材x斤,乙种药材y斤,由题意得:.故选A.(2013,娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?(2013•湘西州)解方程组:.考点:解二元一次方程组.分析:先由①得出x=1﹣2y,再把x的值代入求出y的值,再把y的值代入x=1﹣2y,即可求出x的值,从而求出方程组的解.解答:解:,由①得:x=1﹣2y ③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3,则原方程组的解为:.点评:此题考查了解二元一次方程组,解二元一次方程组常用的方法是加减法和代入法两种,般选用加减法解二元一次方程组较简单.(2013•巴中)若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,求r 1、r 2的值,并判断两圆的位置关系.考点: 圆与圆的位置关系;解二元一次方程组. 分析:首先由r 1、r 2是方程组的解,解此方程组即可求得答案;又由⊙O 1和⊙O 2的圆心距为4,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系得出两圆位置关系. 解答:解:∵,①×3﹣②得:11r 2=11, 解得:r 2=1,吧r2=1代入①得:r 1=4; ∴,∵⊙O 1和⊙O 2的圆心距为4, ∴两圆的位置关系为相交. 点评: 此题考查了圆与圆的位置关系与方程组的解法.注意掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系是解此题的关键.(2013,成都)解方程组⎩⎨⎧=-=+521y x y x ⎩⎨⎧-==12y x(2013凉山州)已知方程组,则x+y 的值为( )A .﹣1B .0C .2D .3考点:解二元一次方程组. 专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x 、y 的值,再相加即可. 解答:解:,②×2得,2x+6y=10③, ③﹣①得,5y=5, 解得y=1,把y=1代入①得,2x+1=5, 解得x=2, 所以,方程组的解是,所以,x+y=2+1=3. 故选D .点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.(2013凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列一元二次方程组求解即可.解答:解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.点评:本题考查了列二元一次方程组和列一元一次方程解实际问题的运用,二元一次方程组及一元一次方程的解法的运用,解答时认真图画含义是解答本题的关键.(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产。

2013中考数学试题分类汇编二次函数

2013中考数学试题分类汇编二次函数

2013中考数学试题分类汇编二次函数1、(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O 两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.2、(2013年南京)已知二次函数y=a(x-m)2-a(x-m) (a、m为常数,且a≠0)。

(1) 求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;(2) 设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。

2013年全国中考数学试题汇编----轴对称

2013年全国中考数学试题汇编----轴对称

(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°考点:生活中的轴对称现象;平行线的性质.分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解答:解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选C .点评:本题是考查图形的对称、旋转、分割以及分类的数学思想.(2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是( )(2013•潜江)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为A .4cmB .3cmC .2cmD .1cmA .B. C.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()B点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,且则点M的坐标是( ,) .(1,3)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B的坐标为(3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为A BC D .(2013•宿迁)在平面直角坐标系xOy 中,已知点(01)A ,,(1,2)B ,点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 ▲ .(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( )B,OB=2×AB=AM=×AD=,由勾股定理得:(﹣﹣DC=的最小值是(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为___________cm.【答案】:6.(2013•日照)下面所给的交通标志图中是轴对称图形的是答案:A解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。

2013中考数学试题分类汇编-一元二次方程

2013中考数学试题分类汇编-一元二次方程

2013中考全国100份试卷分类汇编-一元二次方程1、(2013年潍坊市)已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解答案:C .考点:分类思想,一元一次方程与一元二次方程根的情况.点评:对于一元一次方程在一次项系数不为0时有唯一解,而一元二次方程根的情况由根的判别式确定.2、(2013•昆明)一元二次方程2x 2﹣5x+1=0的根的情况是( )3、(2013•新疆)方程x 2﹣5x=0的解是( )4、(2013达州)若方程2360x x m -+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是( )答案:B解析:因为方程有两个不相等的实数根,所以,△=36-12m >0,得m <3,故选B 。

5、(2013年武汉)若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( )A .-2B .-3C .2D .3答案:B 解析:由韦达定理,知:12c x x a==-3。

6、(2013四川宜宾)若关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是( )A .k <1B .k >1C .k =1D .k ≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了. 解答:解:∵关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,a =1,b =2,c =k ,∴△=b 2﹣4ac =22﹣4×1×k >0,∴k <1,故选:A .点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、(2013河南省)方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D8、(2013•泸州)设x 1、x 2是方程x 2+3x ﹣3=0的两个实数根,则的值为( )=9、(2013浙江丽水)一元二次方程16)6(2=+x 可转化为两个一元一次方程,其中一个一元一次方程是46=+x ,则另一个一元一次方程是A. 46-=-x B . 46=-x C. 46=+x D. 46-=+x10、(2013•泸州)若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )11、(2013成都市)一元二次方程220x x +-=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A解析:因为△=12-4×1×(-2)=9>0,所以,原方程有两个不相等的实数根。

2013宁夏中考数学模试卷1及答案

2013宁夏中考数学模试卷1及答案

中考数学模拟试卷3一、选择题.(每小题3分,共24分)C.宁夏最大的沙漠光伏产业生产基地,2011年实现销售收入2.14亿元,2012年计划销售收入15亿元,实现利税2B C D.6.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()B C D.C.9.(2009•宁夏)分解因式:m3﹣mn2=_________.10.若函数y=的图象在第二、四象限,则函数y=kx﹣1的图象经不过第_________象限.11.等腰三角形的其中两条边的长是方程x2﹣6x+8=0的根,则此等腰三角形的周长是_________.12.(2009•广安)某品牌的复读机每台进价是400元,售价为480元,“五•一”期间搞活动打9折促销,则销售1台复读机的利润是_________元.13.(2009•青岛)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD=_________度.214.用若干个小立方块搭一个几何体,使得它的左视图和俯视图,如图所示,则所搭成的几何体中小立方块最多有 _________ 个.15.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是____ 度. 16.如图,在△ABC 中AB=AC=10,CB=16,分别以AB ,AC 为直径作半圆,则图中阴影部分的面积是 . 三、解答题(每题6分,共24分) 17.计算:.18.解方程:. 19.解不等式组.20.有3张扑克牌,分別是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)先后两次抽得的数字分别记为s 和t ,求|s ﹣t|≥l 的概率.(2)甲、乙两人做游戏,现有两种方案.A 方案:若两次抽得相同花色则甲胜,否则乙胜.B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?四、解答题(共48分)21.数学课上,年轻的刘老师在讲授“轴对称”时,设计了四种教学方法:①教师让学生对折纸,观察发现规律,然后画图.②教师让学生自己做.③教师引导学生画图,发现规律.④教师讲,学生听.刘老师将四种方法作为调查内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,然后他从420份问卷中随机抽取了一部分同学的问卷答案,统计结果如图所示: (1)求抽取问卷答案的学生人数; (2)求抽取的问卷中喜欢第②种方法的人数,并补上条形图的空缺部分;(3)全年级同学最喜欢的教学方法是哪一种?选择这种方法的大约有多少人?并计算扇形统计图中这种方法的人数所占扇形圆心角的大小.22.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”根据图形,解决下面的问题:(1)图中的格点△A′B′C′是由格点△ABC通过哪些变换方法得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点△DEF各顶点坐标,并求出△DEF的面积.23.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.24.一种千斤顶利用了四边形的不稳定性.如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?(,结果保留整数)325.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x万元,所获利润为P=﹣(x﹣30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=﹣(50﹣x)2+(50﹣x)+308万元.(1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.26.如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度从A点出发,沿AC向点C移动.同时,动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5秒时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,写出t的值;(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值.4参考答案与试题解析一、选择题.(每小题3分,共24分)ADACD CCB二、填空题(每小题3分,共24分)9.m(m+n)(m﹣n).10.一11.10.12.32元.13。

2013全国中考数学试题分类汇编 视图与投影

2013全国中考数学试题分类汇编 视图与投影

...这个物体的小正方体的个数为()株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是( )A B CD...(2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。

(2013•德州)图中三视图所对应的直观图是 (2013•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是( )第5题图...A .圆柱B .圆锥C .圆台D .长方体 考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,故选B . 点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.(2013•泸州)左下图为某几何体的示意图,则该几何体的主视图应为4题图2013•2013•内江)一个几何体的三视图如图所示,那么这个几何体是( )C B A D...(2013•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()...(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.(2013•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )(2013•沈阳)右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体(2013•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()......(2013•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是A .①②B . ②③C . ②④D . ③④ 答案:B解析:①的三视图都是正方形,④的三视图都是圆,三个完全相同;②的主视图和侧视图是矩形,俯视图是圆,③的主视图和侧视图都是等腰三角形,俯视图是圆和圆心,故选B 。

2013年中考数学真题

2013年中考数学真题

2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。

2013年数学中考试卷及答案

2013年数学中考试卷及答案

2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。

各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。

其中填空1道、解答题1道。

这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。

答题时间为45分钟。

①阅读理解2个大题、②解答题2个小题,③计算题1个小题。

要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。

一、试题主要考查了数形结合和空间想象能力。

这是对学生数形结合、空间想象能力的有力考查。

例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。

同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。

这体现了中考数学命题在知识考查中体现了回归教材这一特点。

特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。

例如第1、2、3、5题分别考查了点的坐标及面积。

第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。

二、考查了学生的运算能力,也包括空间想象能力。

宁夏2013年中考数学答案(word版)

宁夏2013年中考数学答案(word版)

2013年中考考试已经圆满结束2014年中考即将来临出国留学网liuxue86com小编已为大家整理出宁夏2013年中考数学答案word版帮助各位同学们对自己的数学成绩进行预估敬请各位考生关出国留学网liuxue86com中考频道其他科目的试题及答案的公布
宁夏 2013年中考数学答案( word版)
中考网为您提供中考试题及答案:《》 《》 2013年中考考试已经圆满结束,2014年中考即将来临,店铺()小编已为大家整理出宁夏2013年中考数学答案(word版),帮助 各位同学们对自己的数学成绩进行预估,敬请各位考生关注店铺()中考频道其他科目的试题及答案的公布。 点击下载:
点击下载: 以上是店铺()小编已为大家整理出的宁夏2013年中考数学答案(word版),更多内容请查看精品2013年中考试卷及答案专 题。

九年级数学中考题一元二次方程

九年级数学中考题一元二次方程

九年级数学中考题一元二次方程11.(2013•乌鲁木齐)若关于x的方程式x2-x+a=0有实根,则a的值可以是()A.2 B.1 C.0.5 D.0.2512.(2013•潍坊)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解.13.(2013•威海)已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是()14.(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13C.13 D.以上选项都不正确15.(2013•天水)从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是()A.100m2B.64m2C.121m2D.144m2 16.(2013•天门)已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为()A.-1 B.9 C.23 D.27 17.(2013•泰州)下列一元二次方程中,有两个不相等实数根的方程是()A.x2-3x+1=0 B.x2+1=0 C.x2-2x+1=0 D.x2+2x+3=0 18.(2013•台湾)若一元二次方程式a(x-b)2=7的两根为19.(2013•十堰)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-1 20.(2013•上海)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2-x+1=0 D.x2-x-1=0 21.(2013•日照)已知一元二次方程x2-x-3=0的较小根为x1,则下面对x1的估计正确的是()A.-2<x1<-1 B.-3<x1<-2 C.2<x1<3 D.-1<x1<022.(2013•钦州)关于x的一元二次方程3x2-6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3C.m>3 D.m≥3 23.(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()24.(2013•平凉)一元二次方程x2+x-2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定25.(2013•平凉)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()26.(2013•宁夏)一元二次方程x(x-2)=2-x的根是()A.-1 B.2 C.1和2 D.-1和2 27.(2013•南平)关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定28.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018 B.2008 C.2014 D.2012显示解析试题篮29.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1 B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠030.(2013•泸州)设x1、x2是方程x2+3x-3=0的两个实数根,()A.5 B.-5 C.1 D.-1 31.(2013•六盘水)已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<-2 B.k<2 C.k>2 D.k<2且k≠1 32.(2013•丽水)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 33.(2013•兰州)用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2 34.(2013•兰州)据调查,2011年5月兰州市的房价均价为7600/m2,2013年同期将达到8200/m2,假设这两年兰州市房价的平均增长率为x,根据题意,所列方程为()A.7600(1+x%)2=8200 B.7600(1-x%)2=8200C.7600(1+x)2=8200 D.7600(1-x)2=820035.(2013•昆明)一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定36.(2013•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=35637.(2013•黄冈)已知一元二次方程x2-6x+C=0有一个根为2,则另一根为()A.2 B.3 C.4 D.8 38.(2013•呼和浩特)(非课改)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,,则m的值是()A.3或-1 B.3 C.1 D.-3或1 39.(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1-x)2=128C.168(1-2x)=128 D.168(1-x2)=12840.(2013•河南)方程(x-2)(x+3)=0的解是()A.x=2 B.x=-3 C.x1=-2,x2=3 D.x1=2,x2=-3 41.(2013•桂林)已知关于x的一元二次方程x2+2x+a-1=0有两根为x1和x2,且x12-x1x2=0,则a的值是()A.a=1 B.a=1或a=-2 C.a=2 D.a=1或a=2 42.(2013•广州)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断43.(2013•福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x-1)=0 44.(2013•鄂州)下列计算正确的是()45.(2013•鄂州)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为()A.-10 B.4 C.-4 D.10 46.(2013•东营)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个B.6个C.7个D.8个47.(2013•大连)若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>4 48.(2013•达州)若方程3x2-6x+m=0有两个不相等的实数根,则m的取值范围在数轴上表示正确的是()A.B.C.D.49.(2013•成都)一元二次方程x2+x-2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根50.(2013•常德)下列一元二次方程中无实数解的方程是()A.x2+2x+1=0 B.x2+1=0 C.x2=2x-1 D.x2-4x-5=0 51.(2013•滨州)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定52.(2013•包头)已知方程x2-2x-1=0,则此方程()53.(2013•鞍山)已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根54.(2013•安顺)已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-2 55.(2013•安徽)目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)2=438 D.438(1+2x)2=38956.(2012•株洲)已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c 的值分别为()A.b=-1,c=2 B.b=1,c=-2 C.b=1,c=2 D.b=-1,c=-2 57.(2012•湛江)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A.5500(1+x)2=4000 B.5500(1-x)2=4000C.4000(1-x)2=5500 D.4000(1+x)2=550058.(2012•宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+4 59.(2012•烟台)下列一元二次方程两实数根和为-4的是()A.x2+2x-4=0 B.x2-4x+4=0 C.x2+4x+10=0 D.x2+4x-5=0二、填空题1.(2013•遵义)已知x=-2是方程x2+mx-6=0的一个根,则方程的另一个根是.2.(2013•自贡)已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是.(填上你认为正确结论的所有序号)3.(2013•镇江)写一个你喜欢的实数m的值,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4.(2013•张家界)若关于x的一元二次方程kx2+4x+3=0有实数根,则k的非负整数值是.5.(2013•宜宾)某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是.27.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x,则根据题意可列方程为.8.(2013•温州)方程x2-2x-1=0的解是.9.(2013•天津)一元二次方程x(x-6)=0的两个实数根中较大的根是.10.(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是.11.(2013•陕西)一元二次方程x2-3x=0的根是.12.(2013•青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x,根据题意,可得方程.13.(2013•黔西南州)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.14.(2013•黔东南州)若两个不等实数m、n满足条件:m2-2m-1=0,n2-2n-1=0,则m2+n2的值是.15.(2013•平凉)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是.16.(2013•攀枝花)设x1,x2是方程2x2-3x-3=0的两个实数根,17.(2013•南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:.18.(2013•绵阳)已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC 的周长是.19.(2013•眉山)已知关于x的一元二次方程x2-x-3=0的两个实数根分别为α、β,则(α+3)(β+3)= .20.(2013•龙岩)已知x=3是方程x2-6x+k=0的一个根,则k= .21.(2013•六盘水)无论x取任何实数,代数式都有意义,则m的取值范围为22.(2013•临沂)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1﹡x2= .23.(2013•聊城)若x1=-1是关于x的方程x2+mx-5=0的一个根,则方程的另一个根x2= .24.(2013•兰州),且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.25.(2013•荆门)设x1,x2是方程x2-x-2013=0的两实数根,26.(2013•江西)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程.27.(2013•吉林)若将方程x2+6x=7化为(x+m)2=16,则m= .28.(2013•黑龙江)若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n= .29.(2013•菏泽)已知:关于x的一元二次方程kx2-(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.30.(2013•哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.31.(2013•广安)方程x2-3x+2=0的根是.32.(2013•佛山)方程x2-2x-2=0的解是.234.(2013•常州)已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a= .35.(2013•滨州)一元二次方程2x2-3x+1=0的解为.36.(2013•巴中)方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.37.(2012•淄博)一个三位数,其各位上的三个数字的平方和等于其中两个数字乘积的2倍,请写出符合上述条件的一个三位数.38.(2012•资阳)关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,则k的取值范围是.39.(2012•张家界)已知m和n是方程2x2-5x-3=0的两根,40.(2012•枣庄)已知关于x的方程x2+mx-6=0的一个根为2,则这个方程的另一个根是.三、解答题1.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.2.(2013•淄博)关于x的一元二次方程(a-6)x2-8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.3.(2013•珠海)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年-2012年每年平均每次捕鱼量的年平均下降率.4.(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.5.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)6.(2013•漳州)解方程:x2-4x+1=0.7.(2013•枣庄)先化简,再求值:.其中m是方程x2+3x-1=0的根.8.(2013•玉林)已知关于x的方程x2+x+n=0有两个实数根-2,m.求m,n的值.9.(2013•义乌)解方程(1)x2-2x-1=0(2)10.(2013•盐城)先化简,再求值:,其中x为方程x2+3x+2=0的根.11.(2013•徐州)(1)解方程:x2-2x=1;(2)解不等式组:12.(2013•孝感)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2−x12−x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.13.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?14.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,,x2+6x-27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.15.(2013•无锡)(1)解方程:x2+3x-2=0;(2)解不等式组:16.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?17.(2013•上海)解方程组:18.(2013•山西)解方程:(2x-1)2=x(3x+2)-7.19.20.(2013•衢州)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.21.(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.【研究速算】提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述).【研究方程】提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?几何建模:(1)变形:x(x+2)=35.(2)画四个长为x+2,宽为x的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x 的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x(x+2)+22∵x(x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x>0∴x=5归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5归纳提炼:当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)22.(2013•南充)关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?23.(2013•绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?24.(2013•连云港)小林准备进行如下操作实验;把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由.25.(2013•乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC 是等腰三角形时,求k的值.26.(2013•荆州)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1-x2|=2,求k的值.27.(2013•济宁)人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.28.(2013•黄石)解方程组:29.(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?30.(2013•杭州)当x满足条件时,求出方程x2-2x-4=0的根.31.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.32.(2013•广州)解方程:x2-10x+9=0.33.(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?34.(2013•德宏州)如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.35.(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选取二次项和常数项配方:③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求x y的值.36.(2013•北京)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.37.(2013•百色)为响应区“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?,(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?38.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.39.(2012•遵义)根据遵义市统计局发布的2011年遵义市国民经济和社会发展统计公报相关数据,我市2011年社会消费品总额按城乡划分绘制统计图①,2010年与2011年社会消费品销售额按行业划分绘制条形统计图②,根据图中信息回答下列问题:(1)图①中“乡村消费品销售额”的圆心角是度,乡村消费品销售额为亿元;(2)2010年到2011年间,批发业、零售业、餐饮住宿业中销售额增长的百分数最大的行业是;(3)预计2013年我市的社会消品总销售额到达504亿元,求我市2011-2013年社会消费品销售总额的年平均增长率.。

2013年宁夏中考数学试卷和答案

2013年宁夏中考数学试卷和答案

中考数学试卷及答案一、选择题1.计算32)(a 的结果是 ( )A .5a B. 6a C. 8a D.9a 2. 一元二次方程x x x -=-2)2(的根是 ( )A. 1-B. 0C.1和2 D. 1-和23.如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线, ∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是 ( )A . 253mB .25m C. 252m D.3350m4.如图,△ABC 中, ∠A C B =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处,若∠A =22°,则∠BDC 等于 ( )A .44° B. 60° C. 67° D. 77°5. 雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是 ( ) A .⎩⎨⎧=+=+8000415004y x y x B .⎩⎨⎧=+=+8000615004y x y x C .⎩⎨⎧=+=+8000641500y x y xD .⎩⎨⎧=+=+8000461500y x y x 6. 函数xay = (a ≠0)与y=)1(-x a (a ≠0)在同一坐标系中的大致图象是 ( )B A CD第4题 C D 第3题7如图是某几何体的三视图,其侧面积( )A.6B. π4C.π6D. π128.如图,以等腰直角△ABC 两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为 ( ) A .4π B .2πC .22πD . π2二、填空题(每小题3分,共24分)9.分解因式:=+-2422a a ___________________.10.点 P (a ,a -3)在第四象限,则a 的取值范围是 .11.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为 cm.13.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数)0( x xky =的图象经过点C ,则k 的值为_________. 14.△ABC 中,D 、E 分别是边AB 与AC的中点,BC = 4,下面四个结论:①DE=2;②△第11题第13题E BC AD 第15题第8题 第7题主视图 左视图俯视图ADE ∽△ABC ;③△ADE 的面积与△ABC 的面积之比为 1 : 4;④△ADE 的周长与△ABC 的周长之比为 1 : 4;其中正确的有 .(只填序号) 15.如图,在Rt ABC △中,90ACB ∠=°,∠A =α,将ABC △绕点C 按顺时针方向旋转后得到EDC △,此时点D 在AB 边上,则旋转角的大小为 .16.若不等式组⎩⎨⎧--≥+2210x x a x 有解,则a 的取值范围是 .三、解答题(共24分)17.(6分) 计算:2330tan 627)32(2--+--18.(6分) 解方程 1326-+=-x xx20.(6分)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一) 班:168 167 170 165 168 166 171 168 167 170 (二) 班:165 167 169 170 165 168 170 171 168 167 (1) 补充完成下面的统计分析表(2) 请选一个合适的统计量作为选择标准,说明哪一个班能被选取.四、解答题(共48分)21.(6分)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m 的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业暨高中阶段招生考试
注意事项:
1.全卷总分120分,答题时间120
分钟 2.答题前将密封线内的项目填写清楚
3.使用答题卡的考生,将所有答案全部答在答题卡相应的位置上.
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分
,共24分)
( )
A .5a B. 6a C. 8a D.9
a 2. 一元二次方程x x x -=-2)2(的根是 ( )
A. 1-
B. 0
C.
1和2 D. 1-和2
3.如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线, ∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是 ( )
A . 253m
B .25m C. 252m D.
3
3
50m
4.如图,△ABC 中, ∠A C B =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处,若∠A =22°,则∠BDC 等于 ( )
A .44° B. 60° C. 67° D. 77°
5. 雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是 ( )
第4题 C D 第3题
A .⎩⎨
⎧=+=+8000
415004y x y x B .⎩⎨⎧=+=+8000615004y x y x C .⎩⎨
⎧=+=+8000
641500y x y x
D .⎩⎨
⎧=+=+8000
461500y x y x 6. 函数x
a
y =
(a ≠0)与y=)1(-x a (a ≠0)在同一坐标系中的大致图象是 ( )
7如图是某几何体的三视图,其侧面积( )
A.6
B. π4
C.π6
D. π12
8.如图,以等腰直角△ABC
两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为
( ) A

4
π
B .
2
π
C .22π
D . π2
二、填空题(每小题3分,共24分)
9.分解因式:=+-2422
a a ___________________.
10.点 P (a ,a -3)在第四象限,则a 的取值范围是 .11. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种.
12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为 cm.
B A
C D
第11题
E
A
D 第8题 第7题
主视
图 左
视图
俯视

13.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数)0(πx x
k
y =
的图象经过点C ,则k 的值为_________. 14.△ABC 中,D 、E 分别是边AB 与AC 的中点,BC = 4,下面四个结论:①DE=2;②△ADE ∽△ABC ;③△ADE 的面积与△ABC 的面积之比为 1 : 4;④△ADE 的周长与△ABC 的周长之比为 1 : 4;其中正确的有 .(只填序号) 15.如图,在Rt ABC △中,90ACB ∠=°,
∠A =α,将ABC △绕点C 按顺时针方向旋转后得到EDC △,此时点D 在AB 边上,则旋转角的大小为 . 16.若不等式组⎩
⎨⎧--≥+2210
x x a x φ有解,则a 的取值范围是 .
三、解答题(共24分)
17.(6分) 计算:
2330tan 627)3
2
(2--+--ο
18.(6分) 解方程 13
26-+=-x x
x
19.(6分)
如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2), B (-3,4)C(-2,6) (1)画出△ABC 绕点A 顺时针旋转90o
后得到的△A 1B 1C 1
(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2
20.
某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)
(一) 班:168 167 170 165 168 166 171 168 167 170 (二) 班:165 167 169 170 165 168 170 171 168 167 (1) 补充完成下面的统计分析表
(2) 请选一个合适的统计量作为选择标准,说明哪一个班能被选取.
四、解答题(共48分)
21.(6分)
小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m 的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率。

22.(6分)
在矩形ABCD 中,点E 是BC 上一点,AE=AD,DF ⊥AE ,垂足为F ; 求证:DF=DC
频数 (学生人数)时间/小时
0 2 4 8 6 10
A E B
C
D
F
在Rt △ABC 中,∠ACB=90º,D 是AB 边上的一点,以BD 为直径作⊙O 交AC 于点E ,连结DE 并延长,与BC 的延长线交于点F.且BD=BF. (1) 求证:AC 与⊙O 相切. (2) 若BC=6,AB=12,求⊙O 的面积.
24.(8分)
如图,抛物线与x 轴交于A 、B 两点,与y 轴交C 点,点A 的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是直线x= 2
1
-
(1) 求抛物线的解析式
(2) M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求M 点的坐标.
F
如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点) 上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克) 受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株) 的影响情况统计如下表:
(1) 通过观察上表,猜测y 与x 之间之间存在哪种函数关系,求出函数关系式并加以验证; (2) 根据种植示意图填写下表,并求出这块地平均每平方米的产量为多少千克?
(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?

1
图 2
26.(10分)
在□ABCD 中,P 是AB 边上的任意一点,过P 点作PE ⊥AB,交AD 所在的直线于E,连结
CE,CP. 已知∠A=60º;
(1) 若BC=8, AB=6,当AP 的长为多少时,△CPE 的面积最大,并求出面积的最大值. (2) 试探究当 △CPE ≌△CPB 时,□ABCD 的两边AB 与BC 应满足什么关系?
B
A D C E
P。

相关文档
最新文档