2019-2020年中考数学模拟试题八中考数学

合集下载

2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3= .11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故 B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 2 .(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20 .【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:A 1A2BA 1(A1,A1)(A2,A1)(B,A1)A 2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是 1 立方米,从打开输入口到关闭输出口共用的时间为11 分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为 5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为 2 .【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9 .【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=2,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×=t , ∴CD=AC ﹣AD=2﹣t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD+DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t ﹣1)×=2(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2, ∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。

2019年最新初中数学练习100题试卷 中考模拟试题817770

2019年最新初中数学练习100题试卷 中考模拟试题817770

2019年初中数学中考练习100题试卷**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.△ABC 和△DEF 都是等边三角形,若△ABC 的周长为24 cm ,△DEF 的边长比△ABC 的边长长3 cm ,则△DEF 的周长为( )A .27 cmB .30 cmC .33 cmD .无法确定 2.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y >D .1y <-或0y ≥ 3. 下列事件中,属于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在 1,2,3,4 中任取一个数比 5大D .打开数学书就翻到第10页4.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍 5.若分式434x +的值为 1,则x 的取值应是( ) A .2B .1C .0D . -1 6.方程512552x x x +=--的解x 等于( ) A .-3 B .-2 C . -1 D .07.某风景点的周长约为 3578 m,若按比例尺 1:2000缩小后,其周长大约相当于()A.一个篮球场的周长B.一张乒乓球台台面的周长C.《中国日报》的一个版面的周长D.《数学》课本封面的周长8.观察图1,在A、B、C、D 四幅图案中,能通过图1平移得到的是()图1 A. B. C. D.9.如图,宽为 50 cm的矩形图案由 10个全等的小长方形拼成,若小长方形的长、宽分别设为 x、y,则可得方程组()A.250x yx y=⎧⎨+=⎩B.350x yx y=⎧⎨+=⎩C.450x yx y=⎧⎨+=⎩D.550x yx y=⎧⎨+=⎩10.下列现象中,属于平移变换的是()A.前进中的汽车轮子B.沿直线飞行的飞机C.翻动的书D.正在走动中的钟表指针11.如图,直线a,b被直线c所截的内错角有()A.一对 B.两对 C.三对 D.四对12.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5,则另一个三角形的周长是()A.23 B.27 C.29 D.3313.已知,有一条直的宽纸带,按图所示折叠,则∠α等于()A. 50°B.60°C. 75°D. 85°。

2019-2020学年山西省中考数学模拟试卷(有标准答案)(解析)

2019-2020学年山西省中考数学模拟试卷(有标准答案)(解析)

山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( ) A .61 B .-6 C .6 D .61-2.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯6.(2016·山西)下列运算正确的是 ( )A .49232-=⎪⎭⎫ ⎝⎛- B .63293a a =)( C .251555-3-=÷ D .23-50-8=7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( )A .3π B .2πC .πD .π2 10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGH D .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”) 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫ ⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(2016·山西)(本题7分)解方程:93222-=-x x )(18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图; (2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是Oe的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是¼ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是¼ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于Oe,AB=2,D为Oe上一点, ︒ABD,AE⊥BD与点E,则△BDC的长是.=∠4520.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( A ) A .61 B .-6 C .6 D .61-考点:相反数解析:利用相反数和为0计算 解答:因为a +(-a )=0 ∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5考点: 解一元一次不等式组分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5 由②得x <3所以不等式组的解集是-5<x<33.(2016·山西)以下问题不适合全面调查的是(C)A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某篮球队员的身高考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.解答:A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查;D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是(A)考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定.解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形故选A.5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为(B)A.65.5⨯C.655⨯D.810105.5⨯B.710.0⨯1055考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将55 000 000用科学记数法表示为:7105.5⨯.6.(2016·山西)下列运算正确的是 ( D ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 考点:实数的运算,幂的乘方,同底数幂的除法, 分析:根据实数的运算可判断A . 根据幂的乘方可判断B . 根据同底数幂的除法可判断C . 根据实数的运算可判断D 解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程 解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( C )A .3π B .2πC .πD .π2 考点:切线的性质,求弧长 分析:如图连接OF ,OE由切线可知︒=∠904,故由平行可知︒=∠903由OF =OA ,且︒=∠60C ,所以︒=∠=∠601C 所以△OFA 为等 边三角形∴︒=∠602,从而可以得出»FE所对的圆心角然后根据弧长公式即可求出 解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOF r =12÷2=6∴»FE=πππ=⋅⋅=180630180r n 故选C10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD的延长线于点H .则图中下列矩形是黄金矩形的是( D )A .矩形ABFEB .矩形EFCDC .矩形EFGH D .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =5CF ,所以CG =CF )15(-,且GH =CD =2CF 从而得出黄金矩形 解答:CG =CF )15(-,GH =2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南 门为坐标原点,从而求出太原火车站的点(正 好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标 (3,0)12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y > 2y (填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m <0,则图象在第二四象限分别都是y 随着x 的增大而增大 ∵m <0,∴m -1<0,m -3<0,且m -1>m -3,从而比较y 的大小 解答:在反比函数xmy =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大 且m -1>m -3,所以1y > 2y13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n -1)=4n +1个 解答:(4n +1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 94 考点:树状图或列表求概率 分析:列表如图:可知指针指向的数都是奇数的概率为94 解答:由表15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为)(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠ 从而得出31∠=∠,所以HE =HA . 再利用△DGH ∽△DCA 即可求出HE , 从而求出HG解答:如图(1)由勾股定理可得1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1) (3,2) (3,3)DA =52422222=+=+CD AC 由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -52 ∵HE ∥AC ∴△DGH ∽△DCA ∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分) =1. ……………………………(5分) (2)先化简,在求值:112222+---x xx x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算 解答:原式=1)1)(1()1(2+-+--x xx x x x ……………………………(2分)=112+-+x xx x ……………………………(3分) =1+x x……………………………(4分)当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(2016·山西)(本题7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解 方法二:将方程化为一般式,利用公式法求解 解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分) 0)]3()3(2)[3(=+---x x x . ……………………………(3分) 0)9-)(3(=-x x . ……………………………(4分) ∴ x -3=0或x -9=0. ……………………………(5分) ∴ 31=x ,92=x . ……………………………(7分) 解法二: 原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b ∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O e 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是¼ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD . 下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG .∵M 是¼ABC 的中点, ∴MA =MC ...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2,D 为O e 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ . 考点:圆的证明分析:(1)已截取CG =AB ∴只需证明BD =DG 且MD ⊥BC ,所以需证明MB =MG 故证明△MBA ≌△MGC 即可 (2)AB =2,利用三角函数可得BE =2 由阿基米德折弦定理可得BE =DE +DC 则△BDC 周长=BC +CD +BD =BC +DC +DE +BE =BC +(DC +DE )+BE =BC +BE +BE =BC +2BE 然后代入计算可得答案解答:(1)证明:又∵C A ∠=∠, …………………(1分) ∴ △MBA ≌△MGC . …………………(2分) ∴MB =MG . …………………(3分) 又∵MD ⊥BC ,∵BD =GD . …………………(4分)∴CD =CG +GD =AB +BD . …………………(5分) (2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2, D 为O e 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC的长是 222+ .20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg ~5000kg (含2000kg 和5000kg )的客户有两种 销售方案(客户只能选择其中一种方案): 方案A :每千克5.8元,由基地免费送货. 方案B :每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x(kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点: 一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A 应付款y 与购买量x 的函数关系为x y 8.5= 方案B 应付款y 与购买量x 的函数关系为20005+=x y 然后分段求出哪种方案付款少即可(3)令y =20000,分别代入A 方案和B 方案的函数关系式中,求出x ,比大小. 解答:(1)方案A :函数表达式为x y 8.5=. ………………………(1分)方案B :函数表达式为20005+=x y ………………………(2分) (2)由题意,得200058.5+<x x . ………………………(3分)解不等式,得x <2500 ………………………(4分) ∴当购买量x 的取值范围为25002000<≤x 时,选用方案A比方案B 付款少. ………………………(5分) (3)他应选择方案B . ………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)考点:三角函数的应用分析:过点A 作CD AG ⊥,垂足为G ,利用三角函数求出CG ,从 而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出 CH ,由图得出EH ,再利用三角函数值求出EF 解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分) 由题意,得203050=-=GD .…………(3分) 452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分) 由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CDCH .……………………(6分) 290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分)在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 菱形 ;……………(2分)(2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将DC A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明 (2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时. (4)开放型题目,答对即可 解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21.Θ四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '=Θ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE //Θ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分) (3)过点B 作AC BF ⊥,垂足为F ,BC BA =Θ, 5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠Θ, ︒=∠=∠90BFC CEA . ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '=Θ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)AC 21的长平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为度,得到D C A ''∆,连接DC B A ,'.………………………(11分) 结论:四边形是平行四边形……(12分) 23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构 成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为3=x ,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标 (3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1)Θ抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8),。

【附20套中考模拟试题】辽宁省灯塔市2019-2020学年中考数学模拟试卷含解析

【附20套中考模拟试题】辽宁省灯塔市2019-2020学年中考数学模拟试卷含解析

辽宁省灯塔市2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠2.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°3.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A .(3 ,1)B .(3 ,2)C .(2 ,3)D .(1 ,3)4.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数5.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数45 6 7 8 人数 3 6 5 4 2 每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,66.等腰三角形底角与顶角之间的函数关系是( )A.正比例函数B.一次函数C.反比例函数D.二次函数7.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC 的大小是()A.55°B.60°C.65°D.70°8.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣19.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C10.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩12.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB 的长等于()A.2cm B.3cm C.6cm D.7cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.14.有下列等式:①由a=b ,得5﹣2a=5﹣2b ;②由a=b ,得ac=bc ;③由a=b ,得a b c c =;④由23a b c c=,得3a=2b ;⑤由a 2=b 2,得a=b .其中正确的是_____. 15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).16.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.17.如图所示,三角形ABC 的面积为1cm 1.AP 垂直∠B 的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .18.计算:82-=_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.20.(6分)已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.21.(6分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB ,于点E 求证:△ACD ≌△AED ;若∠B=30°,CD=1,求BD 的长.22.(8分)如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.23.(8分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A 组50~60;B 组60~70;C 组70~80;D 组80~90;E 组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是 人,扇形C 的圆心角是 °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?24.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.25.(10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[求出y 与x 的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.26.(12分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?27.(12分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.3.D【解析】【分析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.4.A【解析】【分析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.5.A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.7.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.8.B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.9.C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.10.C【解析】【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A 是公共角,∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB :BD=CB :AC 时,∠A 不是夹角,故不能判定△ADB 与△ABC 相似,故C 错误,符合题意要求, 故选C .11.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.12.D【解析】【分析】先求AC,再根据点D 是线段AC 的中点,求出CD ,再求BD.【详解】因为,AB=10cm ,BC=4cm ,所以,AC=AB-BC=10-4=6(cm )因为,点D 是线段AC 的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm )故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.14.①②④【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确, ③由a=b,得a b c c=,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为c 可能为0,所以本选项不正确,④由23a b c c=,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确, ⑤因为互为相反数的平方也相等,由a 2=b 2,得a=b,或a=-b,所以本选项错误,故答案为: ①②④.15.43 4【解析】【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC. 【详解】因为∠MAD=45°, AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=43.所以CD=43-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.16.127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.17.B【解析】【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=12三角形ABC的面积=12cm1,选项中只有B的长方形面积为12cm1,故选B.18【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.21.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.22.(1)答案见解析;(2)45°.【解析】【分析】(1)分别以A、B为圆心,大于12AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC12∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.23.(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.【解析】【分析】(1)由D 组频数及其所占比例可得总人数,用360°乘以C 组人数所占比例可得;(2)用总人数分别乘以A 、B 组的百分比求得其人数,再用总人数减去A 、B 、C 、D 的人数求得E 组的人数可得;(3)用总人数乘以样本中A 、B 组的百分比之和可得.【详解】解:(1)抽取学生的总人数为78÷26%=300人,扇形C 的圆心角是360°×120300=144°, 故答案为300、144;(2)A 组人数为300×7%=21人,B 组人数为300×17%=51人, 则E 组人数为300﹣(21+51+120+78)=30人,补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200×(7%+17%)=528人.【点睛】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.24.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a 的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50, a=50×0.2=10,b=1450=0.28,c=50; 故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.25.(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.26.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y 棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,依题意有 ,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y 棵乙种树苗,依题意有30×(1﹣10%)(50﹣y )+40y≤1500,解得y≤11,∵y 为整数,∴y 最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.27.(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB ,(2)2,4;(2)①y =13x 2﹣2;②在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【解析】【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B (m ,m ),代入抛物线解析式进而得出m 的值,即可得出AB 的值; (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y =13x 2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,进而得出答案. 【详解】(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4; 故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0), 得,9a ﹣4a ﹣53=0, 解得:a =13, ∴抛物线的解析式是:y =13x 2﹣2;②由①知,如图2,y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.中考模拟数学试卷时量:120分钟 满分:100分注意事项:1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号. 2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效. 3.考试结束后,请将试题卷和答题卡都交给监考老师.一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分) 1. 下列各式中,结果不等于2的是A. 12- B. (2)-- C. 4 D. 2-2. 下列计算中,正确的是A. 257a b ab +=B. 3263()6a a = C. 623aa a ÷= D. 32a a a -+=-3. 我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为A .23.710⨯B .3107.3⨯ C .21037⨯ D .41037.0⨯4. 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转.....120...°后,能与原图形完全重合的是A .B .C .D .5. 四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差2s 如右表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C. 丙D.丁 6. 如图,已知菱形ABCD 的边长为2,∠DAB =60°,则对角线BD 的长是A. 132 D. 237.函数y mx n =+与ny mx=,其中0,0m n≠≠,那么它们在同一坐标系中的图象可能是8. 如果二次函数2(0)y ax bx c a =++≠的图象与x 轴有两个公共点,那么一元二次方程20ax bx c ++=有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若,()m n m n <是关于x 的方程1()()0x a x b ---=的两根,且a b <,则a b m n 、、、的大小关系是 A .m a b n <<< B .a m n b <<< C .a m b n <<< D . m a n b <<<二、填空题(本题共8小题,每小题3分,共24分)9. 在平面直角坐标系中,点(2,2015)-在第 象限. 10.分解因式24(1)16x x +-= . 11. 关于x 的方程的112ax x +=--解是正数,则a 的取值范围是 . 12. 已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a 等于 .13. 如图所示,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为 .14. 一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为 米.15. 如图所示,直径为10的圆A 经过点C(0,5)和点O (0,0),B 是y 轴右侧圆A 优弧上一点,那么sin OBC ∠的值是 .16.有这样一组数据1234a a a a ,,,,......n a 。

2019年中考数学模拟试题及答案分析158048

2019年中考数学模拟试题及答案分析158048

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.将三个面上做有标记的立方体盒子展开,以下有可能是它的展开图的是( )A .B .C .D . 2.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A .5B .5C .12D .2 3.下列生活现象中,属于相似变换的是( ) A .抽屉的拉开B .荡秋千C .汽车刮雨器的运动D .投影片的文字经投影变换到屏幕4.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A .1,3-==c bB .2,6=-=c bC .4,6-=-=c bD .6,4-=-=c b 5.一个三角形的两边长为3和6,第三边长为方程(x -2)(x -4)=0的根,则这个三角形的周长是( )A .11B .12C .13D .11或136.在等式(-a-b )( )=a 2-b 2中,括号里应填的多项式是( )A .a-bB .a+bC .-a-bD .b-a7. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( )A .3B .4C .5D .68.如图,正方形ABCD 的边长是3 cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC → CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形中箭头的方向( )A .朝左B .朝上C .朝右D .朝下9. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形10.如图放置着含30°的两个全等的直角三角形ABC 和EBD ,现将△EBD 沿BD 翻折到△E ′BD 的位置,DE ′与AC 相交于点F ,则∠AFD 等于( )A .45°B .30°C .20°D .15°11.某化肥厂原计划x 天生产100 t 化肥,由于采用新技术,每天多生产 2 t ,因此提前 3 天完成计划,列出方程应为( )A .10010023x x =--B . 10010023x x =-+C . 10010023x x =-+D .10010023x x =-- 12.如图,直线12l l ∥,l 分别与12l l ,相交,如果2120∠=,那么1∠的度数是( )A .30 B .45 C .60 D .7513.若321()44m n x y x y x ÷=,则( ) A .m = 6,n =1 B . m= 5 , n= 1 C .m = 5,n =0 D .m= 6,n =0 14.一个画家有l4个边长为1 cm 的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有( )A .21m 2B .24 m 2C .33 m 2D .37m 215.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数l l 1 l 2 1 2。

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列说法中正确的是( )A .两个全等三角形一定成轴对称B .两个成轴对称的三角形一定是全等的C .三角形的一条中线把三角形分成以中线为对称轴的两个图形D .三角形的一条高把三角形分成以高线为对称轴的两个图形2.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A .1个B 2个C .3个D .4个3.如图所示,△ABC 中,AB=AC ,BE=CE ,则由“SSS”可直接判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BED ≌△CED D .以上答案都不对4.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OB B .1()2OB OA -C .1()2OA OB +D .以上都不对5.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°6.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积7.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤8.下列计算中,正确的是( )A .9338(4)2x x x ÷=B .23234(4)0a b a b ÷=C .2m 2m a a a ÷=D .2212()4c 2ab c ab ÷-=- 9.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( )A .3个B .2个C .1个D .0个10. 一个三角形的三个内角中,至少有( )A . 一个锐角B . 两个锐角C . 一个钝角D .一个直角11.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖 12.如图1所示是一张画有小白兔的卡片,卡片正对一面镜子,这张卡片在镜子里的影像是下列各图中的( )图1 A . B . C . D .13.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:2 14.若关于x 的方程1011--=--m x x x 有增根,则m 的值是( )。

江苏省南京市联合体2019-2020学年中考数学模拟检测试题

江苏省南京市联合体2019-2020学年中考数学模拟检测试题

江苏省南京市联合体2019-2020学年中考数学模拟检测试题一、选择题1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC 是( )A.13寸B.20寸C.26寸D.28寸2.下列计算正确的是( )3.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的殷子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于,则算过关;否则不算过关,则能过第二关的概率是( )A.B.C.D.4.2018年我省生产总值首度突破3万亿大关,其中3万亿用科学记数法表示为( ) A .3×1010B .3×1011C .3×1012D .3×10135.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A.25°B.75°C.65°D.55°6.若反比例函数2k y x-=的图象经过点(1,2),则k 的值为( ) A.2-B.0C.2D.47.下列判断正确的是( )A .“打开电视机,正在播NBA 篮球赛”是必然事件B .“掷一枚硬币正面朝上的概率是12”表示毎抛掷硬币2次就必有1次反面朝上 C .一组数据2,3,4,5,5,6的众数和中位数都是5D .甲组数据的方差2S 0.24=甲,乙组数据的方差2S 0.03乙=,则乙组数据比甲组数据稳定8.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“我”字所在面相对的面上的汉字是( )A .厉B .害C .了D .国9.从电线杆离地面8米处拉一根长为10m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有( )m . A .2B .4C .6D .810.将抛物线2y x =向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式为( ) A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--11.已知AB =10,C 是射线AB 上一点,且AC =3BC ,则BC 的长为( )A.2.5B.103C.2.5或5D.103或5 12.将直线y =2x ﹣3向右平移2个单位.再向上平移2个单位后,得到直线y =kx+b ,则下列关于直线y =kx+b 的说法正确的是( ) A .经过第一、二、四象限 B .与x 轴交于(2,0) C .y 随x 的增大而减小 D .与y 轴交于(0,﹣5)二、填空题13.太阳半径约是6.97万千米,科学记数法表示约是____千米.14.如图,已知点A(4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、A),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于______.15的根是____.16.计算:﹣_____. 17.分解因式:8a 3﹣2a =_____.18.函数y =1的自变量x 的取值范围是_____ 三、解答题19.甲、乙两班同学同时从学校沿一路线走向离学校S 千米的军训地参加训练.甲班有一半路程以V 1千米/小时的速度行走,另一半路程以V 2千米/小时的速度行走;乙班有一半时间以V 1千米/小时的速度行走,另一半时间以V 2千米/小时的速度行走.设甲、乙两班同学走到军训基地的时间分别为t 1小时、t 2小时.(1)试用含S 、V 1、V 2的代数式表示t 1和t 2;(2)请你判断甲、乙两班哪一个的同学先到达军训基地并说明理由.20.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求丙和丁两名学生同时被选中的概率.21.已知二次函数y=ax2+bx+8,经过点(1,9)和(6,−16).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A.B,与y轴的交点为C,求△ABC的面积。

2020年江西省南昌市中考数学模拟试题及答案word

2020年江西省南昌市中考数学模拟试题及答案word

江西省南昌市2019-2020学年中考数学模拟试卷一.选择题1.12019-的绝对值是( ) A. 2019-B. 12019-C. 2019D.120192.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A. 8×1012 B. 8×1013 C. 8×1014 D. 0.8×1013 3.如图是某兴趣社制作的模型,则它的俯视图是( )A. B. C. D.4.若不等式组236x x x m-<-⎧⎨<⎩无解,那么m 的取值范围是( )A. m >2B. m<2C. m≥2D. m≤25. 下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是( ) A. 甲户比乙户多 B. 乙户比甲户多 C. 甲、乙两户一样多D. 无法确定哪一户多6.在△ABC 中,AC =AB ,D ,E ,F 分别是AC ,BC ,AB 的中点,则下列结论中一定正确的是( )A. 四边形DEBF是矩形B. 四边形DCEF是正方形C. 四边形ADEF是菱形D. △DEF是等边三角形二.填空题7.分解因式6xy2-9x2y-y3 = _____________.8.一次函数223y x=-+的图象如图所示,当﹣3<x<3时,y的取值范围是_____.9.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是.10.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度最小值为_____.11.若x1,x2是方程x2﹣5x+3=0的两个根,则1211+x x=_____.12.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=6,点D是BC边上一动点(不与B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为_____.三.解答题13.(1)解方程组:2{1x yx y y-=-=+;(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.先化简,再求值. 5(2x y-)-3(22x y-)-2x-1,其中x=-3,y=115.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线P A和直线PB,使P A切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于12OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线P A和直线PB所以直线P A和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明. 证明:∵OP 是⊙Q 的直径,∴ ∠OAP =∠OBP =________°( )(填推理的依据). ∴P A ⊥OA ,PB ⊥OB . ∵OA ,OB 为⊙O 的半径, ∴P A ,PB 是⊙O 的切线.16.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名. (1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.如图,某学校旗杆AB 旁边有一个半侧的时钟模型,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2m ,旗杆的底端A 到钟面9点刻度C 的距离为11m ,一天小明观察到阳光下旗杆顶端B 的影子刚好投到时钟的11点的刻度上,同时测得1米长的标杆的影长1.2m .求旗杆AB 的高度.18.我们约定:体重在选定标准的5 %(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg ),收集并整理得到如下统计表: 男生序号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 体重x (kg ) 45625558678053656055根据以上表格信息解决如下问题:(1)将这组数据的三个统计量:平均数、中位数和众数填入下表: 平均数 中位数 众数(2)请你选择其中一个统计量.....作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.19.如图,一次函数y=kx+b(k 0)≠的图象与反比例函数my (m 0)x=≠的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(- 3,4),点B 的坐标为(6,n). (1)求该反比例函数和一次函数的解析式; (2)连接OB ,求△AOB 的面积;(3)在x 轴上是否存在点P ,使△APC 是直角三角形. 若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,在△ABC 中,AB =AC ,以AB 为直径⊙O 与边BC 交于点D ,DE ⊥AC ,垂足为E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若∠C =60°,AC =12,求»BD的长.(3)若tan C=2,AE=8,求BF的长.21.在平面直角坐标系中,我们把经过同一点的所有直线称为过这一点的直线束,如下图,所有经过点P的直线,称为过点P的直线束.例如:直线y=kx,当k取不同实数时,在图象上可以得到过原点(0,0)的直线束,这个直线束的一般表达式为y=kx.(1)当k取不同实数时,y=kx﹣3是过点(,)的直线束;(2)当k取什么实数时,直线束y=kx﹣3中的直线与x轴、y轴围成的三角形面积为3?(3)当k取什么实数时,直线束y=kx﹣2k+3中的直线与x轴、y轴围成的三角形面积为12?22.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA 的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC ,AG ,AH 什么关系?请说明理由; (3)设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH 是等腰三角形的m 值.23.如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.江西省南昌市2019-2020学年中考数学模拟试卷一.选择题1.12019-的绝对值是( )A. 2019-B. 12019-C.2019D.12019【答案】D 【解析】 【分析】根据绝对值的定义可直接得出. 【详解】解:12019-的绝对值是12019,故选D.【点睛】本题考查绝对值,熟练掌握绝对值的定义是解题关键.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A. 8×1012B. 8×1013C. 8×1014D. 0.8×1013【答案】B 【解析】80万亿用科学记数法表示为8×1013. 故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.3.如图是某兴趣社制作的模型,则它的俯视图是( )A.B.C. D.【答案】B 【解析】 【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.4.若不等式组236x xx m-<-⎧⎨<⎩无解,那么m的取值范围是( )A. m>2B. m<2C. m≥2D. m≤2【答案】D【解析】【分析】求出两个不等式的解集,根据已知得出m≤2,即可得出选项.【详解】236x xx m--⎧⎨⎩<①<②.∵解不等式①得:x>2,不等式②的解集是x<m.又∵不等式组236x xx m--⎧⎨⎩<<无解,∴m≤2.故选D.【点睛】本题考查了解一元一次不等式组,关键是能根据已知得出关于m的不等式.5. 下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A. 甲户比乙户多B. 乙户比甲户多C. 甲、乙两户一样多D. 无法确定哪一户多【答案】D【解析】由于不知道两户居民的全年的支出总费用是否相等,所以无法判断全年食品支出费用的情况,故选D 6.在△ABC中,AC=AB,D,E,F分别是AC,BC,AB的中点,则下列结论中一定正确的是()A. 四边形DEBF是矩形B. 四边形DCEF是正方形C. 四边形ADEF是菱形D. △DEF是等边三角形【答案】C【解析】【分析】根据中位线性质可得四边形ADEF是平行四边形,又因为AD=AF,可得四边形ADEF是菱形.【详解】解:结论:四边形ADEF是菱形.理由如下:∵CD=AD,CE=EB,∴DE∥AB,∵BE=EC,BF=FA,∴EF∥AC,∴四边形ADEF是平行四边形,∵AC=AB,∴AD=AF,∴四边形ADEF是菱形.故选:C.【点睛】本题考查了菱形的判定,利用中位线的性质判定四边形是平行四边形是关键.二.填空题7.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】【分析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.8.一次函数223y x=-+的图象如图所示,当﹣3<x<3时,y的取值范围是_____.【答案】0<y<4【解析】【分析】根据图像找到x=3、x=-3时,y的值,进而得出y的取值范围.【详解】解:当x=﹣3时,y=﹣23x+2=4;当x=3时,y=﹣23x+2=0.∴当﹣3<x<3时,y的取值范围是0<y<4.故答案为:0<y<4.【点睛】本题考查利用一次函数的图形求函数的增减性及其取值范围,理解熟记一次函数的性质是解题的关键.9.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是.【答案】25°.【解析】∵a∥b,∴∠FDE=∠2=65°.∵EF⊥CD,∴∠EFD=90°.∴∠1=180°-∠EFD-∠FDE=180°-90°-65°=25°.10.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为_____.3【解析】【分析】由等边三角形的性质得出∠ABC=∠BAC=60°, AC=AB=3,求出∠APC=120°,当PB⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=12AC=32,∠PAC=∠ACP=30°,∠ABD=12∠ABC=30°,求出PD=AD.33333【详解】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P 的运动轨迹是»AC ,当O 、P 、B 共线时,PB 长度最小,设OB 交AC 于D ,如图所示: 此时PA =PC ,OB ⊥AC ,则AD =CD =12AC =32,∠PAC =∠ACP =30°,∠ABD =12∠ABC =30°, ∴PD =AD•tan30°=3×32=3, BD =3AD =33, ∴PB =BD ﹣PD =332﹣32=3. 故答案为:3.【点睛】本题考查了正三角形的性质、锐角三角函数及特殊角的三角函数值,理解锐角三角函数,熟记特殊角的三角函数值是解题的关键.11.若x 1,x 2是方程x 2﹣5x+3=0的两个根,则1211+x x =_____. 【答案】53【解析】【分析】欲求12121211x x x x x x ++=的值,根据一元二次方程根与系数的关系,求得两根的和与积,代入数值计算即可. 【详解】解:根据题意x 1+x 2=5,x 1•x 2=3,12121211x x x x x x ++==53. 故答案为:53. 【点睛】本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法.12.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =6,点D 是BC 边上一动点(不与B 、C 重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为_____.【答案】2或4【解析】【分析】分两种情况来解:(1)当∠AFE=90°时,在Rt△ABC中,根据特殊锐角三角函数值可求得AB=43,然后由翻折的性质可求得∠AEF=60°,从而可求得∠EAF=30°,故此AE=2EF,由翻折的性质可知: BE=EF,故此AB=3BE,所以EB=43,最后在Rt△BED中利用特殊锐角三角函数值即可求得BD的长;(2)当点F在BC的延长线上时,∠E AF=90°,然后依据角平分线的性质可得到ED=AE,然后再证明△BED∞△BAC,最后依据相似三角形的性质求解即可.【详解】解:分两种情况:(1)当∠AFE=90°时,如解图1所示∵Rt△ABC中,∠ACB=90°,∠B=30°,∴3BCAB=63AB=∴AB=43∵∠B=30°,DE⊥BC,∴∠BED=60°.由翻折的性质可知:∠BED=∠FED=60°,∴∠AEF=60°.∵△AEF为直角三角形,∴∠EAF=30°.∴AE=2EF.由翻折的性质可知:BE=EF,∴AB=3BE.∴EB=43.在Rt△BED中,∠B=30°,∴3BDBE=,即343=.∴BD=2.(2)当∠EAF=90°时,点F在BC的延长线上.如解图2所示:∵△AEF为直角三角形,∴∠EAF=90°,∴∠EFA=30°.∴∠EFD=∠EFA.又∵ED⊥BF,EA⊥AF,∴AE=DE.∵BC=6,∠ACB=90°,∠B=30°,∴AB=43AC=23设DE=x,BE=3x.∵DE ∥AC , ∴ED BE AC AB =,432343x -=,解得:x =433. ∴BD =3DE =3×43=4 故答案为:2或4.【点睛】本题主要考查了锐角三角函数及特殊角的三角函数值,利用特殊角的三角函数值解题是比较方便,通过观察分析分两种情况来解决是解题的关键.三.解答题13.(1)解方程组:2{1x y x y y -=-=+; (2)如图,Rt △ABC 中,∠ACB=90°,将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE .求证:DE ∥BC .【答案】(1)31x y =⎧⎨=⎩;(2)证明见解析. 【解析】【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【详解】解:(1)(1)2{1x y x y y -=-=+①②, 把①代入②得:2=1y +,解得:1y =,把1y =代入①得:3x =,∴原方程组的解是:31x y =⎧⎨=⎩; (2)∵将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE ,∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE ∥BC .考点:翻折变换(折叠问题);解二元一次方程组.14.先化简,再求值. 5(2x y -)-3(22x y -)-2x -1,其中x =-3,y =1【答案】21x y +-;9【解析】【分析】先化简,再代入求值即可.【详解】解:5(2x y -)-3(2x 2y -)-2x -1=2225x 5y 3x 6y x 1--+--=2x y 1+-.其中x=-3,y=1,代入可得,原式=9【点睛】本题考查了代数式的化简求值,属于简单题,正确化简是解题关键.15.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O 及⊙O 外一点P .求作:直线P A 和直线PB ,使P A 切⊙O 于点A ,PB 切⊙O 于点B .作法:如图,①连接OP ,分别以点O 和点P 为圆心,大于12OP 的同样长为半径作弧,两弧分别交于点M ,N ; ②连接MN ,交OP 于点Q ,再以点Q 为圆心,OQ 的长为半径作弧,交⊙O 于点A 和点B ;③作直线P A 和直线PB .所以直线P A 和PB 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP 是⊙Q 的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴P A⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴P A,PB是⊙O的切线.【答案】(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【解析】【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【点睛】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.16.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名. (1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.【答案】(1)不可能;随机;14;(2)12【解析】【分析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,由此即可求得概率;(2)画树状图得到所有可能的情况,然后找出符合题意的情况数,利用概率公式进行计算即可得. 【详解】(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为14,故答案为不可能,随机,14;(2)画树状图如下:由树状图可知共12种可能,其中“小惠被抽中”有6种可能,所以“小惠被抽中”的概率是:61 P122 == .【点睛】本题考查了随机事件、不可能事件、列表或画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.17.如图,某学校旗杆AB旁边有一个半侧的时钟模型,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2m,旗杆的底端A到钟面9点刻度C的距离为11m,一天小明观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得1米长的标杆的影长1.2m.求旗杆AB的高度.【答案】旗杆AB的高度(10+3)m.【解析】【分析】设半圆圆心为O,连接OD、CD,可得△OCD是等边三角形,过点D作DE⊥OC于E,作DF⊥AB于F,可得四边形AEDF是矩形,然后求出DE的长度,根据同时同地物高与影长成正比求出BF,然后根据AB= BF+AF计算即可得解.【详解】解:如图,设半圆圆心为O,连接OD、CD,∵点D在11点的刻度上,∴∠COD=60°,∴△OCD是等边三角形,过点D作DE⊥OC于E,作DF⊥AB于F,则四边形AEDF是矩形,∵半圆的半径2m,∴DE=2×32=3,同时测得1米长的标杆的影长1.2m,∴1 12 1.2 BF,解得BF=10,所以AB=BF+AF=(10+3)m.答:旗杆AB的高度(10+3)m.【点睛】本题考查了圆心角、矩形性质、同时同地物高与影长成正比、锐角三角函数值,利用特殊角的三角函数值求线段长、利用物高与影长成正比求线段长需要构造直角三角形.18.我们约定:体重在选定标准的5±%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg ),收集并整理得到如下统计表:根据以上表格信息解决如下问题:(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:(2)请你选择其中一个统计量.....作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.【答案】(1)60,59,55;(1)见解析; 【解析】 【分析】(1)根据平均数、中位数和众数的定义分别进行计算,即可求出答案;(2)根据选平均数作为标准,得出体重x 满足()()6015%6015%x ⨯-≤≤⨯+为“普通体重”,从而得出②,④,⑨的男生的体重具有“普通体重”;根据选中位数作为标准,得出体重x 满足()()5915%5915%x ⨯-≤≤⨯+为“普通体重”,从而得出④和⑨的男生的体重具有“普通体重”;根据选众数作为标准,得出体重x 满足()()5515%5515%x ⨯-≤≤⨯+为“普通体重”,此时得出③、⑦、⑩的男生的体重具有“普通体重”.【详解】(1)这组数据按从小到大的顺序排列为:45,53,55,55,58,60,62,65,67,80,则平均数为:45+53+55+55+58+60+62+65+67+8010,=60(kg );中位数为:58+60=592(kg ); 众数为:55;故填表为:(2) i )选平均数作为标准.理由:平均数刻画了一组数据的集中趋势,能够反映一组数据的平均水平. 当体重x 满足:()()6015%6015%x ⨯-≤≤⨯+ 即5763x ≤≤时为“一般体重”,此时序号为②,④,⑨的男生具有“一般体重”. ii )选中位数作为标准.理由:中位数刻画了一组数据的集中趋势,且不受极端数据(如最小值45 和最大值80)的影响.当体重x 满足:()()5915%5915%x ⨯-≤≤⨯+ 即56.0561.95x ≤≤时为“一般体重”, 此时序号为④和⑨的男生具有“一般体重”. iii )选众数作为标准.理由:众数刻画了一组数据的集中趋势,可以反映较多的人的实际情况. 当体重x 满足:即52.2557.75x ≤≤时为“一般体重”, 此时序号为③,⑦,⑩的男生具有“一般体重”.【点睛】此题考查了中位数、众数、平均数,本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.19.如图,一次函数y=kx+b(k 0)≠的图象与反比例函数my (m 0)x=≠的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(- 3,4),点B 的坐标为(6,n). (1)求该反比例函数和一次函数的解析式;(2)连接OB ,求△AOB 的面积;(3)在x 轴上是否存在点P ,使△APC 是直角三角形. 若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)反比例函数的解析式为y=﹣12x ; 一次函数的解析式为y=﹣23x+2; (2)AOB S =9;(3)存在,满足条件的P 点坐标为(﹣3,0)、(﹣173,0).【解析】 【分析】(1)先把()34A -,代入m y x=得到m 的值,从而确定反比例函数的解析式为12y x =-;再利用反比例函数解析式确定B 点坐标为()62-,,然后运用待定系数法确定所求的一次函数的解析式为22.3y x =-+ ()2AOBAOC BOC SS S =+△△△即可求得.(3)过A 点作1AP x ⊥轴于1P ,2AP AC ⊥交x 轴于2P ,则1P 点的坐标为()30-,;再证明211Rt Rt AP P CAP V V ∽,利用相似比计算出128,3PP =则28173,33OP =+=,所以2P 点的坐标为17,03⎛⎫- ⎪⎝⎭,于是得到满足条件的P 点坐标.【详解】()1将()34A -,代入my x=,得3412.m =-⨯=- ∴反比例函数的解析式为12y x=-; 将()6,B n 代入12y x=-,得612n =-, 解得2n =-,()62.B ∴-,将()34A -,和()62B -,分别代入()0y kx b k =+≠得3462,k b k b -+=⎧⎨+=-⎩,解得232, kb⎧=-⎪⎨⎪=⎩,∴所求的一次函数的解析式为22.3y x=-+(2)当0y=时,2203x-+=,解得:()330.x C=∴,,1=34=6.2AOCS∴⨯⨯V1=32=3.2BOCS∴⨯⨯V639.AOBS=+=V(3)存在.过A点作1AP x⊥轴于1P,2AP AC⊥交x轴于2P,如图,190APC∴∠=︒,AQ点坐标为()34-,,1P∴点的坐标为()30.-,290P AC∠=︒Q,21190P AP P AC∴∠+∠=︒,而212190AP P P AP∠+∠=︒,211AP P P AC∴∠=∠,211Rt RtAP P CAP∴V V∽,11211,AP PPCP AP=即124,64PP=128,3PP = 28173.33OP ∴=+= 2P ∴点的坐标为17,0.3⎛⎫- ⎪⎝⎭∴满足条件的P 点坐标为()30,-,17,0.3⎛⎫- ⎪⎝⎭20.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 交于点D ,DE ⊥AC ,垂足为E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若∠C =60°,AC =12,求»BD的长. (3)若tan C =2,AE =8,求BF 的长.【答案】(1)见解析;(2) 2π;(3)103. 【解析】分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD⊥EF,即 EF 是⊙O 的切线; (2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可; (3)连接AD ,根据直角三角形的性质,由在Rt△DEC 中, tan 2DEC CE== 设CE=x,则DE=2x ,然后由Rt△ADE 中, tan 2AEADE DE∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可. 详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C ∵OD=OB ∴∠ABC=∠ODB∴∠C=∠ODB ∴OD∥AC又∵DE⊥AC ∴OD⊥DE ,即OD⊥EF ∴E F 是⊙O 的切线 (2) ∵AB=AC=12 ∴OB=OD=12AB =6 由(1)得:∠C=∠ODB=600∴△OBD 是等边三角形 ∴∠BOD=600∴»BD=6062180ππ⨯= 即»BD的长2π (3)连接AD ∵DE⊥AC ∠DEC=∠DEA=900 在Rt△DEC 中, tan 2DEC CE== 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900∴∠ADE+∠CDE=900 在Rt△DEC 中,∠C+∠CDE=900 ∴∠C=∠ADE 在Rt△ADE 中, tan 2AEADE DE∠== ∵ AE=8,∴DE=4 则CE=2∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5 ∵OD//AE ∴△ODF∽△A EF ∴OF OD AF AE = 即:55108BF BF +=+ 解得:BF=103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.21.在平面直角坐标系中,我们把经过同一点的所有直线称为过这一点的直线束,如下图,所有经过点P 的直线,称为过点P 的直线束.例如:直线y =kx ,当k 取不同实数时,在图象上可以得到过原点(0,0)的直线束,这个直线束的一般表达式为y =kx .(1)当k 取不同实数时,y =kx ﹣3是过点( , )的直线束;(2)当k 取什么实数时,直线束y =kx ﹣3中的直线与x 轴、y 轴围成的三角形面积为3? (3)当k 取什么实数时,直线束y =kx ﹣2k+3中的直线与x 轴、y 轴围成的三角形面积为12? 【答案】(1)(0,﹣3);(2)当k 取32或﹣32时,直线束y =kx ﹣3中的直线与x 轴、y 轴围成的三角形面积为3;(3)当k =9622或k =﹣32时,直线束y =kx ﹣2k+3中的直线与x 轴、y 轴围成的三角形面积为12. 【解析】 【分析】(1)当x=0时,y=-3, 可以确定y=kx-3是过点( 0, -3)的直线束;(2) 中分别求出直线束与x 轴、y 轴的交点坐标,再由直线与坐标轴围成的三角形是直角三角形,根据直角三角形的面积求法,列出相应的等式,进而求出满足条件的值;(3)和(2)方法相同.【详解】解:(1)∵y =kx ﹣3,当x =0时,y =﹣3, ∴直线y =kx ﹣3恒经过点(0,﹣3),∴当k 取不同实数时,y =kx ﹣3是过点( 0,﹣3)的直线束,故答案为(0,﹣3);(2)在y=kx﹣3中,令y=0,则x=3k;令x=0,则y=﹣3,∴直线束y=kx﹣3中的直线与x轴、y轴的交点为(3k,0),(0,﹣3),∵围成的三角形面积为3,∴12|3k|×3=3,解得:k=±32,∴当k取32或﹣时32,直线束y=kx﹣3中的直线与x轴、y轴围成的三角形面积为3;(3)在直线束y=kx﹣2k+3中,令y=0,则x=23kk-;令x=0,则y=﹣2k+3,∴直线束y=kx﹣2k+3中的直线与x轴、y轴的交点为(23kk-,0),(0,﹣2k+3),∵围成的三角形面积为12,∴12|23kk-|·|﹣2k+3|=12,当k>0时,4k2﹣36k+9=0,∴k=922±,当k<0时,4k2+12k+9=0,∴k=﹣32;综上所述:当k=92±或k=﹣32时,直线束y=kx﹣2k+3中的直线与x轴、y轴围成的三角形面积为12.【点睛】本题考查的是一次函数的性质找到和坐标轴形成的直角三角形的面积,理解题意是解题关键.22.如图,正方形ABCD边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA 的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC ∠ACG ;(填“>”或“<”或“=”) (2)线段AC ,AG ,AH 什么关系?请说明理由; (3)设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH 是等腰三角形的m 值.【答案】(1)=;(2)结论:AC 2=AG •AH .理由见解析;(3)①△AGH 的面积不变.②m 的值为83或2或8﹣4.. 【解析】 【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG ; (2)结论:AC 2=AG•AH .只要证明△AHC ∽△ACG 即可解决问题; (3)①△AGH 的面积不变.理由三角形的面积公式计算即可; ②分三种情形分别求解即可解决问题. 【详解】(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =45°,∴AC∵∠DAC =∠AHC +∠ACH =45°,∠ACH +∠ACG =45°, ∴∠AHC =∠ACG . 故答案为=.(2)结论:AC 2=AG •AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =135°, ∴△AHC ∽△ACG , ∴AH ACAC AG, ∴AC 2=AG •AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH •AG =12AC 2=12×()2=16. ∴△AGH 的面积为16.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5.在BC 上取一点M ,使得BM =BE ,∴∠BME =∠BEM =45°, ∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.5°, ∴CM =EM ,设BM =BE =m ,则CM =EM 2m , ∴m +2m =4,∴m =4(2﹣1),∴AE =4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m 的值为83或2或8﹣42. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.23.如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D .(1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.。

2019-2020年中考数学模拟试题及答案(最新整理)

2019-2020年中考数学模拟试题及答案(最新整理)

S22019-2020 年中考数学模拟试题及答案一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.1.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为().A.5 B.6 C.7 D.82.下列运算正确的是()A.3x3-5x3=-2x B.6x3÷2x-2=3xC.()2=x6D.-3(2x-4)=-6x-123.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,54.如图,边长为6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()S1A.16 B.17 C.18 D.195.河堤横断面如图所示,堤高BC=6 米,迎水坡AB 的坡比为 1:,则AB 的长为()A.12 B.4 米C.5 米D.6 米6.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:k g/m2)与体积V(单位:m3)满足函数关系式ρ=k(kV为常数,k≠0),其图象如图所示,则k的值为()ρAO V第 5 题A.9 B.-9 C.4 D.-4X|k|B|1.c|O|m7.如图,▱A B C D的顶点A、B、D在⊙O上,顶点C在⊙O的直径B E上,∠A D C=54°,连接A E,则∠A E B的度数为()A、36°B、46°C、27°D63°8.将△D A E沿D E折叠,使点A落在对角线B D上的点A′处,则A E的长为.10A 、 10B 、 3C 、D 639.2013 年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是()y y y yOx Ox OA.B.C.x OD.x(第9 题图)10.如图,在等腰直角∆ABC 中,∠ACB =90O,O 是斜边AB 的中点,点D、E 分别在直角边AC、BC 上,且∠DOE = 90O,DE 交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)∆ABC 的面积等于四边形CDOE 面积的 2 倍;(3)CD +CE = 2OA ;(4)AD2+BE2= 2OP ⋅O C .其中正确的结论有()CED PA O B图 12图图A.1个B.2 个C.3 个D.4 个第Ⅱ卷(非选择题共 84 分)二、填空题:本大题共 8 小题,共 24 分,只要求填写最后结果,每小题填对得 4 分.11.已知实数a ,b 满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是12.如图6,R t△A B C的斜边A B=16,R t△A B C绕点O顺时针旋转后得到Rt∆A'B'C',则Rt∆A'B'C'的斜边A'B'上的中线C'D 的长度为.13.在一只不透明的口袋中放入红球 6 个,黑球 2 个,黄球n 个.这些球除颜色不同外,1其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球3总数n=.14.若一个一元二次方程的两个根分别是R t△A B C的两条直角边长,且S△A B C=3,请写出一个符合题意的一元二次方程.15.已知反比例函数y=6 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半x轴上一点,连接A O、A B,且A O=A B,则S△A O B=.16.如图,在⊙O中,过直径 AB 延长线上的点 C 作⊙O的一条切线,切点为 D,若A C=7,A B=4,则 s i n C的值为.DAO B C第16 题w W w.X k b1.c O m17.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20c m,到屏幕的距离为60c m,且幻灯片中的图形的高度为6c m,则屏幕上图形的高度为c m.18.如图在,平面直角坐标系中R,t△O A B的顶点A在x轴的正1半轴上顶,点B的坐标(为3,3 ),点C的坐标为(,0),点P为2斜边OB 上的一动点,则PA+PC 的最小值为.三、解答题:本大题共 7 小题,共 64 分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分 7 分,第⑴题 4 分,第⑵题 4 分)(1)计算:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0.(2)先简化,再求值:,其中x= .20.(本题满分 8 分)东营市某学校开展课外体育活动,决定开高A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.⑴样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;⑵请把条形统计图补充完整;⑶若该校有学生 1000 人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?21.(本题满分 9 分) 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.新课标第一网(2)若BD2=BE ⋅BC 试判断直线CD 与⊙O 的位置关系,并说明理由.22.(本题满分9分)如图,△A B C中,A B=B C,A C=8,t a n A=k,P为A C边上一动点,设P C=x,作 PE∥AB 交 BC 于 E,PF∥BC 交 AB 于 F.(1)证明:△P C E是等腰三角形;(2)E M、F N、B H分别是△P E C、△A F P、△A B C的高,用含x和k的代数式表示E M、F N,并探究 EM、FN、BH 之间的数量关系;(3)当 k=4 时,求四边形 PEBF 的面积 S 与 x 的函数关系式.x 为何值时,S 有最大值?并求出 S 的最大值.23.(本题满分 10 分) 某工厂投入生产一种机器的总成本为 2000 万元.当该机器生产数量至少为 10 台,但不超过 70 台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25 台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)z351555 75 a24.(本题满分 10 分)x(单位:台)102030y(单位:万元/台)605550如图一艘海上巡逻船在A 地巡航,这时接到B 地海上指挥中心紧急通知:在指挥中心北偏西60º方向的C地有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上.A地位于B地北偏调西75°方向上.A B两地之间的距离为12海里.求A.C两地之间的距离. (参考数据: 2 ≈l. 41, 3 ≈1.73, 6 ≈2.45.结果精确到0.1.)(m>0)与x轴25.(本题满分 12 分) 如图 1,已知抛物线的方程C1:y =-1 (x + 2)(x -m)m交于点B、C,与y 轴交于点E,且点B 在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△B C E的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△B C E 相似?若存在,求m 的值;若不存在,请说明理由.图 1数学试题参考答案与评分标准一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.1.【答案】B.2.【答案】C.3.【答案】A.4.【答案】B.5.【答案】B.6.【答案】:A.7.【答案】:A.8.【答案】A9.【答案】A10.【答案】C第Ⅱ卷(非选择题共 84 分)二、填空题:本大题共 8 小题,共 24 分,只要求填写最后结果,每小题填对得 4 分.11.【答案】100012.【答案】8.13.【答案】414.【答案】x2-5x+6=0215.【答案】6.16.【答案】:.17.【答案】:18.18.【答案】5 31 .2三、解答题:本大题共 7 小题,共 64 分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分 7 分,第⑴题 4 分,第⑵题 4 分)(1)计算:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0.解:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2 ﹣1,= +4﹣2 ﹣1,=3﹣.(2)先简化,再求值:,其中x=.解:原式= ·= ,当 x= +1 时,原式= = .20.【答案】:(1)40%,144新|课|标|第|一|网(2)如图:(3)1000 ⨯10% = 100 人.【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21.答案:⎨⎩ (1)证明: BD 为ΘO 的直径,∴∠DEB = ∠DFB = 90︒又 四边形ABCD 是平行四边形,∴ AD // BC .∴∠FBC = ∠DFB = 90︒, ∠EDA = ∠BED = 90︒∴四边形BEDF 为矩形. (2)直线CD 与ΘO 的位置关系为相切.理由如下: BD 2 = BE ⋅ BC ,∴ BD = BCBE BD∠DBC = ∠CBD ,∴∆BED ∴CD 与ΘO 相切.∆BDC ∴∠BDC = ∠BED = 90︒,即BD ⊥ CD .22. 【答案】(1)证明:∵A B =B C ,∴∠A=∠C ,∵P E ∥A B ,∴∠C P E =∠A ,∴∠C P E =∠C ,∴△P C E 是等腰三角形;(2) 解:∵△P C E 是等腰三角形,E M ⊥C P ,∴C M = C P = ,t a n C =t a n A=k ,∴E M =C M ·t a n C = ·k =,同理:F N =A N ·t a n A= ·k =4k ﹣ ,由于 B H =A H ·t a n A= ×8·k =4k ,而 E M +F N =+4k ﹣ =4k ,∴E M +F N =B H ;(3)解:当 k =4 时,E M =2x ,F N =16﹣2x ,B H =16,所以,S △P C E = x ·2x =x 2,S △A P F = (8﹣x )·(16﹣2x )=(8﹣x )2,S △A BC = ×8×16=64, S =S △A BC ﹣S △P C E ﹣S △A P F ,=64﹣x 2﹣(8﹣x )2,=﹣2x 2+16x , 配方得,S=﹣2(x ﹣4)2+32, 所以,当 x=4 时,S 有最大值 32.23. 【答案】:解:(1)设 y 与 x 的函数解析式为 y =kx +b ,⎧10k + b = 60,⎧k = - 1 , 根据题意,得 ⎨20k + b = 55, 解得 ⎪2 ⎪⎩b = 65.∴y 与 x 之间的函数关系式为 y = - 1x + 65 (10≤x ≤70).2(2)设该机器的生产数量为 x 台,根据题意,得 x ( - 1x + 65 )=2000,解得 x 1=50,x 2=80.∵2 10≤x ≤70,∴x =50.答:该机器的生产数量为 50 台.⎧55k + b = 35(3) 设销售数量 z 与售价 a 之间的函数关系式为 z =ka +b ,根据题意,得 ⎨75k + b = 15,⎧k = -1,解得 ⎨ ∴z =-a +90.⎩b = 90.⎩当z=25 时,a=65.设该厂第一个月销售这种机器的利润为w 万元,w=25×(65-2000 )=625(万元).5024【解】如图,过点B 作BD⊥CA,交CA 的延长线于点D,由题意,得∠A C B=60°-30°=30°.∠A B C=75°-60°=15°∴∠D A B=∠D B A=45°在R t⊿A D B中.A B=12.∠B A D=45°,∴B D=A D=AB cos 45 = 6 2在R t⊿B C D中,CD=BD=66 tan30∴AC = 6 6 - 6 2 ≈ 6.2 (海里)答:A C两地之间的距离约为6.2海里25.解答(1)将M(2,2)代入y=-1(x+2)(x-m),得2=-1⨯4(2-m).解得m=4.m m(2)当m=4时,y=-1(x+2)(x-4)=-1x2 +1x+2.所以C(4,0),E(0,2).4 4 2所以S△B C E=1BC⋅O E=1⨯6⨯2=6.2 2(3)如图 2,抛物线的对称轴是直线x=1,当H 落在线段EC 上时,BH+EH 最小.设对称轴与x 轴的交点为P,那么HP =EO .新|课|标|第| 一|网CP CO=因此HP =2 .解得HP =3 .所以点H 的坐标为(1, 3) .3 4 2 2(4)①如图3,过点B作E C的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠B C E=∠F B C,所以当CE=BC,即BC2=CE⋅BF时,△B C E∽△F B C.CB BF1(x + 2)(x -m)设点F 的坐标为(x, -1 (x + 2)(x -m)) ,由FF ' =EO ,得m=2 .m解得x=m+2.所以F′(m+2,0).BF ' CO x + 2 m 由CO =BF ',得m m + 4 .所以BF =(m +4)m2+ 4CE BF m2+ 4 BF m222(m + 4) m2+ 4由BC =CE ⋅BF ,得(m + 2) = m + 4 ⨯.m整理,得 0=16.此方程无解.图 2 图 3 图 4②如图4,作∠C B F=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠E B C=∠C B F,所以BE=BC,即BC2=BE⋅BF时,△B C E∽△B F C.BC BF在R t△B FF′中,由FF′=B F′,得1(x+2)(x-m)=x+2.m解得x=2m.所以F′(2m,0).所以B F′=2m+2,BF=2(2m+2).由BC 2=BE ⋅BF ,得(m + 2)2= 2 2 ⨯ 2(2m + 2) .解得m = 2 ± 2 2 .综合①、②,符合题意的m 为2 + 2 2 .2019-2020 年中考数学模拟试题含答案(精选 5 套).注意事项:1.本试卷分选择题和非选择题两部分. 在本试题卷上作答无效;2.答题前,请认真阅读答题卷上的注意事项;3.考试结束后,将本试卷和答题卷一并交回.一、选择题(本大题满分 36 分,每小题 3 分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用 2B 铅笔涂黑)1. 2 sin 60°的值等于3A. 1B.C. 222.下列的几何图形中,一定是轴对称图形的有D. 3圆弧角扇形菱形等腰梯形A. 5 个B. 4 个C. 3 个D. 2 个3.据2013 年1 月24 日《桂林日报》报道,临桂县 2012 年财政收入突破 18 亿元,在广西各县中排名第二. 将 18 亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104.估计8 -1 的值在A.0 到1 之间B. 1 到2 之间C. 2 到3 之间D. 3 至4 之间5.将下列图形绕其对角线的交点顺时针旋转 90°,所得图形一定与原图形重合的是A.平行四边形B. 矩形C. 正方形D. 菱形6.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是A. B. C. D.7.为调查某校 1500 名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有A. 1200 名B. 450 名C. 400 名D. 300 名8.用配方法解一元二次方程x2 + 4x –5 = 0,此方程可变形为A. (x + 2)2= 9B. (x - 2)2 = 9C. (x + 2)2= 1D. (x - 2)2=19.如图,在△ABC中,AD,BE 是两条中线,则 S△EDC∶S△ABC=A. 1∶2B. 1∶4C. 1∶3D. 2∶310.下列各因式分解正确的是(第 7 题图)(第 9 题图)A. x2 + 2x -1=(x - 1)2B. - x2 +(-2)2=(x - 2)(x + 2)C. x3- 4x = x(x + 2)(x - 2)D. (x + 1)2= x2 + 2x + 111.如图,AB 是⊙O的直径,点 E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为 3 A.3 B. 2 3C.D. 1212. 如图,△ABC 中,∠C = 90°,M 是 AB 的中点,动点 P 从点 A出发,沿 AC 方向匀速运动到终点 C ,动点 Q 从点 C 出发,沿CB 方向匀速运动到终点 B. 已知 P ,Q 两点同时出发,并同时到达终点,连接 MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大 B. 一直减小 C. 先减小后增大D. 先增大后减小(第 12 题图)二、填空题(本大题满分 18 分,每小题 3 分,请将答案填在答题卷上,在试卷上答题无效) 113. 计算:│- │=.314. 已知一次函数 y = kx + 3 的图象经过第一、二、四象限,则 k 的取值范围是.15. 在 10 个外观相同的产品中,有 2 个不合格产品,现从中任意抽取 1 个进行检测,抽到合格产品的概率是.16. 在临桂新区建设中,需要修一段全长 2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每天修路 x m ,则根据题意可得方程.17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单位称为 1 次变换. 如图,已知等边三角形ABC 的顶点 B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续 9 次这样的变换得到△A ′B ′C ′,则点 A 的对 应点 A ′ 的坐标是.18. 如图,已知等腰 Rt△ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角边,画第二个等腰 Rt△ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE ……依此类推直到第五个等腰 Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为 .(第 17 题图)(第 18 题图)三、解答题(本大题 8 题,共 66 分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分 8 分,每题 4 分)(1)计算:4 cos45°- 8 +(π- 3 )+(-1)3;n m(2)化简:(1 -m + n)÷m 2 - n 2 .20. (本小题满分 6 分)1 +x-x -1≤1,……①解不等式组: 2 33(x - 1)<2 x + 1. ……21.(本小题满分 6 分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线 BD 交AC 于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线 BD 后,求∠BDC的度数.(第 21 题图)22.(本小题满分 8 分)在开展“学雷锋社会实践”活动中,某校为了解全校 1200 名学生参加活动的情况,随机调查了 50 名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这 50 个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校 1200 名学生共参加了多少次活动.23.(本小题满分 8 分)如图,山坡上有一棵树 AB,树底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. 小宁在山脚的平地 F 处测量这棵树的高,点C 到测角仪 EF 的水平距离 CF = 1 米,从 E 处测得树顶部A 的仰角为 45°,树底部 B 的仰角为 20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第 23 题图)24.(本小题满分 8 分)如图,PA,PB 分别与⊙O 相切于点 A,B,点 M 在 PB 上,且OM∥AP,MN⊥AP,垂足为 N.(1)求证:OM = AN;(2)若⊙O 的半径 R = 3,PA = 9,求 OM 的长.(第 24 题图)25.(本小题满分 10 分)某中学计划购买 A 型和B 型课桌凳共 200 套. 经招标,购买一套 A 型课桌凳比购买一套 B 型课桌凳少用 40 元,且购买 4 套A 型和5 套B 型课桌凳共需 1820 元.(1) 求购买一套 A 型课桌凳和一套 B 型课桌凳各需多少元? (2) 学校根据实际情况,要求购买这两种课桌凳总费用不能超过 40880 元,并且购买 A 型课桌2 凳的数量不能超过 B 型课桌凳数量的 ,求该校本次购买 A 型和 B 型课桌凳共有几种方3案?哪种方案的总费用最低?26. (本小题满分 12 分)在平面直角坐标系中,现将一块等腰直角三角板 ABC 放在第二象限,斜靠在两坐标轴上,点 C 为(-1,0). 如图所示,B 点在抛物线 y = 1 x 2 - 1x – 2 图象上,过点 B2 2作 BD ⊥x 轴,垂足为 D ,且 B 点横坐标为-3. (1) 求证:△BDC ≌ △COA; (2) 求 BC 所在直线的函数关系式; (3) 抛物线的对称轴上是否存在点 P ,使△ACP 是以 AC 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.(第 26 题图)一、选择题2016 年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第 12 题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而 1降低难度,得出答案. 当点 P ,Q 分别位于 A 、C 两点时,S △MPQ = S △ABC ;当点 P 、Q 分别运动到 AC ,BC 21 1 1 11的中点时,此时,S △MPQ = × AC.BC = S △ABC ;当点 P 、Q 继续运动到点 C ,B 时,S △MPQ = S △ABC ,22 24 2故在整个运动变化中,△MPQ 的面积是先减小后增大,应选 C.二、填空题 14 82400 240013.; 14. k <0; 15.(若为扣 1 分); 16.-= 8;3510 31 x(1 20%)x17. (16,1+三、解答题3 ); 18. 15.5(或 ).22 19. (1)解:原式 = 4×-2 22 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分)= 0 .................................. 4 分m +n n m2-n2(2)解:原式 =(- )· ................................... 2分m +n m +n mm (m +n)(m -n)= ·.......................... 3 分m +n m= m –n ............................................................. 4分20. 解:由①得3(1 + x)- 2(x-1)≤6,............................... 1 分化简得x≤1. .......................................................................3 分由②得3x – 3 < 2x + 1, ................................................ 4 分化简得x<4. .......................................................................5 分∴原不等式组的解是x≤1. ...............................................6 分21.解(1)如图所示(作图正确得 3 分)(2)∵BD 平分∠ABC,∠ABC = 72°,1∴∠ABD = ∠ABC = 36°,......................................... 4 分2∵AB = AC,∴∠C =∠ABC = 72°,........................... 5 分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36°= 72°. ........ 6 分22.解:(1)观察条形统计图,可知这组样本数据的平均数是_ 1⨯ 3 + 2 ⨯ 7 + 3⨯17 + 4 ⨯18 + 5 ⨯5x = =3.3,................... 1 分50∴这组样本数据的平均数是3.3. ..................... 2 分∵在这组样本数据中,4 出现了 18 次,出现的次数最多,∴这组数据的众数是4. ........................... 4 分3 + 3∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有=23.∴这组数据的中位数是3. .............. 6 分(2)∵这组数据的平均数是 3.3,∴估计全校 1200 人参加活动次数的总体平均数是 3.3,有 3.3×1200 = 3900.∴该校学生共参加活动约3960 次 ............................... 8分23.解:在Rt△BDC中,∠BDC = 90°,BC = 6 3米,∠BCD = 30°, ∴DC = BC ·cos30° ............................................ 1 分3 = 6 3 ×= 9,..................................... 2 分2∴DF = DC + CF = 9 + 1 = 10,… ....................... 3 分 ∴GE = DF = 10. ......................... 4 分 在 Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° .......................................... 5 分=10×0.36=3.6, ....................................... 6 分 在 Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ............................................... 7 分 ∴AB = AG – BG = 10 - 3.6 = 6.4. 答:树 AB 的高度约为 6.4 米 ........................... 8 分24. 解(1)如图,连接 OA ,则 OA⊥AP. .............. 1 分∵MN ⊥AP ,∴MN ∥OA. ........................ 2 分 ∵OM ∥AP ,∴四边形 ANMO 是矩形.∴OM = AN. .................................... 3 分 (2)连接 OB ,则 OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ...................... 5 分 ∴OM = MP. 设 OM = x ,则 NP = 9- x............................................ 6 分在 Rt △MNP 中,有 x 2 = 32+(9- x )2. ∴x = 5. 即 OM = 5 ..........................8 分25. 解:(1)设 A 型每套 x 元,则 B 型每套(x + 40)元 ............................. 1 分∴4x + 5(x + 40)=1820. ............................... 2 分 ∴x = 180,x + 40 = 220. 即购买一套 A 型课桌凳和一套 B 型课桌凳各需 180 元、220 元 ........................ 3 分 (2)设购买 A 型课桌凳 a 套,则购买 B 型课桌凳(200 - a )套.a ≤ 2(200 - a ),3∴ ........................................................................................... 4 分 180 a + 220(200- a )≤40880. 解得 78≤a ≤80. ............................... 5 分 ∵a 为整数,∴a = 78,79,80 ∴共有 3 种方案 .................................................................... 6 分 设购买课桌凳总费用为 y 元,则y = 180a + 220(200 - a )=-40a + 44000. ............ 7 分 ∵-40<0,y 随 a 的增大而减小, ∴当 a = 80 时,总费用最低,此时 200- a =120. ........... 9 分即总费用最低的方案是:购买A 型80 套,购买B 型120 套 ......................................... 10 分⎩2一、选择题2016 年中考数学模拟试题(二)1、 数-1, 5, 0, 2 中最大的数是()A 、 -1B 、 5C 、0D 、 222、9 的立方根是() A 、 ±3B 、3C 、 ± 3 9D 、 392 主视图左视图3、已知一元二次方程 x 2 - 4x + 3 = 0 的两根 x 1 、 x 2 ,则 x 1 + x 2 = () A 、4 B 、3 C 、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为 2 B 、几何体是圆锥体,高为 2 C 、几何体是圆柱体,半径为 2 D 、几何体是圆柱体,半径为 25、若 a > b ,则下列式子一定成立的是()俯视图A 、 a + b > 0B 、 a - b > 0C 、 ab > 0D 、 a> 0bAB 6、如图 AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80°C 、60°D 、100°7、已知 AB 、CD 是⊙O 的直径,则四边形 ACBD 是() A 、正方形B 、矩形C 、菱形D 、等腰梯形ED⎧x + 3 > 08、不等式组⎨-x ≥ -2 的整数解有()A 、0 个B 、5 个C 、6 个D 、无数个9、已知点 A (x 1, y 1), B (x 2 , y 2 ) 是反比例函数 y = x图像上的点,若 x 1 > 0 > x 2 , A 则一定成立的是() A 、 y 1 > y 2 > 0 C 、0 > y 1 > y 2B 、 y 1 > 0 > y 2 D 、 y 2 > 0 > y 1OO ‘B10、如图,⊙O 和⊙O ′相交于 A 、B 两点,且 OO’=5,OA=3, O’B =4,则 AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 A 12、计算: -m 3 ÷ m =13、分解因式: 3x 2- 3y 2=BC14、如图,某飞机于空中 A 处探测到目标 C ,此时飞行高度 AC=1200 米,从飞机上看地面控制点 B的俯角= 20︒,则飞机 A 到控制点 B 的距离约为 。

11.中考数学专题06 2019-2020学年八年级上册期中模拟(一)(解析版)

11.中考数学专题06  2019-2020学年八年级上册期中模拟(一)(解析版)

2019-2020学年八年级上册期中模拟(一)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(2018•路桥区期中)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【答案】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.(2018秋•宜兴市期中)下列结论中不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个成轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.有斜边和一锐角相等的两个直角三角形全等【分析】根据轴对称的性质对A、C进行判断;根据轴对称的定义对B进行判断;根据全等三角形的判定方法对D进行判断.【答案】解:A、两个关于某直线对称的图形一定全等,所以A选项的结论正确;B、对称图形的对称点可能在对称轴的两侧,也可能都在对称轴上,所以B选项的结论错误;C、两个成轴对称的图形对应点的连线的垂直平分线是它们的对称轴,所以C选项的结论正确;D、有斜边和一锐角相等的两个直角三角形全等,所以D选项的结论正确.故选:B.【点睛】本题考查了轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.(2018秋•宜兴市期中)等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是()A.28°B.118°C.62°D.62°或118°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【答案】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°﹣28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故选:D.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.4.(2018秋•睢宁县期中)如图,AB∥CD,AD∥BC.图中全等三角形共有()A.2对B.3对C.4对D.5对【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【答案】解:∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,∴△AOB≌△COD(SSS),△AOD≌△COB(SSS),△ABC≌△CDA(SSS),△ABD≌△CDB(SSS).故图中的全等三角形共有4对.故选:C.【点睛】此题主要考查全等三角形的判定方法,常用的判定方法有AAS,SAS,SSS,ASA等.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.5.(2018秋•丹阳市期中)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【答案】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.6.(2019春•莒南县期中)下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【答案】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、化简后有b2=a2+c2,根据勾股定理,则△ABC是直角三角形,故正确;C、解得应为∠B=60度,是等边三角形,故错误.D、设三边分别为5x,3x,4x,根据勾股定理,a2=c2+b2,则△ABC是直角三角形,故正确;故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法,难度不大.7.(2018秋•仪征市期中)如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为()A.B.C.D.﹣1【分析】直接利用勾股定理得出PC的长,进而得出答案.【答案】解:由题意可得:PC=2,BC=1,则在Rt△PCB中,PC2+BC2=PB2,故PB=,则PD=,故点D表示的数为:﹣1.故选:D.【点睛】此题主要考查了勾股定理,正确得出PC的长是解题关键.8.(2019秋•滨湖区校级期中)如图,D为△ABC边BC上一点,AB=AC,且BF=CD,CE=BD,则∠EDF等于()A.90°﹣∠A B.90°﹣∠A C.180°﹣∠A D.45°﹣∠A【分析】由AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD与三角形DEC全等,利用全等三角形对应角相等得到一对角相等,即可表示出∠EDF.【答案】解:∵AB=AC,∴∠B=∠C,在△BFD和△EDC中,,∴△BFD≌△EDC(SAS),∴∠BFD=∠EDC,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣=90°+∠A,则∠EDF=180°﹣(∠FDB+∠EDC)=90°﹣∠A.故选:A.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.9.(2018秋•睢宁县期中)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线a、b、c上,且a、b之间的距离为1,b、c之间的距离为2,则AC2=()A.13B.20C.25D.26【分析】过A作AE⊥c于E,过C作CF⊥c于F,求出∠AEB=∠CFB,∠EAB=∠CBF,根据AAS证△AEB≌△BFC,推出AE=BF=2,BE=CF=3,由勾股定理求出AB和BC,再由勾股定理求出AC即可.【答案】解:过A作AE⊥c于E,过C作CF⊥c于F,则∠AEF=∠CFB=∠ABC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∵∠EAB+∠ABE=90°,∴∠EAB=∠CBF,∵在△AEB和△BFC中∵,∴△AEB≌△BFC(AAS),∴AE=BF=2,BE=CF=2+1=3,由勾股定理得:AB=BC==,由勾股定理得:AC2=AB2+BC2=26,故选:D.【点睛】本题考查的知识点有两平行线间的距离,全等三角形的性质和判定,勾股定理,解此题的关键是构造全等三角形求出AB和BC的长.10.(2018秋•江都区期中)如图,设正方体ABCD﹣A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0B.C.D.1【分析】先确定黑、白两个甲壳虫各爬行完第2018条棱分别停止的点,再根据停止点确定它们之间的距离.【答案】解:根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.白甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判断两个甲壳虫爬行一圈都是6条棱,因为2018÷6=336…2,所以黑、白两个甲壳虫各爬行完第2018条棱分别停止的点是D1,B1,根据勾股定理,得它们之间的距离是=,故选:B.【点睛】此题考查了勾股定理,规律型:图形的变化类.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•江都区期中)△ABC,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是8cm.【分析】由题意可得∠BAD=∠ABD=45°,可得AD=BD,由余角的性质可得∠DAC=∠EBC,可证△BDF≌△ADC,可得AC=BF=8cm.【答案】解:∵∠ABC=45°,AD⊥BC∴∠BAD=∠ABD=45°,∴AD=BD,∵AD⊥BC,BE⊥AC∴∠C+∠DAC=90°,∠C+∠EBC=90°,∴∠DAC=∠EBC,且AD=BD,∠ADC=∠ADB=90°∴△BDF≌△ADC(ASA)∴AC=BF=8cm故答案为:8cm【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.12.(2018秋•江都区期中)如图,在△ABC中,DM、EN分别垂直平分AC和BC交AB于M、N,∠ACB =118°,则∠MCN的度数为56°.【分析】据三角形内角和定理求出∠A+∠B;根据等腰三角形性质得∠ACM+∠BCN的度数,然后求解.【答案】解:∵∠ACB=118°,∴∠A+∠B=62°.∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠ACM+∠BCN=62°.∴∠MCN=∠ACB﹣(∠ACM+∠BCN)=118°﹣62°=56°.故答案为:56°.【点睛】此题考查了线段垂直平分线性质、三角形内角和定理等知识点,渗透了整体求值的思想方法,难度不大.13.(2018秋•丹阳市期中)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=3,则△ADE的周长是8.【分析】由平行和角平分线证得OD=BD,OE=EC,则△ADE的周长为AB+AC,可求得周长.【答案】解:∵DE∥BC,∴∠DOB=∠OBC,∵BO平分∠ABC,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴DO=BD,同理可得EO=EC,∴AD+DE+AE=AD+DO+OE+AE=AD+BD+EC+AE=AB+AC=5+3=8,即△ADE的周长为8,故答案为:8.【点睛】本题主要考查等腰三角形的判定和性质,由条件证得DO=DB、EO=EC是解题的关键.14.(2018秋•丹阳市期中)如图,在等腰Rt△ABC中,∠C=90°,点F是AB的中点,且AC=2,将一块直角三角板的直角顶点放在点F处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE的值为2.【分析】连接CF,结合等腰直角三角形的性质可证明△ADF≌△CFE,可证得AD=CE,则可求得CD+CE =AC=2.【答案】解:连接CF,∵在等腰直角△ABC中,∠C=90°,点F是AB的中点,∴CF=AF,∠A=∠FCB=45°,且∠AFC=90°,∵∠DFE=90°,∴∠AFD+∠DFC=∠DFC+∠CFE=90°,∴∠AFD=∠CFE,在△ADF和△CFE中∴△ADF≌△CFE(ASA),∴AD=CE,∴CD+CE=CD+AD=AC=2,故答案为:2【点睛】本题主要考查等腰直角三角形的性质和全等三角形的判定和性质,连接CF,构造三角形全等,证得AD=CE是解题的关键.15.(2018秋•宜兴市期中)等边△ABC内一点P,P到三角形三边的距离分别为a、b、c,则△ABC的高为a+b+c.(结果用含有a、b、c的式子表示)【分析】连接P A、PB、PC,根据△ABP、△BCP、△ACP的面积和等于△ABC的面积,由等边三角形的三边相等,即可得出结论.【答案】解:连接P A、PB、PC,如图所示:∵S△ABP+S△BCP+S△ACP=S△ABC,∴AB•PE+BC•PD+AC•PF=BC•AD,∵△ABC是等边三角形,∴AB=BC=AC,∴BC(PE+PF+PG)=BC•AD,∴PE+PG+PF=AD,∴△ABC的高为a+b+c,故答案为a+b+c.【点睛】本题主要考查了等边三角形的性质以及三角形面积的计算方法;通过作辅助线,根据三角形面积相等得出结论是常用的方法.16.(2018秋•仪征市期中)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM =PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的序号为(1)(2)(3).【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明Rt△POE≌Rt△POF,△PEM≌△PFN,即可一一判断.【答案】解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在Rt△POE和Rt△POF中,,∴Rt△POE≌Rt△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,∵M,N的位置变化,∴MN的长度是变化的,故(4)错误,故答案为:(1)(2)(3)【点睛】本题考查全等三角形的性质、角平分线的性质定理、四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三.解答题(共6小题,满分46分)17.(6分)(2018秋•高淳区期中)已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.【分析】(1)根据SAS即可证明△ACB≌△DEF.(2)利用全等三角形的性质即可证明.【答案】证明:(1)证明:∵AB∥ED,∴∠A=∠D,∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ACB≌△DEF.(2)∵△ACB≌△DEF∴∠BCF=∠EFD,∴BC∥EF.【点睛】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是熟练应用全等三角形的判定和性质解决问题,属于基础题中考常考题型.18.(6分)(2018秋•仪征市期中)如图,方格纸中每个小方格都是边长为1个单位的正方形,已知△ABC 的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线a对称;(2)求出△A1B1C1的面积;(3)在直线a上画出点P,使P A+PC最小,最小值为.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用分割法求面积即可;(3)如图连接A,C1交直线a于于点P,连接PC.此时P A+PC的值最小,利用勾股定理切线最小值即可;【答案】解:(1)△A1B1C1如图所示;(2)S△ABC=2×2﹣×1×1﹣×1×2﹣×1×2=.(3)如图连接A,C1交直线a于于点P,连接PC.此时P A+PC的值最小.最小值=AC1==.故答案为.【点睛】本题考查作图﹣轴对称变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)(2018秋•仪征市期中)如图,△ABC中,AE是高,ED是AB边上的中线,连接CD,EF垂直平分CD,垂足为F.(1)若AE=6,BE=8,求EC的长;(2)若∠ADC=66°,求∠BCD的度数.【分析】(1)用勾股定理求出AB,再利用斜边中线的性质求出ED,再根据线段的垂直平分线的性质解决问题即可.(2)设∠EDC=∠ECD=x,则∠DEB=∠EDC+∠ECD=2x,证明∠B=∠DEB=2x,构建方程解决问题即可.【答案】解:(1)∵AE⊥BC,∴∠AEB=90°,∴AB===10,∵AD=DB,∴DE=AB=5,∵EF垂直平分线段CD,∴EC=ED=5,(2)设∠EDC=∠ECD=x,则∠DEB=∠EDC+∠ECD=2x,∵DE=DB,∴∠B=∠DEB=2x,∵∠ADC=∠B+∠DCE=3x,∴3x=66°,∴x=22°,∴∠BCD=22°.【点睛】本题考查勾股定理,线段的垂直平分线的性质,直角三角形斜边中线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.20.(8分)(2018秋•仪征市期中)如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC,过点A作AC的垂线交CN于点P.(1)若∠APC=30°,求证:AB=AP;(2)若AP=4,BP=8,求AC的长;(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M.你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.【分析】(1)由∠APC=30°,∠CAP=90°得∠ACP=60°,∠BAC=30°,所以∠ABP=30°,进而可得∠ABP=∠APC,即AB=AP;(2)设AC=x=BC,由勾股定理建立方程得x2+42=(8﹣x)2求出x的值,即可求出AC的长;(3)∠AMP的大小不发生变化,由∠AMP=∠B+∠APC=∠ACP+∠APC=(∠ACP+∠APC)=45°进而可得结论.【答案】解:(1)∵AC⊥AP,∴∠CAP=90°,∵∠APC=30°,∴∠ACP=60°,∴∠BAC=30°,∴∠ABP=30°,∴∠ABP=∠P,∴AB=AP;(2)∵∠BAC=∠ACP,∠B+∠BAC=∠ACP,∴∠B=∠BAC,∴AC=BC,设AC=x=BC,在Rt△ACP中,由勾股定理得:x2+42=(8﹣x)2解得x=3,所以AC=3;(3)∠AMP的大小不发生变化,理由如下:∵∠AMP=∠B+∠APC=∠ACP+∠APC,=(∠ACP+∠APC)=×90°=45°,∴∠AMP是一个定值,即不发生变化.【点睛】本题考查了勾股定理、等腰三角形的判定和性质、三角形外角性质以及解一元二次方程的综合运用,依据直角三角形勾股定理列方程是解题关键.21.(8分)(2019秋•宝应县期中)如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC 上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=20°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.【分析】(1)利用三角形的外角的性质得出答案即可;(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;(3)根据等腰三角形的判定以及分类讨论得出即可.【答案】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=60°﹣40°=20°,故答案为:20;(2)当DC=2时,△ABD≌△DCE;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中,.∴△ABD≌△DCE(ASA);(3)当∠BAD=30°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=30°,∴∠DAE=70°,∴∠AED=180°﹣40°﹣70°=70°,∴DA=DE,这时△ADE为等腰三角形;当∠BAD=60°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=60°,∠DAE=40°,∴EA=ED,这时△ADE为等腰三角形.【点睛】此题主要考查了全等三角形的判定与性质和三角形内角和定理以及等腰三角形的性质等知识,根据已知得出△ABD≌△DCE是解题关键.22.(10分)(2018秋•宜兴市期中)【初步探索】(1)如图1,AD是△ABC的中线,探究AB+AC与2AD的大小关系.小明同学探究此问题的方法是:延长AD至点E,使DE=AD,连接BE,先证明△ADC≌△EDB,可得出结论,他的结论应是AB+AC>2AD【灵活运用】(2)如图2,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,求证:BE+CF>EF.【拓展延伸】(3)如图3,AD为△ABC的角平分线,直线MN⊥AD于点A.点E为MN上一点(与点A不重合),△ABC周长记为a,△EBC周长记为b,比较a与b的数量关系并证明.【分析】(1)根据全等三角形的判定定理和三角形的三边关系解答即可;(2)延长FD至G,使得GD=DF,连接BG,EG,根据全等三角形的判定定理和三角形的三边关系解答即可;(3)分两种情况进行解答即可.【答案】解:(1)延长AD至点E,使DE=AD,连接BE,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC,∵AB+BE>AD+DE,∴AB+AC>2AD.故答案为:AB+AC>2AD;(2)延长FD至G,使得GD=DF,连接BG,EG 在△DFC和△DGB中,,∴△DFC≌△DGB(SAS),∴BG=CF,∵在△EDF和△EDG中∴△EDF≌△EDG(SAS),∴EF=EG,在△BEG中,两边之和大于第三边,∴BG+BE>EG又∵EF=EG,BG=CF,∴BE+CF>EF(3)①点E在点A右侧时(4)延长BA到F,使AF=AC,连接EF,∠F AE=∠MAB=90°﹣∠BAD=90°﹣∠CAD=∠CAE,在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴CE=EF∵BE,EF,BF为△BEF三边,∴BE+EF>BF,∴BE+CE>AB+AF,∴BE+CE>AB+AC,∴BC+BE+CE>BC+AB+AC即b>a②点E在点A左侧时,同理b>a.综上,b>a【点睛】本题考查的是全等三角形的判定和性质、三角形三边关系,掌握全等三角形的判定定理和性质定理是解题的关键.。

2019-2020年初中毕业生学业模拟考试数学试题及答案

2019-2020年初中毕业生学业模拟考试数学试题及答案

k 20、已知反比例函数 y=x 的图象与一次函数 y= kx+ b 的图象相交于点( 2,1),
( 1)分别求出这两个函数的解析式 . ( 2)这两个函数的图象还有其他交点吗?若有,求出另一个交点的坐标,若没有,请 说明理由 .
21、如图, A 、B 两地之间有一座山,汽车原来从 A 地到 B 地须经 C 地沿折线 A —C— B

12、如图,⊙ O 的半径为 2,C1是函数 y= x2 的图象, C2 是函数 y=- x2 的
图象,则阴影部分的面积是

.
13、一组按规律排列的式子: a b2,a2 b5,a3 b8,a4 b11,……( ab≠0),
其中第七个式子是 ▲ ,第 n 个式子是 ▲ . ( n 为正整数)
三、解答题 (本大题共 5 小题,每小题 7 分,共 35 分)
B、等边三角形
C、平行四边形
D. 、梯形
6、如图,在△ ABC 中, C 90。,EF//AB, 1 50。,则∠ A 的度数为:
A 、60°
B 、50°
C、40°
D 、 30°
7、如图,⊙ O 的半径 OC= 5cm ,直线 l ⊥OC,垂足为 H,且 l 交⊙ O 于 A 、B 两点, AB= 8cm ,若 l 要与⊙ O 相切,则要沿 OC 所在直线向.下.平移:
第 12 题图
14、计算: (2010-
)0+(
1 3
) -1-
3 tan60°+ 16 ÷ (-2) 2
x2+ 2x+1
x2- 1
1
15、 化简求值:
x+2 ÷ x-1 - x+2
其中 x=2
16、如图, E、 F 分别是 □ABCD 的边 BA 、DC 延长线上的点,且 AE= CF,EF 交 AD 于

2019-2020年中考数学模拟试卷含答案解析

2019-2020年中考数学模拟试卷含答案解析

2019-2020年中考数学模拟试卷含答案解析2019-2020年中考数学模拟试卷含答案解析一、选择题(每小题3分,共计30分)1.若a=-2,则|a|的值是(2)。

2.下列运算正确的是(D):(ab2)2=a2b4.3.下列图形中,既是轴对称图形又是中心对称图形的是(D)。

4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是(C)。

5.n是非零常数,两点如图,正比例函数y=mx与反比例函数y=n/x的图象交于A、B两点。

若点A的坐标为(1,2),则点B的坐标是(B):(-2,-1)。

6.如图,河提横断面迎水坡AB的斜坡坡度i=1:3是指破面的铅直高度BC与水平宽度AC的比,若堤高BC=5m,则坡面AB的长度是(D):10m。

7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是(C):___。

8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务。

设原来平均每天生产x个书桌,下面所列方程正确的是(A):(280/2-x*7)/(x+21)=7.9.如图,将△ABC绕点A逆时针旋转80°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接BB′,若∠B′BC=20°,则∠BB′C′的大小是(D):76°。

10.___和___在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知___先出发2秒,在跑步的过程中,___和___的距离y (米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②___发100秒时到达了终点;③___出发125秒时到达了终点;④___发20秒时,___在小明前方10米。

2020年中考数学热点专练八动态几何问题(江苏版)(解析版)

2020年中考数学热点专练八动态几何问题(江苏版)(解析版)

2020年中考数学热点专练八动态几何问题(江苏版)(解析版)专题导读动态几何问题,是近年来的热点问题.它几乎成了每个城市中考试卷中的亮点,拿到一套试卷,总是习惯先看看有没有关于动态几何的问题.动态几何问题也就是关于图形运动的一类问题,它主要是牵扯到图形的三种变换:平移、旋转、轴对称及动点问题.当然考查图形的运动问题有小题,也有大题,小题主要分布在选择和填空的最后一两个题,也就是小压轴题,解答题中也会有关于图形的运动问题,主要有两类,一类是关于平移、旋转、轴对称的作图,这个比较简单,我们这里就不说了;另一类就是我们介绍的重点一一研究图形在运动过程中产生的一些图形性质上的变化和不变的情况.这几乎成了压轴题基本上共同的特点.中考要求中考要求课程标准和中考说明都要求学生要具备一定的用运动观点分析问题的能力.学会在运动变化中寻求不变的图形性质.学会运用函数的观点研究关于图形运动中性质的变化情况.专题集训考向1图形的运动与最值1.(2019江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作。

与直线相切,点P是QC±一个动点,连接AP交于点T,则业的最大值是AT2.(2019江苏省无锡市)如图,在AABC中,AB=AC=5,BC=4逐,D为边AB上一动点(3点除外),以CD为一边作正方形CDEF,连接8E,则ABDE面积的最大值为.3.(2019江苏省宿迁市)如图,ZMAN^60°,若△ABC的顶点3在射线AM上,且A3=2,点。

在射线AN上运动,当AABC是锐角三角形时,BC的取值范围是.4.(2019江苏省宿迁市)如图,正方形ABCQ的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.5.(2019江苏省扬州市)如图,己知等边△ABC的边长为8,点F是边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B'.(1)如图1,当PB=4时,若点可恰好在AC边上,则菌,的长度为;(2)如图2,当PB=5时,若直线1〃AC,则33,的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,AACB'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求可面积的最大值.6.(2019江苏省苏州市)已知矩形ABCD AB=5cm,点F为对角线AC上的一点,且AP =26cm.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为I(s),A4PM的面积为S(enF),S与f的函数关系如图②所示:(1)直接写出动点M的运动速度为cm/s,BC的长度为cm-,(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点£>出发,在矩形边上沿着D t C t B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M、N经过时间x(s)在线段BC上相遇(不包含点C),动点N相遇后立即停止运动,记此时AARW与AZJRV的面积为5](<?麻),$2(伽2).①求动点N运动速度v(cm/s)的取值范围;②试探究S] .S?是否存在最大值.若存在,求出S|・S2的最大值并确定运动速度时间x的值;若不存在,请说明理由.(B®)7.(2019江苏省扬州市)如图,四边形A3CD是矩形,A3=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,ZG=90°.点M在线段AB上,且AM=a,点P沿折线AQ-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ//AQ.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点F在线段AD上时,若四边形AMQF的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段ZJG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.考向2动点与函数的结合问题1.(2019江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L:y^x+bx+c过点C(0,-3),与抛物线£2:-lx2-旦t+2的一个交点为A,且点A的横坐标为2,点22P、Q分别是抛物线3、3上的动点.(1)求抛物线3对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点F的坐标;(3)设点R为抛物线3上另一个动点,且CA平分ZPCR.若OQ//PR,求出点。

2020年中考模拟检测《数学试题》附答案解析

2020年中考模拟检测《数学试题》附答案解析

中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .12.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 3.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B. C. D.4.(2019·山西)五台山景区空气清爽,景色宜人."五一"小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,"五一"小长假期间五台山景区进山门票总收入用科学记数法表示为( ) A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元5.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 6.(2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 17. (2019·泰安)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为A.15B.25C.35D.458.(2019·衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A. 9(1-2x )=1 B. 9(1-x )2=1 C. 9(1+2x )=1 D. 9(1+x )2=19.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是 A .2(4)6y x =-- B .2(1)3y x =-- C .2(2)2y x =--D .2(4)2y x =--10.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长 BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =14-④1DH HC =.则其中正确的结论有( ) A.①②③B.①②③ ④C.①②④D.①③④二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.(2019·德州)|x ﹣3|=3﹣x ,则x 的取值范围是 . 12.(2019 · 柳州)如图,在△ABC 中,sin B =,tan C =,AB =3,则AC 的长为 .13.(2019•广安)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.14.(2019·宁波)如图,Rt △ABC 中,∠C =90°,AC =12 ,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的e P 与△ABC 的一边相切时,AP 的长为________.三、简答题 (本题共2小题,每题8分,共16分) 15.(2019·凉山)计算:tan45° + (3-2)0-(-21)-2+ ︱3-2︱. 16.(2019·无锡)解方程:0522=--x x 四(本题共2小题,每题8分,共16分) 17.(2019·安徽)观察以下等式:第1个等式:211=111+, 第2个等式:311=226+,第3个等式:211=5315+,第4个等式:211 =7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.五、(本题共2小题,每题10分,共20分)19.(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=13(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)32≈1041)30°60°楼房i=1:3ADE20.(2019·南充)如图,在ABC∆中,以AC为直径的Oe交AB于点D,连接CD,BCD A∠=∠.(1)求证:BC是Oe的切线;(2)若5BC=,3BD=,求点O到CD的距离.六.(本题满分12分)21.(2019 ·荆州)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率1 0≤x<10 5 0.12 10≤x<20 21 0.423 20≤x<30 a4 30≤x<40 b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.七、(本题满分12分)22.(2019浙江省杭州市)设二次函数y=(x-x1)(x-x2)( x1,x2是实数)(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=-12.若甲求得的结果都正确·你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值.(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时.求证: 0<mn<1 16.八、(本题满分14分)23、(2019·海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),射线PE 与BC 的延长线交于点Q. (1)求证:△PDE ≌△QCE;(2)过点E 作EF ∥BC 交PB 于点F,连接AF,当PB =PQ 时,①求证:四边形AFEP 是平行四边形;②请判断四边形AFEP 是否为菱形,并说明理由.答案与解析一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .1 【答案】A【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.-5<-3<-1<0<1,所以比-3小的数是-5,故本题选:A .2.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。

2020年中考数学模拟试题(八)有答案

2020年中考数学模拟试题(八)有答案

2020年中考模拟试题(八)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。

2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。

3. 考试结束后,将本试卷保管好并将答题卡上交。

一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣12.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b23.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105 4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12 B.6C.4D.38.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.29.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4 10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.在函数y=中,自变量x的取值范围是.12.分解因式:a2b+4ab+4b=.13.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;19.先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.2020年中考数学模拟试题(八)参考答案一.选择题(共10小题)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣2020与﹣1即可.【解答】解:∵﹣2020<﹣1<0<,∴最小的数是﹣2020.故选:A.2.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b2【分析】根据合并同类项、积的乘方、单项式的除法和完全平方公式判断即可.【解答】解:A、5ab与﹣3b不是同类项,不能合并,选项错误,不符合题意;B、(﹣3a2b)2=9a4b2,选项错误,不符合题意;C、a3•b÷a=a2b,选项正确,符合题意;D、(2a+b)2=4a2+4ab+b2,选项错误,不符合题意;故选:C.3.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:19.71万=19710000=1.971×105,故选:D.4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.【解答】解:根据题意,得:.故选:C.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.6C.4D.3【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为12,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=6=k,故选:B.8.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.2【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵直线PQ是矩形ABCD的一条对称轴,∴∠DGF=90°,CD∥PQ,DG=AD,由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,∴∠CFD=90°,∵EF=CF,∴∠EDF=∠CDF,∴∠ADE=∠EDF=∠CDF=30°,∴EF=DF,∴EC=AD,∵S△DEC=4,∴AD×AD÷2=4,解得AD=2.故选:D.9.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2±(舍去负数),则x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.【分析】根据图象的对称性,确定图象的对称性即可求解.【解答】解:由题意知,FP+PB1关于BB1对称,故可知y关于x的函数图象关于直线x=1对称,故选:B.二.填空题(共7小题)11.在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.分解因式:a2b+4ab+4b=b(a+2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2+4a+4)=b(a+2)2,故答案为:b(a+2)213.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为π.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.【解答】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为16或22.【分析】先计算判别式的值得到△=(k﹣1)2≥0,利用求根公式得到x1=k+1,x2=2k,根据等腰三角形的性质讨论:当k+1=2k或k+1=6或2k=6时,分别计算出对应的k的值得到b、c的值,然后根据三角形三边的关系和三角形周长的定义求解.【解答】解:根据题意得△=(3k+1)2﹣4(2k2+2k)=(k﹣1)2≥0,所以x=,则x1=k+1,x2=2k,当k+1=2k时,解得k=1,则b、c的长为2,而2+2<6,不合题意舍去;当k+1=6时,解得k=5,则2k=10,此时三角形的周长为6+6+10=22;当2k=6时,解得k=3,则k+1=4,此时三角形的周长为6+6+4=16.综上所述,△ABC的周长为16或22.故答案为16或22.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为2.【分析】依据S△P AB=S△PCD,即可得出点P在BC的垂直平分线上,进而得到PB=PC,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,依据勾股定理求得BD的长,即可得到PC+PD的最小值为2.【解答】解:∵点P是矩形ABCD内一动点,且S△P AB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019.【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共23小题)18.(1)计算:(﹣)﹣1+﹣|π﹣3|﹣;(2)因式分解:a3﹣2a2b+ab2.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣3+﹣(π﹣3)﹣=﹣3+﹣π+3﹣=﹣π;(2)原式=a(a2﹣2ab+b2)=a(a﹣b)2.19.(1)计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;(2)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.【分析】(1)直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案;(2)直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=1+﹣1﹣2×+﹣1=﹣1;(2)原式====,由不等式组,解得:﹣2≤x≤2,∵x+1≠0,(2+x)(2﹣x)≠0,∴x≠﹣1,x≠±2,∴当x=0时,原式==1.(或当x=1时,原式==).20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意豆花的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵DC=13m,BD=5m,∴CB==12(m).答:CB的长度为12m.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?【分析】(1)求出参加高中声乐的人数即可补充条形统计图;由参加器乐和声乐的总人数看分别求出其所占的百分比则扇形统计图可补充完整;(2)首先求出参加各个项目的初中总人数即可得到参加“书法”项目的学生所占的百分比;(3)求出参加“器乐”项目的高中学生所占百分比,即可估计1500名学生中参加“器乐”项目的高中学生的人数;(4)记两名高中学生为A,B,两名初中学生为a,b.列表得到所有可能结果,进而可求出正好抽到一名初中学生和一名高中学生的概率.【解答】解:(1)补全条形统计图和扇形统计图如下:(2).答:该校初中学生中,参加“书法”项目的学生占45%.(3)(人).答:该校参加“器乐”项目的高中学生约有375人.(4)记两名高中学生为A,B,两名初中学生为a,b.列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由上表可知,共有12种等可能结果,其中能抽到一名初中学生和一名高中学生的结果有8种,∴P(抽到一名初中学生和一名高中学生)=.答:正好抽到一名初中学生和一名高中学生的概率是.22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【解答】解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=32cm,∠CBM=30°,∴CM=BC•sin∠CBM=16cm.在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=AB•sin∠BAD=21cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2=21+18(cm).答:此时灯罩顶端C到桌面的高度CE是(21+18)cm.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE=BC.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.【分析】(1)利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA)进而判断出EF垂直平分GH,即可得出结论.【解答】解:DE∥BC,DE=BC,证明:如图,延长DE到点F,使得EF=DE,连接CF在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.(2)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中,,∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程可求出点A坐标为(a,0),点B坐标为(1,0);(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,再由△ABC 的面积得到a的值即可;②本题分两种情况讨论:当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点P可求出;当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则直线与抛物线的交点P即可求出.【解答】解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a.∵点A位于点B的左侧,与y轴的负半轴交于点C,∴a<0,∴点B坐标为(1,0).(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.。

2019年最新初中数学练习100题试卷中考模拟试题939098

2019年最新初中数学练习100题试卷中考模拟试题939098

初中数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A .3x >-B .3x <-C .3x >D .3x <2.计算 )A .B .CD . 3.如图,EA ⊥AB ,BC ⊥AB ,AB=AE=2BC ,D 为AB 的中点,有以下判断:(1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE ,其中不正确结论的个数有( ) A .0个B .l 个C .2个D .以上选项均错误4.已知Rt △ABC 中,∠C=90°,若三角形的周长为24 cm ,斜边c 为10 cm ,则Rt △ABC 的面积为( )A .24 cm 2B .36 cm 2C .48 cm 2D .96 cm 25.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( ) A . 15°B .30°C . 50°D . 65°6.一个几何体的三视图如下图所示,则这个几何体是( )A .圆柱B .圆锥C .长方体D .正方体7.与如图所示的三视图相对应的几何体是( )A .B .C .D .8.一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:对这个鞋店的经理来说,他最关注的是数据的( ) A .平均数B .众数C .中位数D .方差9.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的成绩如上表(单位:分),学期总评成绩优秀的是( ) A .甲B .乙和丙C .甲和乙D .甲和丙10.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( ) A .14B .18C .36D .3811.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年中考数学模拟试题八中考数学
一、填空题(每小题 3 分,共 30 分)
1、已知点 P(- 2,3),则点 P 关于 x 轴对称的点坐标是(

2、据有关资料显示,长江三峡工程电站的总装机容量是
18200000 千瓦,请你用科学记数法
表示电站的总装机容量,应记为 3、如图,要给这个长、宽、高分别为
19、如图,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设计成四个部分:
⑴用直线分割;⑵每个部分内各有一个景点;⑶各部分的面积相等。
(可用铅笔画,只
要求画图正确,不写画法)
四、( 20、 21 小题各 7 分, 22、 23 小题各 8 分,共 30 分)
20、已知 : 反比例函数 y
k 和一次函数 y
16、解:原式=- 4+ 1+ 1
=- 2
(x+1)(x-1) x(x-2) 1
17 、解:解:原式=
(x-1) 2 + (x-2) ·x
1
1
2× 2
当 x= 2 时, 原式= 1
-1
2
= -2
x+1 = x-1 +1
2x

x1
18、证明:如图,因为 AB∥ CN
所以 1 2 在 AMD 和 CMN 中
千瓦 x、 y、 z 的箱子打包,
其打包方式如右图所示,则打包带的长至少要
_________
(单位: mm) ( 用含 x、 y、 z 的代数式表示 ) 4、方程 x 2 = x 的解是 __________________ 。
5、圆内接四边形 ABCD的内角∠ A: ∠ B: ∠C=2: 3: 4,则∠ D= ________°
D 、∠ 3=∠ 4
3
2
12、把 a - ab 分解因式的正确结果是(

A、 (a+ab)(a - ab) B
、 a (a 2- b2)
C、 a(a+b)(a - b)
D
、 a(a - b) 2
1
13、在函数 y
中,自变量 x 的取值范围是(

x2
A、 x≥2 B 、 x>2 C 、x≤ 2 D 、 x<2

A、正三角形
B 、正五边形 C 、等腰梯形
D 、菱形
三、解答题(每小题 16、计算:- 22 + (
6 分,共 24 分) 1 ) 0 + 2sin30 o 2- 1
2
2
17、先化简,再求值:
x1 x 2 2x 1
x 2x x2
x,其中 x
1。 2
18、已知:如图,已知: D 是△ ABC的边 AB上一点, CN∥ AB, DN交 AC于,若 MA=M,C 求证: CD=AN.
=
S 2
梯形 ABCD
?若存
在,请求出该点坐标,若不存在,请说明理由 .
参考答案
1、 (-2,-3) ; 2. 、 1.82 × 107; 3、 2x+4y+6z ; 4、x=0 或 x=1; 5 、 90; 6、 11; 7 、 96;
8、 5; 9. 、减小; 10、 10;
11、 B 12 、 C 13 、B 14 、 C 15 、 D
6、已知一个梯形的面积为 22 cm 2 ,高为 2 cm,则该梯形的中位线的长等于 ________cm
7、 如图,在⊙ O中,若已知∠ BAC=48o, 则∠ BOC=_________o
8、若圆的一条弦长为 6 cm,其弦心距等于 4 cm,则该圆的半径等于
________ cm .
9、函数 y ax b 的图像如图所示,则 y 随 x 的增大而
23、如图, ABC中, ABC= BAC= 45 ,点 P 在 AB上, AD CP,BE CP,垂足分别为
D、 E,已知 DC= 2,求 BE的长。
A
EP B
D C
五、( 24 小题 10 分, 25 小题 11 分,共 21 分)
24、如图, 以 Rt△ ABC的直角边 AB为直径的半圆 O,与斜边 AC交于 D,E 是 BC边上的中点, 连结 DE. (1) DE与半圆 O相切吗?若相切,请给出证明;若不相切,请说明理由; (2) 若 AD、 AB 的长是方程 x2-10x+24=0 的两个根,求直角边 BC的长。
2 x 1 ,其中一次函数的图像经过点( k,5 ).
x
(1) 试求反比例函数的解析式;
(2) 若点 A 在第一限,且同时在上述两函数的图像上,求 A点的坐标。
21.如图 7,有两棵树,一棵高 10 米,另一棵高 4 米,两树相距 8 米 . 一只小鸟从一棵树 的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
14、如图是某蓄水池的横断面示意图, 分为深水池和浅水池, 如果这个蓄水池以固定的流量
注水,下面能大致表示水的最大深度 h 与时间 t 之间的关系的图像是 ( )
15、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,
从学生中征集到的设计方
案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是(
25.已知:如图 9,等腰梯形 ABCD的边 BC在 x 轴上,点 A在 y 轴的正方向上, A( 0, 6 )
D ( 4 , 6),且 AB= 2 10 .
( 1)求点 B 的坐标;
( 2)求经过 A、B、 D三点的抛物线的解析式;
( 3)在( 2)中所求的抛物线上是否存在一点
1
P,使得
S△ ABC
12 AM CM
AMD CMN
AMD ≌ CMN
AD CN 又 AD // CN
四边形 ADCN 是平行四边形
19 、答案不唯一,如
CD AN
20、解:( 1) 因为一次函数

10、万州区某学校四个绿化小组,在植树节这天种下白杨树的棵数如
已知这组数据的众数和平均数相等,那么这组数据的中位
数是

下: 10, 10, x,8,
二、选择题(每小题 3 分,共 15 分)
11、如图,∠ 1=∠ 2,则下列结论一定成立的是(

A、 AB∥ CD
B
、 AD∥ BC
C、∠ B=∠ D
22、如图, l1 、l2 分别表示一种白炽灯和一种节能灯的费用
y(费用 =灯的售价 +电费, 单位:
元)与照明时间 x (小时)的函数图象,假设两种灯的使用寿命都是
2000 小时,照明
效果一样。
( 1)根据图象分别求出 l1 、 l2 的函数关系式;
( 2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明 2500 小时,他买了一个白炽灯和一个节能灯,请你帮他设计 最省钱的用灯方法(直接给出答案,不必写出解答过程)。
相关文档
最新文档