最新全等三角形基本图形

合集下载

《全等三角形》ppt课件人教版初中数学3

《全等三角形》ppt课件人教版初中数学3
(3):要记住“有三个角对应相等”或“有两边及 其中一边的对角对应相等”的两个三角形不一定全等;
(4):时刻注意图形中的隐含条件,如 “公共角” 、 “公共边”、“对顶角”
二.角的平分线:
1.角平分线的性质: 角的平分线上的点到角的两边的距离相等.
用法:∵ QD⊥OA,QE⊥OB, 点Q在∠AOB的平分线上 ∴ QD=QE
用法:∵ QD⊥OA,QE⊥OB, ∴ △EBC≌△EBD (AAS)
(可简写成“ASA”) 如图,在R△ABC中,∠ACB=450,∠BAC=900,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且
平分DE. 用法:∵ QD⊥OA,QE⊥OB,
(1):要正确区分“对应边”与“对边”,“对应角”与
“对角”的不同含义;
如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。
D AC=DF
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
∴ △ABC≌△ABD (SAS)
(1)全等三角形的对应边相等、对应角相等。
2.角平分线的判定:
角的内部到角的两边的距离相等的点 在角的平分线上。
用法: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
三.练习:
1、如图:在△ABC中,∠C =900,AD 平分∠ BAC,DE⊥AB交AB于E, BC=30,BD:CD=3:2,则 DE= 12 。
c
第12章全等三角形复习 课
全章知识结构图
三角形全等 (全等的判定)
S.S.S. S.A.S. A.S.A. A.A.S. H.L.(RtΔ)

全等三角形几种类型总结(供参考)

全等三角形几种类型总结(供参考)

全等三角形与角平分线全等图形:能够完全重合的两个图形就是全等图形.全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角•全等多边形的对应边、对应角分别相等•如下图,两个全等的五边形,记作:五边形ABCQE里五边形A'B'C'D'E' .这里符号徑"表示全等,读作"全等于"•全等三角形:能够完全重合的三角形就是全等三角形•全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等•全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形•能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角•全等符号为“空‘ •全尊三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等•寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角•(5)有对顶角的,对顶角常是对应角•全等三角形的判定方法:(1)边角边走理(SAS):两边和它们的夹角对应相等的两个三角形全等•⑵角边角走理(ASA):两角和它们的夹边对应相等的两个三角形全等•(3)边边边走理(SSS):三边对应相等的两个三角形全等•(4)角角边走理(MS):两个角和其中一个角的对边对应相等的两个三角形全等•(5)斜边、直角边定理(HD :斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:找夹角TSAS已知两边找直角THL找另一边TSSS边为角的对边一找任意一角一A4S找这条边上的另一角一ASA 找这条边上的对角一AAS 找该角的另一边一SAS全等三角形的图形归纳起来有以下几种典型形式:已知一边一角《边就是角的一条边已知两角<找两角的夹边T ASA 找任意一边T AAS(1)平移全等型⑴角的平分线上的点到这个角的两边的距离相等•⑵到一个角的两边的距离相同的点,在这个角的平分线上•⑶等腰三角形的性质走理:等腰三角形的两个底角相等(即等边对等角)•⑷等腰三角形的顶角平分线、底边上的中线底边上的高互相重合•⑸等腰三角形的判走走理如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹线段垂直平分线上的点和这条线段两个端点的距离相等•(7)和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等;⑵到角的两边距离相等的点在角的平分线上•它们具有互逆性•角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式:1 •由角平分线上的一点向角的两边作垂线,2・过角平分线上的一点作角平分线的垂线,从而形成等腰三角形,3 . OA = OB ,这种对称的图形应用得也较为普遍,三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:彫吉三角形两边中点的线段叫做三角形的中位线•三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半•中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边•中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无^是倍长中线以及中位线走理(以后还要学习中线长公式),尤其是在涉及线段的等臺关系时,倍长中线的应用更是较为常见•【例1】在初、AC 上各取一点E. D, ^AE = AD 9连接3D 、CE 相交于O 再连结AO . BC 9若Z1 = Z2,则图中全等三角形共有哪几对?并简单说明理由・【巩固】如图所示,AB = AD 9 BC = DC, E 、尸在AC 上,AC 与BQ 相交于P.图中有几对全等三 角形?请一一找出来,并简述全等的理由.【例2】(2008年巴中市髙中阶段教育学校招生考试)如图,AC//DE 9 BC 〃 EF , AC = DE.求证: AF=BD ・【例3】(2008年宜宾市)已知:如图,AD = BC, AC = BD,求证:ZC = ZD ・【巩固】如图,AC. 3D 相交于O 点,RAC = BD 9 AB = CD 9求证:OA = OD.板块二、三角形全等的判定与应用【例4】(哈尔滨市2008年初中升学考试)已知:如图,B.E.F.C 四点在同一条直线上,AB = DC 9 BE = CF ■ = 求证:OA= OD.A I)【例5】 已知,如图,AB = AC 9 CE 丄AB 9 BF 丄AC 9求证:BF = CE.【例6】E 、F 分别是正方形ABCQ 的CQ 边上的点,且BE = CF •求证:AE 丄BF ・【巩固】E. F. G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE 丄EF, GE = EF.求证:BG + CF = BC ・【例7】 在凸五边形中,Zfi = ZE, ZC = ZD, BC = DE , M 为CD 中点.求证:AM 丄CD.I) C板块三、截长补短类【例1】如图,点M为正三角形的边加所在直线上的任意一点(点3除外),作ZDMV = 60。

专题 全等三角形六种基本模型(学生版)

专题  全等三角形六种基本模型(学生版)

专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。

三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

三角形全等基本图形--SAS

三角形全等基本图形--SAS

如图,AB=BD,BC平分∠ABD。 BC平分∠ACD吗?试说明理由。
如图,AE与BD相交于点C,AC=DC,AE=DB。 △ABC与△DEC全等吗?试说明理由。
如图,BE=CF,AB=DF,∠B=∠F 。 △ABC与△DFE全等吗?试说明理由。
如图,BE=CF,AC=DE ,∠E=∠C 。 ∠A=∠D吗?试说明理由。
如图,AD=AC, DB=CE 。 ∠B=∠E吗?试说明理由。
如图,AB=AE,AD=AC, ∠BAD=∠EAC 。 △ABC与△AED全等吗?试说明理由。
如图,AB=DC, ∠ABC=∠DCB 。 ∠A=∠D吗?试说明理由。
如图,AC=DC, ∠ACD=∠BCE,BC=EC。 △ABC与△DCB全等吗?试说明理由。
如图,AC∥BD且AC=BD。AB与CD相等吗? AB与CD平行吗试说明理由。
如图,AC∥EF且AC=EF,BE=CD。 △ABC与△FDE全等吗?试说明理由。
如图,AE与CD相交 △ACB与△ECD都是等腰直角三角形, ∠ACB=∠ECD=90o ,点D在AB上。AE和BD 相等吗?试说明理由。
三角形全等 SAS基本图形练习
如图,点B、C、E在同一条直线上, AB∥DC且AB=DC,BC=CE。 △ABC与△DEF全等吗?试说明理由。
如图,AB∥DC且AB=DE,BE=CF。 △ABC与△DEF全等吗?试说明理由。
如图,AD=BE,BC∥EF且BC=EF。 △ABC与△DEF全等吗?试说明理由。

最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件

最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件

追问1 请同学们将问题2 的两个三角形分别 标为△ABC、△DEF,观察这两个三角形有何对 应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
练习6 如图,已知△ABE≌△ACD, ∠ADE=∠AED,∠B=∠C,指出其他的对应边 和对应角.若BD=2cm,DE=3cm,你能求出DC的 长吗?
解:AB = AC,AE = AD, BE =CD,∠BAE =∠CAD. DC = BE = BD+DE = 5cm.
随堂演练 基础巩固 1.判断题:
△ABC和△DEF全等, 记作:“△ABC ≌△DEF”, 读作:“△ABC 全等于△DEF”.
问题4 请同学们拿出问题2 准备的素材,按 照教材第32 页图12.1-2 进行平移、翻折、旋转, 变换前后的两个三角形还全等吗?
(1) △ABC ≌△DEF
(2) △ABC ≌△DBC
(3)△ABC ≌△ADE
(2)判断线段EH 与NG 的大小关系,并说明理由.
E
(1)平行;理由略.
H
(2)相等.
M
F
G
N
练习5 如图,△OCA≌△OBD,C和B,A 和D是对应顶点,说出这两个三角形中相等的边 和角.若∠A=20°,∠AOC=75°,你能求出∠B 的度数吗?
解:OC=OB,OA=OD,CA=BD, ∠COA=∠BOD,∠C=∠B,∠A=∠D. ∠B=∠C=180°-∠A-∠AOC=85°.
Thank you!

八年级数学上册 13.2 全等图形课件 (新版)冀教版

八年级数学上册 13.2 全等图形课件 (新版)冀教版

4. 如图,已知△ABC≌△AED, 请指出图中对应边和对应角.
A
D
C
B
E
边 AB= AE 边 AC= AD 边 BC= ED
角 ∠A= ∠A 角 ∠B= ∠E 角 ∠ACB= ∠ADE
归纳 有公共角的,公共角一定是对应角.
二 全等三角形的性质
想一想 (1)两条能够完全重合的线段有什么关系? (2)两个能够完全重合的角有什么关系? (3)两个全等三角形的对应边之间有什么关系,对应角之间 又有什么关系?
Hale Waihona Puke 归纳 有公共边的,公共边一定是对应边.
变式:
D E
B
如图:平移后△ABC≌△ EFD,若AB
=6,AE=2. F你能说出AF的长吗?说说你的理由.
A
解:∵△ _A_B_C__≌△_E_F_D__ ,
∴AB=_E_F__=_6_ ,
C
∴ AB-_A__E__ =EF-_A_E__.
∴ AF=BE=_6_-2_=__4.
对应边.∠A和∠D,∠B和∠DEF,∠ACB和∠F分别是对应角;
(2)在△ABC中,
∵∠A+∠B+∠A=180°(三角形内角和定理),
∴∠ACB=180°-∠A-∠B=180°-78°-35°=67°.
∵△ABC≌△DEF,∴∠F=∠ACB=67°.EF=BC=18.
A
D
B
E
C
F
当堂练习
1.如图所示,已知△ABC≌△BAD,点A,C的对应点
每当春节来临,家家户户都把房舍打扫得干干净净,在客厅、 卧室、窗台和门板等处贴上年画。你知道这些相同的年画是 怎么制作的吗?
讲授新课
一 认识全等图形及全等三角形

《三角形全等的判定——边边边》最新课件;华东师大版《三角形全等的判定——边边边》最新课件

《三角形全等的判定——边边边》最新课件;华东师大版《三角形全等的判定——边边边》最新课件
1、准备条件(摆条件时,条件不足时)
2、限定范围(证明那两个三角形) 3、摆条件(依据选择的判定定理,按顺序摆 ) 4、下结论(对应点必须写在对应的位置) 5、写依据。
谢谢指导
基本事实:
三边分别相等的两个三角形全等。 (边边边 S.S.S )
试一试
已知如图所示,求证:△ABC≌△A1B1C1 。
B
9cm 8cm 9cm
B1
8cm
A
6cm
C
A1
6cm
C1
例6
如图,在四边形ABCD中, AD=CB,AB=CD.求证:∠B=∠D。
A D C
B
巩固提升
如图,点B、E、C、F在同一条直线上, AB=DE,AC=DF,BE=CF,求证:AB∥DE。
1、两边一角对应相等:SSA, × SAS; 2、两角一边对应相等:ASA, AAS; 3、三角对应相等:AAA×; 4、三边对应相等:SSS。

√ √

猜测:
???
三边分别相等的两个三角形全等。
探究
1、做一个△ABC,使AB=8cm;AC=6cm、BC=9cm 2、将三角形剪下放到同桌的三角形上,看一看是 否完全重合? 3、你得到了什么结论?
《三角形全等的判定——边边边》最新课件
——边边边
学习目标
1、探索并能理解记忆新定理,会进行几何证明 过程的书写; 2、能应用新定理证明两个三角形全等;提高逻 辑思维能力; 3、通过观察几何图形,提升识图能力。
为了探索三角形全等的条件,若考虑两个三 角形有三组元素对应相等,那么此时会出现四种 情况:
拓展提高
如图:AB=CD,AE=DF,CE=FB, 求证:AF=DE。

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

沪科版八年级上册数学课件(第14章 全等三角形)

沪科版八年级上册数学课件(第14章  全等三角形)

所以△ADE≌△AFE,所以∠DAE=∠FAE.
因为∠BAF=56°,∠BAD=90°,所以
∠DAF=90°-∠BAF=90°-56°=34°,
所以∠DAE= 1 ∠DAF= 1 ×34°=17°.
2
2
总结
解决折叠问题的关键是弄清在折叠 过程中发生的是全等变换,即折叠前后 的两个图形(本例是三角形)全等,其折 叠前后的对应边相等,对应角相等.类 似地,还有平移和旋转问题.在此过程 中,往往产生了全等三角形,然后根据 全等三角形的性质解题.
第14章 全等三角形
14.2 三角形全等的判定
第1课时 两边及其夹角分别 相等的两个三角形
1 课堂讲解 判定两三角形全等的基本事实:边角边
全等三角形判定“边角边”的简单应用
2 课时流程
逐点 导讲练
知3-讲
解:∵Rt△ABC≌Rt△CDE, ∴∠BAC=∠DCE. 又∵在Rt△ABC中,∠B=90°, ∴∠ACB+∠BAC=90°. ∴∠ACB+∠ECD=90°. ∴∠ACE=180°-(∠ACB+∠ECD) =180°-90°=90°.
总结
(1)利用全等三角形的性质求角的度数的方法: 利用全等三角形的性质先确定两个三角形中角 的对应关系,由这种关系实现已知角和未知角 之间的转换,从而求出所要求的角的度数.
总结
两种解法的入手点分别是“同底等高、等底 等高的三角形面积相等”,这一结论要结合具体 图形理解.如图,l1∥l2,点A,B,F在l1上, AB =BF,点C,D,E是l2上任取的点,则根据上述 结论,知S△ABC=S△ABD=S△BFE.
知3-讲
知3-练
1 若△ABC与△DEF全等,点A和点E,点B和点D
知1-讲

最新人教版数学八年级上册第十二章-全等三角形(含答案)

最新人教版数学八年级上册第十二章-全等三角形(含答案)

第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。

3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。

连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。

为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。

求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。

二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。

2023年中考数学复习第一部分考点梳理第四章三角形微专题2全等三角形的常见基本图形结构

2023年中考数学复习第一部分考点梳理第四章三角形微专题2全等三角形的常见基本图形结构
∵AF=CD,∴AF+CF=CD+CF,∴AC=DF.
=,
在△ABC与△DEF中,ቐ∠=∠,
=,
∴△ABC≌△DEF(SAS),
∴∠ACB=∠DFE,∴BC∥EF.
-9-
微专题
中心对称结构
-10-
微专题
结构三 旋转型
典例4 (2021·湖南湘西州)如图,在△ABC中,点D在AB边上,CB=
-16-
微专题
【答案】∵AB=AC,∴∠B=∠C.
∵∠B+∠BAP=∠APD+∠CPD,∠APD=∠B,
∴∠BAP=∠CPD.
∠=∠,
在△BAP和△CPD中,ቐ∠=∠,
=,
∴△BAP≌△CPD(AAS),∴PC=AB=5,
∴BP=BC-PC=8-5=3.
-17-
微专题
一线三等角结构
微专题
微专题
全等三角形的常见基本图形结构 (必考)
结构一 平移型
典例1 (2022·四川乐山)如图,B是线段AC的中点,AD∥BE,
BD∥CE.求证:△ABD≌△BCE.
-2-
微专题
【答案】∵B为线段AC的中点,
∴AB=BC.
∵AD∥BE,∴∠A=∠EBC.
∵BD∥CE,∴∠C=∠DBA.
∠=∠,
∵∠DAB=∠DCB=90°,
∴∠D+∠ABC=∠CBE+∠ABC=180°,
∴∠D=∠CBE.
∵∠DCB=∠ACE=90°,易得∠ACD=∠ECB.
又∵CD=CB,∴△ACD≌△ECB(ASA),
∴AC=CE,AD=BE.
∵∠ACE=90°,∴ AC=AE=AB+BE=AB+AD,
即AB+AD= AC.
-24-

《全等三角形》PPT优质课件

《全等三角形》PPT优质课件
D A
O
C B
AD
O
B
C
A
B D
E C
A
E
D
B
C
1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
探究新知
找一找下列全等图形的对应元素?
A
D
A
2 B E CF
A
3 21 4
B E
CF
B
D CF
A
D
1
23 4
B
C
探究新知
全等的表示方法
“全等”用符号“≌”表示,读作“全等于”.
A
F
B
CD
E
△ABC≌△FDE
记两个三角形全等时,通常把表示对应顶点的字母写在 对应的位置上.
探究新知
全等的性质
全等三角形的对应边相等,对应角相等.
A
D
B
C
E
∠A=∠F,∠B=∠D,∠C=∠E. (全等三角形对应角相等)
探究新知
素养考点 1 识别全等三角形的对应元素
例1 如图,若△BOD≌△COE,∠B=∠C,指出这两个全 等三角形的对应边;若△ADO≌△AEO,指出这两个三角 形的对应角.
解:△BOD与△COE的对应边为: BO与CO,OD与OE,BD与CE; △ADO与△AEO的对应角为:
课堂检测
拼接的图形展示
课堂小结
全等 三角形
定 义 能够完全重合的两个三角形叫做全等三角形
基本 性质

判定三角形全等的四种方法

判定三角形全等的四种方法

判定三角形全等的四种方法三角形是几何学中最基本的图形之一,而判定三角形之间是否全等是几何学中常见的问题。

在几何学中,全等是指两个或多个图形的全部对应部分都相等。

判定三角形全等的方法有很多种,其中常用的有四种,分别是SSS、SAS、ASA和AAS。

一、SSS(边边边)方法SSS方法是指通过三角形的三条边的相等关系来判定三角形是否全等。

当两个三角形的三条边分别相等时,可以判定这两个三角形全等。

例如,已知两个三角形的边长分别为a、b、c和x、y、z,如果a=x、b=y、c=z,则可以判定这两个三角形全等。

二、SAS(边角边)方法SAS方法是指通过三角形的两边和夹角的相等关系来判定三角形是否全等。

当两个三角形的两边和夹角分别相等时,可以判定这两个三角形全等。

例如,已知两个三角形的边长分别为a、b,夹角为C,和x、y,夹角为Z,如果a=x、b=y、C=Z,则可以判定这两个三角形全等。

三、ASA(角边角)方法ASA方法是指通过三角形的两角和一边的相等关系来判定三角形是否全等。

当两个三角形的两个角和一边分别相等时,可以判定这两个三角形全等。

例如,已知两个三角形的角度分别为A、B,边长为c,和角度为X、Y,边长为z,如果A=X、B=Y、c=z,则可以判定这两个三角形全等。

四、AAS(角角边)方法AAS方法是指通过三角形的两角和一边的相等关系来判定三角形是否全等。

当两个三角形的两个角和一边分别相等时,可以判定这两个三角形全等。

例如,已知两个三角形的角度分别为A、B,边长为c,和角度为X、Y,边长为z,如果A=X、B=Y、c=z,则可以判定这两个三角形全等。

通过以上四种方法,我们可以判定两个三角形是否全等。

在实际应用中,判定三角形全等可以帮助我们解决一些几何问题,例如计算图形的面积、判断图形的相似性等。

在学习几何学时,掌握这些方法是非常重要的。

除了以上四种方法,还有一些其他方法可以用来判定三角形全等,例如HL方法、RHS方法等。

全等三角形总复习课件

全等三角形总复习课件
解题关键
理解面积的概念和计算方法,找出全等三角形,并利用全等三角形的 性质进行计算。
常见考点
全等三角形的判定和性质、面积的计算和比较、几何图形的面积公式 等。
05
全等三角形的易错点分析
判定定理的混淆
总结词
判定定理的混淆是学生在学习全等三角形时常见的问题,主要表现在不能正确理解和区 分SSS、SAS、ASA、AAS和HL等判定定理。
03
全等三角形的解题策略
构造法
总结词
通过添加辅助线构造新的三角形,利用已知条件证明新构造的三角形与原三角形全等,从而解决问题 。
详细描述
构造法是解决全等三角形问题的一种常用策略。通过作平行线、垂线或延长线等辅助线,构造出新的 三角形,利用已知条件证明新构造的三角形与原三角形全等,从而得出所需结论。在运用构造法时, 需要充分理解题意,寻找合适的构造方式。
详细描述
计算题通常会涉及角度、边长等几何量的计算。在解题过程中,学生需要利用 全等三角形的性质和定理,找到与所求量相关的已知量,通过计算得出结果。
作图题
总结词
作图题是全等三角形应用中较为特殊的一种题型,主要考察学生的空间想象能力 和作图技能。
详细描述
作图题通常会要求学生根据已知条件,画出两个全等的三角形。在解题过程中, 学生需要理解全等三角形的性质和判定定理,并能够根据题目要求进行准确的作 图。
推论
全等三角形的周长、面积 相等。
判定定理
SSS定理
SAS定理
如果两个三角形的三边分别相等,则这两 个三角形全等。
如果两个三角形的两边及其夹角分别相等 ,则这两个三角形全等。
ASA定理
HL定理
如果两个三角形的两角及其夹边分别相等 ,则这两个三角形全等。

全等三角形ppt课件

全等三角形ppt课件

其他领域的应用在工程领源自中,全等三角形可用于解 决一些复杂的几何问题,例如机构设 计、零件配合等。
在物理学中,全等三角形可用于分析 光的反射、折射等现象,以及解决一 些与角度、长度相关的物理问题。
2024/1/25
在地理学和地质学中,全等三角形可 用于测量地形高度、计算地层厚度等 。
18
05
全等三角形拓展知识
误区二
忽视三角形的边长和角度的对应关系。
2024/1/25
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
6
02
全等三角形证明方法
2024/1/25
12
求解角度大小问题
利用全等三角形对应角相等的 性质,通过构造全等三角形来 求解角度大小。
2024/1/25
在复杂图形中,通过寻找或构 造全等三角形,将问题转化为 简单的角度计算。
利用全等三角形的性质进行角 度的平移、旋转等操作,以简 化问题并求解角度大小。
13
判定图形形状问题
利用全等三角形的性质来判断图 形的形状,例如通过证明两个三 角形全等来证明四边形是平行四
7
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
用于证明两个三角形全等。
2024/1/25
示例:在△ABC和△DEF中,如果AB=DE ,BC=EF,∠B=∠E,则△ABC≌△DEF。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档