介质中的磁场

合集下载

5.5 磁介质中磁场的基本方程

5.5 磁介质中磁场的基本方程

即 r 1 如铁、镍和钴等属于铁磁质。
01:52 5 在铁磁性材料中,有许多小天然磁化区,称为磁畴。
(4)亚铁磁质:由于部分反向磁矩的存在,其磁性比 铁磁材料的要小,铁氧体属于一种亚铁磁质。
四、剩余磁化
剩余磁化:铁磁性物质被磁化 后,撤去外磁场,部分磁畴的 取向仍保持一致,对外仍然呈 现磁性。
H dl H 2 I
l
f
H
If 2
e ( 0)
(2)求磁感应强度
I f B H e (0 a) 2
0 I f B 0 H e ( a) 2
01:52 7
(3)求磁化强度 M
M =(r 1) H
If M =(r 1) H ( 1) e (0 a) 0 2
B
0
M
磁场强度矢量
1
H J
利用斯托克斯公式,可得上式的积分形式 即
H dl H d S J d S I 安培环路定律的积分形式 H dl I
l S S l
实践中孤立的磁荷至今还没有被发现,磁场中磁通 连续性方程保持不变,
B 0
铁磁材料的磁性和温度也有很大 关系,超过某一温度值后,铁磁 材料会失去磁性,这个温度称为 居里点。 01:52
磁滞回线
6
例1:磁导率为 ,半径为a的无限长的磁介质圆柱,其中 心有一无限长的线电流If,整个圆柱外面是空气,求各处 的磁感应强度、磁化强度和磁化电流。 解:(1)可由安培环路定律求出磁场强度 H
由高斯散度定理,得
BdS 0
S
1)空间中磁力线是连续的; 2)恒定磁场是无源场,不存在磁力线的扩散源和汇集源; 3)磁场的散度与磁感应强度是不同的物理量,磁场的散度 01:52 2 描述磁力线的分布特点,而不是磁场本身。

5有磁介质时的磁场

5有磁介质时的磁场
令: NI m ;

B
S N
磁通势
l Rm ; s

I
磁阻
Rm ; s m m Rm Rm

l 与电阻公式( R ) 对比: s s
l
Rm的由来
磁力线沿铁走,也可以解释为: 铁的磁阻率<<空气磁阻率
线度: m m至 m 原子数:1012~1015
磁畴
(二)用磁畴理论解释铁磁质的磁化 ①未磁化前
用晶粒 结构、 磁畴体 积和磁 化方向 解释
②起始磁化:线性→非线性→饱和 ③剩磁和矫顽力
④磁滞损耗
⑤消磁方法:震动,加热,交流电
四.铁磁质的分类及其应用
(一)软磁材料
纯铁,硅钢,坡莫合金(铁78%+镍22%)等
介质分子的磁矩 pm ( L S I )
等效为分子电流 (molecular current)
pm
.
B 9.27 10 24 Am 2 e s S me
原子核磁矩数值约为电子磁矩的 千分之一,在研究介质磁性时, 可以不予考虑。
特征: 磁滞回线“瘦”;用途:交变电磁场中
(二)硬磁材料
铁、钴、镍的合金等 特征: 磁滞回线“胖”;用途:制造永磁体
(三)矩磁材料
硬磁材料中的特例. 特征: 磁滞回线“矩形状”;用途:制造存储元 件
[例1]一均匀密绕细螺绕环,n = 103 匝/米, 4 I=2安, 充满 = 5 10 - 特· 米/安 的磁介质. 求:磁介质内的 H和 B .
n ( B2 B1 ) 0 ; n ( H 2 H 1 ) j线 ;
若j 线 0, 则 : 切向分量 法向分量 B 不连续 连续 连续 H 不连续

介质的电磁性质

介质的电磁性质

介质表面均匀分布着等量异号的极化电荷.
板外:E外 E0
板内:E1 E0 E仍为均匀电场。 A
E1 E1t E1n
利用边值关系 E1t E2t E sin
D1n
D2n
E
cos
E1n
E
cos
E1
E1t2 E2t2
sin2 ( cos )2 E
E1,n的夹角
tg
E1t E1n
些有极分子在电场作用下按一定方向有序排列,从 宏观上来看这两种行为都相当于产生了一个电偶极 矩。在电磁学中,曾引进了极化强度矢量:
pi
P i V
其中 pi是第 i 个分子的电偶极矩,即
求和是对 V体积中所有分子进行的。
pi qili
a) 极化电荷体密度与极化强度的关系
由于极化,正负电荷间发生了相对位移,每处的 正负电荷可能不完全抵消,这样就呈现宏观电荷,
负电荷,即
S
Qp Q P dS S
因为
Qp V pdV
式中V是S所包围的体积,所以
V pdV P dS V PdV S

p P
由此可见,负电荷为极化源头,正电荷为极化 尾闾。
b) 极化电流密度与极化强度的关系
当电场随时间改变时,极化过程中正负电荷 的相对位移也将随时间改变,由此产生的电流称
由n D2 D1 得:应用于上下极板界面
D1 f , D2 f .
E1
f 1
,
E2
f 2
,
由于 p n P2 P1 , 对两介质分界面:
p
P2 P1
e2 E2
e1
E1
2
1
f
0
左极板: p1 n

磁介质的磁化及有磁介质存在时的磁场

磁介质的磁化及有磁介质存在时的磁场

2013/4/17
磁化强度矢量M和B的关系
磁介质磁化达到平衡后,一般说来,磁化
强度矢量M应由总磁感应强度B确定
BB
M和B之间的关系
0
B'
磁介质的磁化规律(通常由实验确定)
磁介质种类繁多,结构性质各异,磁介质中M
和B的关系很难归纳成一个统一的形式
线性磁介质
M kmB
非线性磁介质:
km
m 0
均与介 质性质 有关
M与介M质表n 面i'或磁M化t 电i' 流的面关磁化系电流密度
证明
在介质表面取闭合回路
穿过回路的磁化电流
I' i'l
b
b
a
M t dl
c
M=0
d
a
M dl a M dl b M dl c M dl d M dl
L
bc、da<< dl
M tl i' l M t i' 得证
以“分子电流”模型取代磁荷模型,从根 本上揭示了物质极化与磁化的内在联系
其实在安培时代,对于物质的分子、原子 结构的认识还很肤浅,电子尚未发现,所 谓“分子”泛指介质的微观基本单元
继续
2013/4/17
“磁荷”模型要点
磁荷有正、负,同号相斥,异号相吸 磁荷遵循磁的库仑定律(类似于电库仑定律) 定义磁场强度 H为单位点磁荷所受的磁场力 把磁介质分子看作磁偶极子 认为磁化是大量分子磁偶极子规则取向使正、负
附加场反过来要影响原来空间的 磁场分布。
各向同性的磁介质只有介质表面 处,分子电流未被抵销,形成磁 化电流
2013/4/17
磁化电流与传导电流
传导电流

磁介质中的磁场

磁介质中的磁场

磁介质中的磁场
1、有两根外形相同的铁棒,一根为磁铁,另一根不是,怎样才能辨别它们?不准将它们像磁针那样悬挂起来,也不准借助于任何仪器或物件。

答:将一根铁棒垂直置于另一根中间,如有吸引力则第一根是磁铁。

2、试解释为什么磁铁能吸引铁钉之类的铁制物体?
答:铁钉之类铁制物是铁磁质,在外磁场中磁化程度非常大,磁化后就像一个磁铁,在介质内部产生的磁感应强度的方向与顺磁质一样,因此磁铁能吸引铁钉之类的铁制物。

3、试说明磁感应强度和磁场强度之间的区别?
答:磁场强度的环量只与传导电流有关,而磁感应强度的环量还与磁化电流有关。

4、判断以下一些说法的正误:(1)若闭合曲线内不包围传导电流,则曲线上各点的磁场强度为零;(2) 若曲线上各点的磁场强度为零,则闭合曲线内包围的传导电流的代数和为零;(3)不论顺磁质或抗磁质,它们的磁感应强度和磁场强度的方向总是相同;(4)通过以同一曲线为边界的任意曲面的磁感应强度通量是相等的;(5) 通过以同一曲线为边界的任意曲面的磁场强度通量是相等的
答:(1)错;(2)对;(3)对;(4)对;(5)错。

5、如果一闭合曲面包围条形磁棒的一个极,那么通过该闭合曲面的磁通量是多少?答:等于零。

6、为什么蹄型磁铁比条形磁铁产生的磁场更强?
答:条形磁铁比蹄型磁铁组成的回路磁阻要大得多,因此蹄型磁铁产生的磁场更强。

7、磁铁吸引铁钉使它开始运动,铁钉的动能从何而来?
答:从磁能转化而来。

系统的磁能减少,转化为铁钉的动能。

第15章磁介质

第15章磁介质

第15章磁介质一、物质的磁化1、磁介质中的磁场设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场,这时磁场中任意一点处的磁感应强度2、磁导率由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率:介质中的磁导率:式中为真空中的磁导率3、三种磁介质(1)顺磁质:顺磁质产生的与方向相同,且。

略大于1(2)抗磁质:抗磁质产生的与方向相反,且。

略小于1(3)铁磁质:铁磁质产生的与方向相同,且。

远大于1二、磁化强度1、磁化强度定义为单位体积中分子磁矩的矢量和即:2、磁化强度与分子面电流密度的关系:式中为磁介质外法线方向上的单位矢量。

3、磁化强度的环流即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流三、磁介质中的安培环路定律1、安培环流定律在有磁介质条件下的应用即:2、磁场强度定义为:3、磁介质中的安培环路定律:4、应用磁介质中的安培环路定律的注意点:(1)的环流只与传导电流有关,与介质(或分子电流)无关。

(2)的本身()既有传导电流也与分子电流有关。

既描写了传导电流磁场的性质也描写了介质对磁场的影响。

(3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。

5、磁介质中的几个参量间的关系:(1)磁化率(2)与的关系(3)与等之间的关系四、磁场的边界条件(界面上无传导电流)ေ、壁介蔨分界面伤边磁感应强度的法向分量连廭,即Ҩ2、磁介谨分界面两龹的磁场强嚦纄切向分量连续,即:Ƞ3 磃感应线的折射定律ā*怎义如图15-1所示)五、铁磁物贩q、磁畴:电子ꇪ旋磁矩取向相同的對区域。

2、磁化曲线(图55-2中曲线)ေ磁导率曲线(图15-2中??曲线)4、磁滞回线ေ图17耩3)图中乺矫끽嚛㠂5、铁磁质与非铁㳁质的主要区别:铁磁物质产生的附加磁场错误!未定义书签。

的比原来真空中的磁场大得多。

有磁介质时的磁场课件

有磁介质时的磁场课件

磁场强度的计算公式
磁场强度的单位和物理意义
不同类型磁介质的磁场计算实例
铁氧体的磁导率与磁场强度的关系 硅钢片的磁导率与磁场强度的关系 空气的磁导率与磁场强度的关系
磁场计算中的注意事项
磁介质的磁导率是变化的,需要 考虑不同磁介质对磁场的影响。
磁场强度与距离有关,需要考虑 不同距离对磁场的影响。
磁场强度与电流有关,需要考虑 不同电流对磁场的影响。
变压器
利用磁介质可以制造变压器,实 现电能和磁能的转换。
电机
利用磁介质可以制造电机,实现 电能和机械能的转换。
磁介质在磁场中的局限性
温度稳定性差
磁介质的磁性能容易受到温度的影响,稳定性较 差。
机械强度低
磁介质在机械强度方面较低,容易受到外力的影 响。
成本较高
一些高性能的磁介质成本较高,价格较贵。
05
磁介质的物理性质
磁化
在磁场作用下,磁介质会 发生磁化现象,即产生磁 畴和磁矩。
磁滞
磁介质在交变磁场作用下 会产生滞后现象,即磁滞 。
退磁
当磁场减弱或消失时,磁 介质会失去磁性,即发生 退磁现象。
03
有磁介质时的磁场计算方 法
磁介质的磁场计算公式
01
磁介质的磁化强度矢量
02
磁介质的磁导率
03
04
07
参考文献及致谢
参考文献
教科书
《电磁学》
期刊论文
《磁介质在磁场中的行为研究》
网络资源
各类在线教育平台关于磁场和磁介质的教学视频
致谢
对指导教师表示衷心感谢,感谢他们在 课程设计、内容讲解和答疑解惑方面给
予的大力帮助。
对参与课件制作和资料整理的同学表示 感谢,感谢他们的辛勤付出和团队协作

磁介质中的磁场

磁介质中的磁场

磁介质中的磁场
顺磁质和抗磁质的区别就在于它们的分子或原子的电结构不同. 研究表明,抗磁质分子在没有外磁场作用时,分子的固有磁矩为零. 而顺磁质分子在没有外磁场作用时,分子的固有磁矩却不为零,但由 于分子的热运动,各分子的磁矩取向是杂乱无章的.因此,在没有外 磁场时,不管是顺磁质还是抗磁质,宏观上对外都不呈现磁性.
磁介质中的磁场
磁介质中的磁场
前面几节主要研究了真空中运动电荷或电流所激发的 磁场.而在实际情况下,还存在着各种各样的在磁场作用下 能出现响应并能反过来影响磁场的物质,这种物质称为磁 介质.电介质在外电场中将被极化,产生附加电场,使原有 电场发生变化.同样地,磁介质在外磁场的作用下,也会产 生附加磁场,使原有磁场发生变化,这种现象称为物质的 磁化.磁化过程使原来没有磁性的物质变得具有磁性,物质 的磁学特性是物质的基本属性之一.
磁介质中的磁场
图9- 43 磁化电流
磁介质中的磁场
无论是哪一种磁介质的磁化,其宏观效果都是在 磁介质的表面出现磁化电流.磁化电流和传导电流一样 要激发磁场,顺磁质的磁化电流方向与磁介质中外磁 场的方向成右手螺旋关系,它激发的磁场与外磁场方 向相同,因而使磁介质中的磁场加强.抗磁质的磁化电 流的方向与外磁场的方向成左手螺旋关系,它激发的 磁场与外磁场方向相反,因而使磁介质中的磁场减弱.
磁介质中的磁场
自然界所有的实物物质都是磁介质,磁介质对磁场的影响通常
都是通过实验测量的.现有一长直螺线管,在导线中通以电流I,测出
管内真空条件下的磁感应强度B0;然后保持电流I不变,将管内均匀 地充满某种各向同性的磁介质,再测出管内的磁感应强度B.实验结果
表明,B和B0的方向相同,大小不同,它们之间的关系可表示为
在此只讨论弱磁介质的磁化机理.实物物质分子或原子的 微观电结构理论表明,分子或原子中的每个电子都同时参与 了两种运动:一是电子绕核的轨道运动;二是电子本身的自 旋.电子的这些运动形成了微小的圆电流,这样的圆电流对应 有相应的磁矩,把两种对应的磁矩分别称为轨道磁矩和自旋 磁矩.一个分子中所有的电子轨道磁矩和自旋磁矩的矢量和称 为该分子的固有磁矩,用符号Pm表示,它可以看成是由一个 等效的圆形分子电流产生的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 介质中的磁场
一、 基本要求
1.了解介质的磁化现象及其微观解释。

2.了解铁磁质的特性。

3.了解各向同性介质中H
和B 之间的关系和区别。

4.了解介质中的高斯定理和安培环路定理。

二、 基本概念和规律
1.基本概念包括:磁化现象,磁介质的分类,顺磁质、抗磁质的磁化及磁化机理,磁化强度,磁畴,铁磁质的磁化机理及性质。

2.介质中的安培环路定理 ⎰∑=⋅L
I l d 0 H 在介质中应该应用介质中的安培环路定理,应该注意到方程的右边是穿过以L 为边界的任意曲面的传导电流的代数和。

对于均匀介质,磁感应强度
矢量B 等于磁场强度矢量的μ 倍。

三、 习题选题
9-1 一螺绕环通以电流A I 200=,若已测得环内磁介质中的磁感应强度为B ,已知环的平均周长是L ,并绕有导线总匝数为N ,先写出磁场强度、磁化强度、磁化系数、磁化面电流和相对磁导率;当A I N cm L m W b B 20400400.102===⋅=-匝,,,,再求出具体结果。

解: M H B +=0μ )1(0m χμμ+=
(1) 磁场强度 140102-⋅⨯===m A I L
N nI H (2) 磁化强度 150001076.7-⋅⨯=-
=-=m A I L N B H B M μμ (3) 磁化系数(磁化率) 8.38==H
M m χ (4) 磁化面电流(单位长度安培表面电流)
151076.7-⋅⨯==m A M i s
总表面电流 A L i I s s 5101.3⨯==
相对磁导率 8.3910
=+==m r χμμμ 9-2 一根无限长的直圆柱铜导线,外包一层相对磁导率为r μ的圆筒形磁介质,导线半径为1R ,磁介质的外半径为2R 。

导线内有电流I 通过。

求:
⑴磁介质内、外的磁场强度和磁感应强度和磁感应强度的分布,用安培环路定理求并画r B r H --,曲线说明分布情况,其中r 是磁场中某点到圆柱轴线的距离。

⑵磁介质内、外表面的磁化面电流密度的大小和方向?
⑶若在介质外再套上一层同心圆环柱金属导体就形成同轴电缆(外半径为3R ),再讨论⑴、⑵两问。

解:(1)由于磁场具有轴对称性,在铜导线内以O 为圆心,r 为半径取一圆形闭合回路10R r ≤≤根据安培环路定律有
⎰∑=L I dl H 1 I R r rH 21
2
12πππ= I R r I rR r H 21
212122ππ== 21
0112R rI B r πμμ=(1r μ为铜的相对磁导率) 在磁介质内以O 为圆心,r 为半径取闭合回路 12R r R ≥≥
由安培环路定律 ⎰∑=L I dl H 2
I rH =22π
r I
H π22= r
I B r πμμ202= 同理在磁介质外与圆心相距为r 处2R r ≥ r I
H π23= r
I B πμ203=
(2)导体内,取1R r =
I R rI R R rI R rI H B M i r r r s 1121
12102101101
11212)1(22πμπμπμπμμμ-=-=-=-== 导体外,取2R r =
I R I r r I r I H B M i r r r s 2
00202
22212)1(22πμπμπμπμμμ-=-=-=-== (3)若在介质外套一层同心圆环柱导体,形成同轴电缆,则圆环柱导体外的磁场强度B 和磁感应强度发生变化
⎰∑==L I dl H 04
024=rH π
04=H 04==H B μ。

相关文档
最新文档