等价无穷小替换,极限的计算
等价无穷小替换_极限的计算
![等价无穷小替换_极限的计算](https://img.taocdn.com/s3/m/c524a81bfad6195f312ba6df.png)
无穷小 极限的简单计算一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。
下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈000x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。
例如, ,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x,01lim=∞→x x .1时的无穷小是当函数∞→∴x x,0)1(lim =-∞→nn n .})1({时的无穷小是当数列∞→-∴n n n【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。
定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *lim 。
显然,∞→n 时, 、、、32n n n 都是无穷大量,【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。
无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如0l i m =-∞→x x e , +∞=+∞→xx e lim ,所以xe 当-∞→x 时为无穷小,当+∞→x 时为无穷大。
2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大,则()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大。
小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。
3.无穷小与函数极限的关系: 定理 1 0lim ()()(),x x x f x A f x A x α®=?+其中)(x α是自变量在同一变化过程0x x →(或∞→x )中的无穷小.证:(必要性)设0lim (),x x f x A ®=令()(),x f x A α=-则有0lim ()0,x x x α®=).()(x A x f α+=∴(充分性)设()(),f x A x α=+其中()x α是当0x x ®时的无穷小,则lim ()lim(())x x xx f x A x α =+ )(lim 0x A x x α→+= .A =【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)0()(),().f x x f x A x α»给出了函数在附近的近似表达式误差为 3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.是无穷小,时例如nn 1,,∞→ .11不是无穷小之和为个但n n 定理3 有界函数与无穷小的乘积是无穷小. 如:01)1(lim =-∞→n nn ,01sin lim 0=→xx x ,0sin 1lim =∞→x x x推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,2210,,,sin ,sinx x x x x x®当时都是无穷小,观察各极限: xx x 3lim 20→,0=;32要快得多比x x xxx sin lim0→,1=;sin 大致相同与x x2201sinlimx x x x →x x 1sin lim 0→=.不存在不可比. 极限不同, 反映了趋向于零的“快慢”程度不同.1.定义: 设,αβ是自变量在同一变化过程中的两个无穷小,且0.α¹(1)lim0,,();o ββαβαα==如果就说是比高阶的无穷小记作 ;),0(lim )2(是同阶的无穷小与就说如果αβαβ≠=C Clim 1,~;ββααβα=特殊地如果则称与是等价的无穷小,记作(3)lim(0,0),.kC C k k ββαα=?如果就说是的阶的无穷小例1 .tan 4,0:3的四阶无穷小为时当证明x x x x →证:430tan 4lim x x x x →30)tan (lim 4xx x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2 .sin tan ,0的阶数关于求时当x x x x -→ 解30sin tan limx x x x -→ )cos 1tan (lim 20x x x x x -⋅=→,21=.sin tan 的三阶无穷小为x x x -∴ 2.常用等价无穷小:,0时当→x(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-xe ~x(7)x cos 1-~22x (8)1)1(-+μx ~x μ (9)1xa -~ln a x *用等价无穷小可给出函数的近似表达式:,1lim=αβ ,0lim =-∴αβα),(αβαo =-即).(αβαo +=于是有 例如),(sin x o x x +=).(211cos 22x o x x +-= 3.等价无穷小替换定理:.lim lim ,lim ~,~αβαβαβββαα''=''''则存在且设 证:αβlim)lim(αααβββ'⋅''⋅'=αααβββ'⋅''⋅'=lim lim lim .lim αβ''=例3 (1).cos 12tan lim20xx x -→求; (2)1cos 1lim20--→x e x x 解: (1).2~2tan ,21~cos 1,02x x x x x -→时当 故原极限202(2)lim 12x x x ®== 8(2)原极限=2lim 220xx x -→=21- 例4 .2sin sin tan lim30xxx x -→求错解: .~sin ,~tan ,0x x x x x 时当→30)2(limx xx x -=→原式=0正解: ,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,21~3x 故原极限33012lim (2)x xx ®=.161=【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。
结合等价无穷小替代法、麦克劳林公式求极限
![结合等价无穷小替代法、麦克劳林公式求极限](https://img.taocdn.com/s3/m/41fec595970590c69ec3d5bbfd0a79563c1ed4aa.png)
结合等价无穷小替代法、麦克劳林公式求极限
按照马克劳林公式的一般形式f(x)=n*f^(n) 连加(n从0到无穷)x^n*f^(n)(0)/n!展开(其中f^(n)(0)表示f的n阶导数在0点的值),只不过最后的每项的形式没什么规律(这也取决于f^(n)(0)的值)。
麦克劳林公式是泰勒公式的一种特殊形式。
1、麦克劳林级数是幂级数的一种,它在x=0处展开。
2、那些特定初等函数的幂级数展开式就是泰勒级数的特定形式,没什么太小区别。
用泰勒公式求极限有时可以达到事半功倍之效。
麦克劳林公式的意义就是在0点,对函数展开泰勒进行。
年maclaurin在访问伦敦时见到了newton,从此便成为了newton的门生。
年编写名著《流数论》,就是最早为newton流数方法作出了系统逻辑阐释的著作。
他以娴熟的几何方法和穷竭法论证了流数学说道,还把级数做为谋分数的方法,并单一制于cauchy以几何形式得出了无穷级数发散的分数辨别法。
他获得数学分析中知名的maclaurin级数展开式,用未定系数法给与证明。
等价无穷小替换公式
![等价无穷小替换公式](https://img.taocdn.com/s3/m/02e6a4e60129bd64783e0912a216147917117e29.png)
等价无穷小替换公式所谓等价无穷小替换公式,是数学中一类常用的极限计算方法。
当在求极限过程中遇到无穷小量时,我们可以将它替换为一个与之等价但更易计算的无穷小量,从而简化求解过程。
以下是一些常用的等价无穷小替换公式:1. $\sin x$等价无穷小替换公式:当 $x$ 趋近于 $0$ 时,$\sinx$ 可以被替换为 $x$。
证明:根据极限的定义,$\lim_{x \to 0} \frac{\sin x}{x} = 1$。
因此,当 $x$ 趋近于 $0$ 时,$\sin x$等价于 $x$,即 $\lim_{x \to 0} \frac{\sin x}{x} = 1$。
2. $\tan x$等价无穷小替换公式:当 $x$ 趋近于 $0$ 时,$\tanx$ 可以被替换为 $x$。
证明:根据极限的定义,$\lim_{x \to 0} \frac{\tan x}{x} = 1$。
因此,当 $x$ 趋近于 $0$ 时,$\tan x$等价于 $x$,即 $\lim_{x \to 0} \frac{\tan x}{x} = 1$。
3.$e^x-1$等价无穷小替换公式:当$x$趋近于$0$时,$e^x-1$可以被替换为$x$。
证明:根据极限的定义,$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$。
因此,当 $x$ 趋近于 $0$ 时,$e^x - 1$等价于 $x$,即 $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$。
4. $\ln(1+x)$等价无穷小替换公式:当 $x$ 趋近于 $0$ 时,$\ln(1+x)$ 可以被替换为 $x$。
证明:根据极限的定义,$\lim_{x \to 0} \frac{\ln(1+x)}{x} =1$。
因此,当 $x$ 趋近于 $0$ 时,$\ln(1+x)$等价于 $x$,即$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$。
用等价无穷小代换求幂指函数的极限
![用等价无穷小代换求幂指函数的极限](https://img.taocdn.com/s3/m/535f6c9ad5d8d15abe23482fb4daa58da0111c29.png)
Science &Technology Vision 科技视界1问题提出在大学高等数学中,对于幂指函数求极限的问题,共有两处提到,包括重要极限和洛必达法则。
但是,关于等价无穷小代换求幂指函数极限的问题大多都没有特别讲解。
一般得,只针对于分式型的函数如何用等价无穷小代换求极限做了讲解。
在教学过程中,有学生在一开始的学习中就遇到较为复杂的幂指函数求极限的问题,就不知道如何计算了。
课本中有一道极限求解题目,具体如下:lim x →0(1+tan x 1+sin x)1x这是一个典型的1∞型的幂指函数求极限问题。
大多数学生在这里第一反应就是用重要极限来求解,但此题用重要极限不太容易看出来。
如果了解等价无穷小的相关定理,那么这道题就迎刃而解了。
鉴于此种情况,本文在前人研究的基础上,总结了幂指函数的求极限的方法,着重提出了等价无穷小求解幂指函数极限的看法。
2幂指函数求极限的其他方法幂指函数的极限类型很多,有确定型和不定式之分。
对于确定型的幂指函数可以直接底数与指数求极限。
而对于不定式型的幂指函数,通常采用重要极限和洛必达法则两种方法。
2.1重要极限对1∞型的幂指函数极限问题,考虑利用重要极限lim x →∞(1+1x )x =e及其变形公式lim x →0(1+x )1x=e 求极限。
例1求极限lim x →0(cos x )csc 2x .解:lim x →0(cos x )csc 2x =lim x →0[1+(cos x -1)]1sin 2x=lim x →0[1+(cos x -1)]1cos x -1·cos x -1sin x=elim-12x x=e-122.2洛必达法则另外,对00型,∞0型,1∞型幂指函数的极限,可以通过将幂指函数化为对数恒等式y=e ln y 的形式,转换为00型或∞∞型不定式,然后再利用洛必达法则进行求解。
例2求极限lim x →∞(1+a x)x .解:lim x →∞(1+a x )x =lim x →∞ex ln(1+a x)=elimln(1+a x )1x因为lim x →∞(1+a x)=0,lim x →∞1x =0由洛必达法则,得:lim x →∞(1+a x)x=e lim[ln(1+a x )]′(1x)′=elim axx+a=ea3用等价无穷小代换求幂指函数的极限幂指函数00型,∞0型,1∞型这三种类型不定式的求极限问题,除了运用前两种方法外,还可以使用等价无穷小的代换。
等价无穷小替换三个原则
![等价无穷小替换三个原则](https://img.taocdn.com/s3/m/a89a7835bb1aa8114431b90d6c85ec3a87c28bd8.png)
等价无穷小替换三个原则
等价无穷小替换三个原则是微积分中常用的一种计算方法,用于求解极限。
这三个原则分别是:
1. 等价无穷小替换原则:如果函数 f(x) 和 g(x) 在某点 x=a 处
的极限存在且相等,即 lim(x→a) f(x) = lim(x→a) g(x) = L,那么在该点附近,f(x) 和 g(x) 可以互相替换,即 f(x) ≈
g(x)。
2. 等价无穷小乘法原则:如果函数 f(x) 和 g(x) 在某点 x=a 处
的极限存在且为 0,即 lim(x→a) f(x) = 0,lim(x→a) g(x) = 0,那么在该点附近,f(x) 和 g(x) 的乘积可以近似为 0,即
f(x)g(x) ≈ 0。
3. 等价无穷小加法原则:如果函数 f(x) 和 g(x) 在某点 x=a 处
的极限存在,即 lim(x→a) f(x) = L1,lim(x→a) g(x) = L2,那么在该点附近,f(x) 和 g(x) 的和可以近似为 L1 + L2,即f(x) + g(x) ≈ L1 + L2。
这些原则在求解极限时可以简化计算过程,将复杂的函数替换为等价的简单函数,从而更容易求得极限值。
但需要注意的是,这些原则只适用于满足条件的函数和极限情况,需要在具体问题中合理应用。
常用的等价无穷小替换公式
![常用的等价无穷小替换公式](https://img.taocdn.com/s3/m/358dc6272379168884868762caaedd3383c4b5c2.png)
常用的等价无穷小替换公式一、什么是无穷小在微积分中,我们常常会遇到无穷小的概念。
无穷小是指当自变量趋于某个值时,相应的函数值趋近于零的量。
在数学中,无穷小通常用符号“ε”或“δ”表示。
二、常见的等价无穷小替换公式在处理极限问题时,我们常常会用到等价无穷小替换公式,这些公式能够将复杂的极限问题转化为简单的计算。
下面是一些常见的等价无穷小替换公式:1. 当x趋于零时,sin(x)与x等价。
这个公式可以简化一些含有三角函数的极限问题。
例如,当x趋于零时,lim(x→0) sin(x)/x = 1。
2. 当x趋于零时,tan(x)与x等价。
这个公式可以简化一些含有切线函数的极限问题。
例如,当x趋于零时,lim(x→0) tan(x)/x = 1。
3. 当x趋于零时,ln(1+x)与x等价。
这个公式可以简化一些含有对数函数的极限问题。
例如,当x趋于零时,lim(x→0) ln(1+x)/x = 1。
4. 当x趋于无穷大时,e^x与x^n等价。
这个公式可以简化一些指数函数和幂函数的极限问题。
例如,当x 趋于无穷大时,lim(x→∞) e^x/x^n = ∞,其中n为任意正整数。
5. 当x趋于无穷大时,sinh(x)与e^x等价。
这个公式可以简化一些双曲函数和指数函数的极限问题。
例如,当x趋于无穷大时,lim(x→∞) sinh(x)/e^x = 1。
6. 当x趋于无穷大时,(1+1/x)^x与e等价。
这个公式可以简化一些含有指数函数的极限问题。
例如,当x趋于无穷大时,lim(x→∞) (1+1/x)^x = e。
以上只是一些常见的等价无穷小替换公式,它们在求极限的过程中起到了重要的作用。
通过使用这些公式,我们可以将复杂的极限问题简化为易于计算的形式。
三、等价无穷小替换公式的应用举例下面通过一些具体的例子来展示等价无穷小替换公式的应用。
例一:求极限lim(x→0) sin(3x)/x。
根据等价无穷小替换公式1,我们知道sin(3x)与3x等价,所以极限可以简化为lim(x→0) 3x/x = 3。
高等数学等价无穷小替换公式
![高等数学等价无穷小替换公式](https://img.taocdn.com/s3/m/ebac8f46001ca300a6c30c22590102020740f29c.png)
高等数学等价无穷小替换公式
在高等数学中,我们常常会遇到无穷小量。
无穷小量指的是在某个极限下,趋于零的量。
虽然无穷小量在数学中有很多应用,但是它在计算中也会带来一定的麻烦。
因此,我们需要一些替换公式来简化计算。
等价无穷小替换公式是指在某个极限下,用一个更简单的无穷小量来代替原来的无穷小量,从而简化计算。
以下是一些常见的等价无穷小替换公式:
1. 当 $xto 0$ 时,$sin(x)sim x$,$tan(x)sim x$,$arcsin(x)sim x$,$arctan(x)sim x$。
2. 当 $xtoinfty$ 时,$e^{-x}sim 0$,$ln(1+x)sim x$,$1-e^{-x}sim x$。
3. 当 $xto a$ 时,$e^x-1sim x$,
$ln(x+1)-ln(x)simfrac{1}{x}$。
使用等价无穷小替换公式可以简化复杂的计算,但是需要注意的是,这些公式只适用于特定的极限情况下。
在使用时需要结合具体的问题进行判断,避免出现错误。
- 1 -。
第二章第六次 利用等价无穷小代换求极限
![第二章第六次 利用等价无穷小代换求极限](https://img.taocdn.com/s3/m/ade41871a417866fb84a8ec8.png)
x tan x − sin x ~ 2
2.8 函数的连续性
一、函数改变量(或称函数增量) 函数改变量(或称函数增量)
1、问 冰水吸收热量与温度的函数关系:我们知 道,当冰加热到一定程度 时,就会溶化成水. 但我们 就会溶化成水 是否知道, 是否知道,冰在溶化过程 中,它所吸收的热量Q与温 它所吸收的热量 与温 度t之间有何种关系呢?下 之间有何种关系呢? 之间有何种关系呢 面我们来研究这个问题. 面我们来研究这个问题
x , 将 列 穷 与 较 例1 当 →0时 试 下 无 小 x比 sin x ( 3) (4) x 2 ( x + 1) (1) 1 + x − 1 − x ( 2) ln(1 + x ) x
1+ x − 1− x 2x =1 解: 1)Qlim ( = lim x →0 x →0 x( 1 + x + 1 − x ) x
解: Q x → 0 时 , e − 1 ~ x
ex −1 x ∴ lim = lim =2 x→0 1 + x − 1 x →0 1 x 2
1 1+ x −1 ~ x 2
(x +1)sin2x 例3 lim x→ 0 arcsin x 解:当x → 0时, sin2 x ~ 2 x, arcsin x ~ x.
⑵几何意义 如 把 量看 数 上 的 标 果 变 t 做 轴 点 坐 , , t . 当 t > 0时 t1在 0的 方 当 t < 0时 t1在 0的左方 ∆ , t 右 ; ∆
0
t ∆ >0 t0 t1 (t0 + ∆t)
t ∆ <0
用“等价无穷小替代法”求极限的研究
![用“等价无穷小替代法”求极限的研究](https://img.taocdn.com/s3/m/b34b7affaef8941ea76e0556.png)
tan x - sin x . sin3 x tan x - sin x sin x / cos x - sin x 解 lim = lim = x→ 0 x→ 0 sin3 x sin3 x 2 1 - cos x x /2 lim = lim 2 2 = 1/ 2. x→ 0 cos x sin x x→ 0 cos x x
1 问题的提出
“等价无穷小替代法” 是指在极限运算过程中 , 某些无穷小量因子用其等价的无穷小来代替 , 以达 到简化计算的方法 . 在实际计算过程中 , 利用 “等价 无穷小替代法” 或与其它方法相结合 ,则计算极限不 失为一种行之有效的方法 , 但并非计算过程中所有 的无穷小量都能用其等价的无穷小量来代替进行计 算 . 常见用来替代的等价无穷小主要有 : 设α为某一 α α α 变化过程中的无穷小量 ,则有 [ 1 ] : ~ sin ~ arcsin ~ α 2 α α,1 - cos α α α, In ( 1 +α )~ tan ~arctan ~ / 2 ,e - 1 ~ α,
lim
量之比或无穷小量作为极限式中的乘积因子且代换 后的极限存在 ,则可利用等价无穷小进行代换 . 但有 些求极限运算过程中不能用等价无穷小进行替换 , 如求 lim
tan x - sin x [ 2 ]
x3
x→ 0
( x) .
, 若用 tan x ~ x ,sin x ~ x ( x tan x - sin x
n
极限过程都成立 . 定理 1 设 α( x ) , α 1 ( x ) , β( x ) , β 1 ( x ) 是某 一变化过程中的穷小量 , 且 α( x ) ~α 1 ( x ) , β( x ) ~ α( x ) f ( x ) β 1 ( x) , 若 li m β( x ) 存在 ,则有 : α α( x ) f ( x ) 1 ( x) f ( x) lim = lim . β β( x ) 1 ( x) α 1 ( x) f ( x) 证 明 lim lim β 1 ( x) α α( x) f ( x) β( x) 1 ( x ) α( x ) f ( x ) β( x ) = lim β( lim β β x) 1 ( x) β( x) α( x) 1 ( x)
和差运算中无穷小的等价替换方法利用带有佩亚诺余项的麦克劳林公式求无穷小量代数和的极限
![和差运算中无穷小的等价替换方法利用带有佩亚诺余项的麦克劳林公式求无穷小量代数和的极限](https://img.taocdn.com/s3/m/78921593d1f34693daef3eb0.png)
差
运
算
中
无穷小的等价替换方法
&
利用带有佩亚诺余项的麦克劳林公
式求无穷小量代数和的极限
1 2 3
01 和 差 运 算 中 无 穷 小 的等价替换方法
复习:常见的求极限的方法 方法1:极限运算法则
函数和差积商的极限=极限的和差积
方法2:等价无穷小替换 无穷小的比较
常见等价无穷小
x→0
sin x ~ x tan x ~ x arcsin x ~ x
在求无穷小量代数和的极限时,可将阶数较高的无穷小量舍弃, 以简化计算。(即:低阶无穷小+高阶无穷小⇔低阶无穷小)P54定理1
为什么上一题的sin x 和xcos x要用三阶的麦克劳林公式而不用一阶或 者五阶的呢?拿到一个题目要怎么确定要用几阶的麦克劳林公式呢?有大佬总结出两个规律来自分式上下同阶原则和加减幂次最低原则
arctan x ~ x
ln(1+ x) ~ x
x+1
x+1
★在利用等价无穷小量替换求极限时,应注意: 只有对所求极限式中相乘或相除的因式才能用等价无穷小量 来替换,而对极限式中的相加或相减部分则不能随意替换。
推论:两个同阶但非等价的无穷小之差的每 一项都可以用与之等价的无穷小替换。
简单地说:替换后分子或分母不为0的均可替换
thank you for watching!
2019.05.23
两个同号无穷小之和的每一项都可以用与之等价的无穷小替换。
运用等价无穷小的替换时,可以只替换分子或分母,也可以将 分子和分母同时替换。
02 泰 勒 公 式
泰勒公式是高等数学的核心内容之一,其基本思想是将一些
复杂的函数关系近似地表示为简单的幂级数的形式达到化繁
第7节 利用等价无穷小量代换求极限
![第7节 利用等价无穷小量代换求极限](https://img.taocdn.com/s3/m/bfeb88ebe009581b6bd9ebab.png)
常用等价无穷小量: 常用等价无穷小量: 当x → 0时, 时
sin x ~ x , tan x ~ x , ln(1 + x ) ~ x ,
arcsin x ~ x , arctan x ~ x , e − 1 ~ x,
x
1 2 1 − cos x ~ x . 2
用等价无穷小量可给出函数的近似表达式: 用等价无穷小量可给出函数的近似表达式 β α−β Q lim = 1, ∴ lim α = 0, 即 α − β = o(α ), α α
于是有 α = β + o(α ). α
例如, 例如 sin x = x +o( x ),
1 2 cos x = 1 − x + o( x 2 ). 2
tan x ln(1 + x ) 例1 求 lim x→0 sin x 2
解
当x → 0时, sin x 2 ~ x 2 , tan x ~ x , ln(1 + x ) ~ x .
tan x ln(1 + x ) x⋅ x = lim 2 = 1. 2 所以 lim x→0 x→0 x sin x
tan 2 x 例2 求 lim . x →0 1 − cos x
1 2 解 当x → 0时, 1 − cos x ~ x , tan 2 x ~ 2 x . 2
2
(2 x )2 原式 = lim =8 x →0 1 2 x 2
§2.7 利用等价无穷小量代换求极限
定理(等价无穷小量替换定理) 定理(等价无穷小量替换定理)
β′ β β′ , 设α ~ α′, β ~ β ′且lim 存在 则lim = lim . α′ α α′
证
β β β′ α′ lim = lim( ⋅ ⋅ ) α β′ α′ α β β′ α′ = lim ⋅ lim ⋅ lim α β′ α′ β′ = lim . α′
等价无穷小替换-极限的计算
![等价无穷小替换-极限的计算](https://img.taocdn.com/s3/m/8ad06b21524de518964b7dc8.png)
等价无穷小替换-极限的计算无穷小极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较会用等价无穷小求极限;3、不同类型的未定式的不同解法。
【教学内容】1、无穷小与无穷大;2、无穷小的比较;3、几个常用的等价无穷小等价无穷小替换;4、求极限的方法。
【重点难点】重点是掌握无穷小的性质与比较用等价无穷小求极限。
难点是未定式的极限的求法。
【教学设计】首先介绍无穷小和无穷大的概念和性质(30 分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20 分钟)。
最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)【授课内容】一、无穷小与无穷大1.定义前面我们研究了 n 数列x n的极限、XX 、X )函数 f X 的极限、X x (x X 0、X X ) 函数f(X)的极限这七种趋近方式。
下面我们用 X *表示上述七种的某一种趋近方式,即衣 nX X X X X o X X o X X o定义:当在给定的X *下,f(x)以零为极限, 则称f(x)是X 水下的无穷小,即lim f X 0。
*函数sin x 是当X 0时的无穷小 函数-是当X 时的无穷小.X【注意】不能把无穷小与很小的数混淆;零是可 以作为无穷小的唯一的数,任何非零常量都不是 无穷小。
定义:当在给定的X *下,|fx |无限增大, 则称fX 是X *下的无穷大,即凹f X 。
显然, n 时,n 、n 2、n 3、都是无穷大量,【注意】不能把无穷大与很大的数混淆;无穷大 是极限不存在的情形之一。
无穷小与无穷大是相 对的,在不同的极限形式下,同一个函数可能是 无穷小也可能是无穷大,如例如,lim si nx 0,X 0lim - 0, li m(1)nn0,数列是当nn时的无穷小0 e x 0 ,lim e x,x所以e x 当x时为无穷小,当x 时为无穷大。
2. 无穷小与无穷大的关系:在自变量的同 一变化过程中,如果f x 为无穷大,则丄为无穷小;反之,如果 f x 为无穷小,且 f xf x 0,则亠为无穷大。
等价无穷小替换,极限的计算[资料]
![等价无穷小替换,极限的计算[资料]](https://img.taocdn.com/s3/m/a29dd419eefdc8d376ee32e1.png)
无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。
【教学内容】1、无穷小与无穷大;2、无穷小的比较;3、几个常用的等价无穷小 等价无穷小替换;4、求极限的方法。
【重点难点】重点是掌握无穷小的性质与比较 用等价无穷小求极限。
难点是未定式的极限的求法。
【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。
最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。
【授课内容】一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。
下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈000x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。
例如, ,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x,01lim=∞→x x .1时的无穷小是当函数∞→∴x x,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n nn 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。
定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *lim 。
显然,∞→n 时, 、、、32n n n 都是无穷大量,【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。
等价无穷小替换极限的计算
![等价无穷小替换极限的计算](https://img.taocdn.com/s3/m/cc0e52092a160b4e767f5acfa1c7aa00b52a9dc7.png)
等价无穷小替换极限的计算等价无穷小替换是一种常用的极限计算方法,它可以将一个极限问题转化为一个更简单的等价形式,从而更容易求解。
在处理极限问题时,我们常常会遇到无穷小的概念,无穷小是指当自变量趋于一些值时,函数值趋于零,且比自变量的变化幅度小得可以忽略不计的函数。
而等价无穷小则是指具有相同极限的无穷小。
等价无穷小替换的基本思想是用一个等价无穷小替换原来的无穷小,从而得到一个与原无穷小具有相同极限的极限问题。
具体来说,我们有以下几种常见的等价无穷小替换方法。
1.正比无穷小替换:如果函数f(x)和g(x)满足下面的条件:-当x趋于一些值c时,f(x)和g(x)的极限都为零;-存在一个非零常数k,使得当x趋于c时,f(x)和g(x)的比值趋于k那么,我们可以用g(x)代替f(x)作为等价无穷小进行极限计算。
2.同阶无穷小替换:如果函数f(x)和g(x)满足下面的条件:-当x趋于一些值c时,f(x)和g(x)的极限都为零;-当x趋于c时,f(x)和g(x)的比值趋于1那么,我们可以用g(x)代替f(x)作为等价无穷小进行极限计算。
3.高阶无穷小替换:如果函数f(x)和g(x)满足下面的条件:-当x趋于一些值c时,f(x)和g(x)的极限都为零;-存在一个正整数n,使得当x趋于c时,f(x)和g(x)的比值的n次幂趋于1那么,我们可以用g(x)代替f(x)作为等价无穷小进行极限计算。
通过使用等价无穷小替换,我们可以简化极限的计算过程。
例如,对于形如lim(x→0) sin(x)/x的极限,我们可以利用正比无穷小替换将sin(x)替换为x,从而得到lim(x→0) x/x=1的等价极限。
同理,对于形如lim(x→∞) (x+1)/x的极限,我们可以利用同阶无穷小替换将(x+1)替换为x,从而得到lim(x→∞) x/x=1的等价极限。
需要注意的是,等价无穷小替换方法只适用于具有相同极限的无穷小,要求在等价无穷小替换后的函数极限仍然存在。
极限的计算方法总结归纳
![极限的计算方法总结归纳](https://img.taocdn.com/s3/m/dee1300984868762cbaed51f.png)
极限的计算方法总结归纳“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
下面为大家整理的是极限的计算方法总结,希望对大家有所帮助~1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
极限的计算---无穷小等价替换
![极限的计算---无穷小等价替换](https://img.taocdn.com/s3/m/33a03b36ddccda38376bafdc.png)
பைடு நூலகம்解:
所以原式
例3.
解:
原式= = = .
(选讲)(三)其它情形进行替换求极限: (三级)
例4. 求 .
解:
则 ,
用等价无穷小替换得 = =1.
例5. 求 .
解:因为 , ,
所以
.
三、能力反馈部分
1、(考查学生对等价无穷小替换求极限的方法的掌握情况)
直接用等价替换:
(1) (2)
四则运算变换后进行替换
注:在教学中选择性地证明几个等价无穷小.
引例 =
3、等价无穷小的替换定理
定理
证:
4、等价无穷小替换求极限的求解案例
(一)直接替换求极限: (一级)
例1.(1) ; (2) .
解:(1)原式= = ;
(2) 故原式 = 2.
【注意】等价无穷小的替换能直接用在乘、除运算,一般不能用在加、减法运算中.
(二)四则运算变形后进行替换求极限: (二级)
(3) (4)
其它情况等价替换(选做)
(5) (6)
3、熟记等价替换的条件并能熟练掌握其应用;
能力目标
培养学生灵活运用知识的能力
时间分配
30分钟
编撰
尧克刚
校对
熊文婷
审核
危子青
修订
熊文婷
二审
危子青
一、正文编写思路及特点:
思路:在熟记常用等价无穷小量的基础,按照由易到难得顺序讲题例题和习题使学生能够灵活运用无穷小量的的等价替换掌握 型极限的求解方法。
特点:通过例题及练习的变形,使学生学会灵活运用知识的能力。
模块基本信息
一级模块名称
函数与极限
二级模块名称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。
【教学内容】1、无穷小与无穷大;2、无穷小的比较;3、几个常用的等价无穷小 等价无穷小替换;4、求极限的方法。
【重点难点】重点是掌握无穷小的性质与比较 用等价无穷小求极限。
难点是未定式的极限的求法。
【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。
最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。
【授课内容】一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。
下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈000x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。
例如,,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x,01lim=∞→x x .1时的无穷小是当函数∞→∴x x,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n nn 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。
定义:当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *lim 。
显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。
无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如0lim =-∞→x x e , +∞=+∞→x x e lim ,所以xe 当-∞→x 时为无穷小,当+∞→x 时为无穷大。
2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大。
小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。
3.无穷小与函数极限的关系: 定理 1 0lim ()()(),xx xf x A f x A x α其中)(x α是自变量在同一变化过程0x x →(或∞→x )中的无穷小.证:(必要性)设0lim (),xx f x A 令()(),x f x A α则有0lim ()0,xx x α).()(x A x f α+=∴(充分性)设()(),f x A x α其中()x α是当0xx 时的无穷小,则lim ()lim(())xx xx f x A x α)(lim 0x A x x α→+=.A =【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)0()(),().f x x f x A x α给出了函数在附近的近似表达式误差为3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.是无穷小,时例如nn 1,,∞→.11不是无穷小之和为个但n n 定理3 有界函数与无穷小的乘积是无穷小. 如:01)1(lim =-∞→n nn ,01sin lim 0=→xx x ,0sin 1lim =∞→x x x推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,2210,,,sin ,sinxx x x x x当时都是无穷小,观察各极限:xx x 3lim 20→,0=;32要快得多比x x xxx sin lim0→,1=;sin 大致相同与x x2201sinlimx x x x →x x 1sin lim 0→=.不存在不可比. 极限不同, 反映了趋向于零的“快慢”程度不同.1.定义:设,αβ是自变量在同一变化过程中的两个无穷小,且0.α(1)lim0,,();o ββαβαα如果就说是比高阶的无穷小记作 ;),0(lim )2(是同阶的无穷小与就说如果αβαβ≠=C Clim 1,~;ββααβα特殊地如果则称与是等价的无穷小,记作(3)lim (0,0),.k C C k k ββαα如果就说是的阶的无穷小例1.tan 4,0:3的四阶无穷小为时当证明x x x x →证:430tan 4lim x x x x →30)tan (lim 4xx x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2.sin tan ,0的阶数关于求时当x x x x -→ 解30sin tan limx x x x -→ )cos 1tan (lim 20x x x x x -⋅=→,21=.sin tan 的三阶无穷小为x x x -∴2.常用等价无穷小:,0时当→x(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-xe ~x(7)x cos 1-~22x (8)1)1(-+μx ~x μ (9)1xa~ln a x用等价无穷小可给出函数的近似表达式:,1lim=αβ ,0lim =-∴αβα),(αβαo =-即).(αβαo +=于是有 例如),(sin x o x x +=).(211cos 22x o x x +-= 3.等价无穷小替换 定理:.lim lim ,lim~,~αβαβαβββαα''=''''则存在且设证:αβlim)lim(αααβββ'⋅''⋅'=αααβββ'⋅''⋅'=lim lim lim .lim αβ''=例3(1).cos 12tan lim 20xx x -→求; (2)1cos 1lim 20--→x e x x解: (1).2~2tan ,21~cos 1,02x x x x x -→时当故原极限202(2)lim 12x x x = 8 (2)原极限=2lim 220xx x -→=21- 例4.2sin sin tan lim30xxx x -→求错解:.~sin ,~tan ,0x x x x x 时当→30)2(limx xx x -=→原式=0正解:,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,21~3x 故原极限33012lim (2)x xx .161= 【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。
例5.3sin 1cos 5tan lim0xx x x +-→求解:),(5tan x o x x += ),(33sin x o x x +=).(21cos 122x o x x +=- 原式2215()()2lim3()x xo x x o x x o x xx o x x o x x x o x )(3)(21)(5lim20++++=→.35= 三、极限的简单计算1. 代入法:直接将0x x →的0x 代入所求极限的函数中去,若()0x f 存在,即为其极限,例如924231232lim 3451=++++-→x x x x x x ;若()0x f 不存在,我们也能知道属于哪种未定式,便于我们选择不同的方法。
例如,39lim 23--→x x x 就代不进去了,但我们看出了这是一个0型未定式,我们可以用以下的方法来求解。
2. 分解因式,消去零因子法例如,()63lim 39lim323=+=--→→x x x x x 。
3. 分子(分母)有理化法 例如,()()()()()()355125125123535lim51235lim222222++++-+++++-+=-+-+→→x x x x xxx x x x424lim 22--=→x x x ()()()2222lim2--+=→x x x x 2=又如,()011lim1lim22=++=-++∞→+∞→xx x x x x4. 化无穷大为无穷小法例如,2222173373limlim142422xxxx x x x x x x ,实际上就是分子分母同时除以2x 这个无穷大量。
由此不难得出⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--∞→mn m n m n ba b x b x b a x a x a n n n m m m x ,,,0lim 00110110又如,12111lim21lim=++=+++∞→+∞→xxx x x x ,(分子分母同除x )。
再如,1153152lim 5352lim -=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→n nn n n n n n ,(分子分母同除n 5)。
5. 利用无穷小量性质、等价无穷小量替换求极限例如,()0131arctan lim2=+++∞→x x x x x ,(无穷小量乘以有界量)。
又如,.3214lim 21-+-→x x x x 求解:)32(lim 21-+→x x x ,0=商的法则不能用)14(lim 1-→x x 又,03≠=1432lim21--+∴→x x x x .03== 由无穷小与无穷大的关系,得.3214lim21∞=-+-→x x x x 再如,等价无穷小量替换求极限的例子见本节例3—例5。
6. 利用两个重要极限求极限(例题参见§1.4例3—例5) 7. 分段函数、复合函数求极限 例如,).(lim ,0,10,1)(02x f x x x x x f x →⎩⎨⎧≥+<-=求设 解: 两个单侧极限为是函数的分段点,0=x)1(lim )(lim 0x x f x x -=--→→,1=)1(lim )(lim 20+=++→→x x f x x ,1=左右极限存在且相等,.1)(lim 0=→x f x 故【启发与讨论】 思考题1:110,sin xyx x当时是无界变量吗?是无穷大吗?解:),3,2,1,0(221)1(0 =+=k k x ππ取,22)(0ππ+=k x y .)(,0M x y k >充分大时当无界,),3,2,1,0(21)2(0 ==k k x π取,,δ<k x k 充分大时当ππk k x y k 2sin 2)(=但.0M <=不是无穷大.结论:无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.思考题2:若0)(>x f ,且A x f x =+∞→)(lim ,问:能否保证有0>A 的结论?试举例说明.解:不能保证.例x x f 1)(=,0>∀x 01)(>=xx f =+∞→)(lim x f x .01lim ==+∞→A x x思考题3:任何两个无穷小量都可以比较吗?解:不能.例如当+∞→x 时,1)(x x f =xxx g sin )(=都是无穷小量 但=+∞→)()(limx f x g x x x sin lim +∞→不存在且不为无穷大,故当+∞→x 时)(x f 和)(x g 不能比较. 【课堂练习】求下列函数的极限(1)xxe x x cos lim 0-→;解:原极限=1cos 1lim 1lim cos lim000=-+-=-→→→xxx e x x e x x x x x (2)求)1ln()cos 1(1cossin 3lim20x x x x x x +++→ 【分析】“”型,拆项。