高一物理牛顿第二定律典型例题答案及讲解
牛顿第二定律及应用(解析版)
牛顿第二定律及应用一、力的单位1.国际单位制中,力的单位是牛顿,符号N。
2.力的定义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=1kg·m/s2。
3.比例系数k的含义:关系式F=kma中的比例系数k的数值由F、m、a三量的单位共同决定,三个量都取国际单位,即三量分别取N、kg、m/s2作单位时,系数k=1。
小试牛刀:例:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,不正确的是()A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中k=1D.取的单位制不同, k的值也不同【答案】A【解析】物理公式在确定物理量之间的数量关系的同时也确定了物理量的单位关系,在F=kma中,只有m的单位取kg,a的单位取m/s2,F的单位取N时,k才等于1,即在国际单位制中k=1,故B、C 、D正确。
二、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.表达式F=ma的理解(1)单位统一:表达式中F、m、a三个物理量的单位都必须是国际单位.(2)F的含义:F是合力时,加速度a指的是合加速度,即物体的加速度;F是某个力时,加速度a是该力产生的加速度.4.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.小试牛刀:例:关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F= ma在任何情况下都适用B.物体的运动方向一定与物体所受合力的方向一致C.由F= ma可知,物体所受到的合外力与物体的质量成正比D.在公式F= ma中,若F为合力,则a等于作用在该物体上的每一个力产生的加速度的矢量和【答案】D【解析】A、牛顿第二定律只适用于宏观物体,低速运动,不适用于物体高速运动及微观粒子的运动,故A错误;B、根据Fam合,知加速度的方向与合外力的方向相同,但运动的方向不一定与加速度方向相同,所以物体的运动方向不一定与物体所受合力的方向相同,故B错误;C、F= ma表明了力F、质量m、加速度a之间的数量关系,但物体所受外力与质量无关,故C错误;D、由力的独立作用原理可知,作用在物体上的每个力都将各自产生一个加速度,与其它力的作用无关,物体的加速度是每个力产生的加速度的矢量和,故D正确;故选D。
牛顿第二定律典型题习题与答案
2.光滑斜面上,放有质量为M的木板,木板上表面粗糙,为使木板能在斜面上静止不动,今有一质量为m的猫在上面奔跑,求猫的运动方向和加速度大小。
解:木板不动,其受力平衡。
设斜面夹角为α则木板受到猫给的沿着斜面向上的力大小为Mgsinα。
则猫受到沿着斜面向下的力总共是(m+M)gsinα其加速度为 a = (m+M)gsinα/m3.在倾斜角α=30°的光滑斜面上,通过定滑轮连接着质量mA=mB=1kg的两个物体,开始使用手拖住A,其离地高h=5m,B位于斜面底端撤去手后,求(1)A即将着地时A的动能(2)物体B离低端的最远距离(斜面足够长)解:1,将AB看作整体,用动能地理,设A的动能为E,则B的动能也为E。
有2E = mgh - mgh/2,带入数据求的E =2,机械能守恒,B的动能完全转化为重力势能,设上升高度为H,则mgH = E ,对应的斜面长度L = 2H =所以,物体B离低端的最远距离为 5+L =4.质量为一千克的木板静止在粗糙的水平地面上,木板与地面间的摩擦因素为,在木板左端放置一块质量为一千克,大小不算的铁块,铁块与动摩擦因素为,取g等于10。
求,当木板长为1m,在铁块上加一个水平向右的恒力8N,多少时间铁块运动到木板右端?解:已知μ=,μ′= 对铁块分析,设铁块的加速度为a ma=F拉-μ′mg 解得a=4m/s²对木板分析,设木板加速度为a′ ma′=μ′mg-μ(m+m)g 解得a′=2m/s² 根据S= 1/2 (a-a′)t² 已知S=1m 将a ,a′ 解得t=1s铁块对地的加速度a1 = (8 - *1*g)/1 = 4木板对地的加速度a2 = (*1*g - *2*g)/1 = 2则铁块对木板的相对加速度a = a1 - a2 = 2 ,铁块对木板的初速度为0有 *at^2 = 1 ,得t = 1s5.如图所示。
已知斜面倾角30°,物体A质量mA=㎏,物体B质量mB=㎏,H=。
牛顿第二定律 练习与解析
牛顿第二定律 练习与解析1.一辆质量为10kg 的小车,受到20N 的拉力作用,求这辆小车在拉力作用下的加速度是多大?答案:2m/s 2解:由牛顿第二定律,F =maa =F /m =20/10m/s 2=2m/s 2.2.一个物体的质量为50kg ,在100N 的水平拉力的作用下,以1.5m/s 2的加速度加速运动,求物体受到的摩擦力的大小.答案:25N解:由牛顿第二定律可知物体受到的合外力的大小:F =ma =50×1.5N =75N物体受力如图所示:F =F 1-ff =f 1-F =(100-75)N =25N .3.要使重5N 的物体在竖直方向上做匀速直线运动,应对物体施加的拉力是_____N ,此力的方向为_____.答案:5 竖直向上解:物体做匀速直线运动,加速度a =0,由牛顿第二定律:F =ma =0;即物体受到的合外力为零.所以,物体受到的力和物体的重力大小相等,方向相反,所以应对物体施加5N 的力,方向竖直向上.4.一个5N 的力作用在一个物体上,使物体得到的加速度是8m/s 2,作用在另一个物体上所得到的加速度为24m/s 2.如果将两个物体拴在一起,仍用5N 的力作用,求物体得到的加速度是多大?答案:6m/s 2解:设第一个物体的质量为m 1,第二个物体的质量为m 2,第一个物体的加速度为a 1,第二个物体的加速度为a 2,它们共同的加速度为a .由牛顿第二定律得:F =m 1a 1F =m 2a 2 F =(m 1+m 2)a解得a =6m/s 2.5.地面上放一木箱,质量为40kg ,用100N 的力与水平成 37角推木箱,如图4-5所示,恰好使木箱匀速前进.若用此力与水平成 37角向斜上方拉木箱,木箱的加速度多大?(取g =10m/s 2,sin 37=0.6,cos37=0.8) 答案:0.56m/s 2解:当用力推木箱时,物体的受力如图(1)F cos 37-f =0f =μN =μ(mg +F sin 37)得μ=0.17当用力拉木箱时,物体的受力如图(2)合F =F cos 37-f 1=ma f 1=μN 1=μ(mg -F sin37)解得a=0.56m/s2.。
牛顿第二定律(精品试题及参考答案)
牛顿第二定律精品试题1.关于物体的加速度和所受合外力的关系,有下列几种说法,其中正确的是()A.物体所受的合外力为零,加速度一定为零B.合外力发生变化时,物体的加速度一定改变C.物体所受合外力的方向一定和物体加速度的方向相同D.物体所受合外力的方向可能和物体加速度的方向相反2.给静止在光滑水平面上的物体施加一个水平拉力,当拉力刚开始作用的瞬间,下列说法正确的是()A.物体同时获得速度和加速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度均为零3.下列对牛顿第二定律的表达式F=ma及其变形公式的理解正确的是()A.由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m=Fa可知,物体的质量与其所受的合力成正比,与其运动的加速度成反比C.由a=Fm可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m=Fa可知,物体的质量可以通过测量它的加速度和它所受的合力而求出4.在牛顿第二定律的表达式F=kma中,有关比例系数k 的下列说法中正确的是()A.在任何情况下k都等于1B .k 的数值由质量、加速度和力的大小决定C .k 的数值由质量、加速度和力的单位决定D .在国际单位制中k =15.一个质量为m =2 kg 的物体静止于光滑的水平面上,现在作用在物体上两个水平拉力F 1、F 2,已知F 1=3 N ,F 2=4 N ,则物体的加速度大小可能是( ) A .0.5 m/s 2 B .2.5 m/s 2 C .4 m/s 2 D .3.5 m/s 26.如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力的大小为( ) A .F 1 B .F 2 C .(F 1+F 2)/2 D .(F 1-F 2)/27.如图所示,A 、B 两条直线是在A 、B 两地分别用竖直向上的力F 拉质量分别为m A 、m B 的物体得出的两个加速度a 与力F 的关系图线,由图线分析可知( ) A .两地的重力加速度g A >g B B .m A <m BC .两地的重力加速度g A <g BD .m A >m B 8.12F 1F 2A aBFO图3如图3所示,一个铁球从竖直立在地面上的轻质弹簧正上方某处自由落下,接触弹簧后弹簧做弹性压缩.从它接触弹簧开始到弹簧压缩到最短的过程中,小球的速度和受到的合力的变化情况是( )A .合力变小,速度变小B .合力变小,速度变大C .合力先变大后变小,速度先变小后变大D .合力先变小后变大,速度先变大后变小9.如图6所示,光滑水平面上,水平恒力F 拉小车和木块一起做匀加速直线运动,小车质量为M ,木块质量为m ,它们的共同加速度为a ,木块与小车间的动摩擦因数为μ,则在运动过程中( )图6A .木块受到的摩擦力大小一定为μmgB .木块受到的合力大小为maC .小车受到的摩擦力大小为mFm +MD .小车受到的合力大小为(m +M)aE .小车受到的合力大小为F F .小车受到的合力大小为F-maG .小车受到的合力大小为Ma10.(2012·江苏单科·5)如图9所示,一夹子夹住木块,在力F 作用下向上提升.夹子和木块的质量分别为m 、M ,夹子与木块两侧间的最大静摩擦力均为f ,若木块不滑动,力F 的最大值是 ( )A.2f (m +M )MB.2f (m +M )mC.2f (m +M )M -(m +M )gD.2f (m +M )m+(m +M )g 11.(2012·安徽理综·17)如图11所示,放在固定斜面上的物块以加速度a 沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F ,则 ( ) 图11A .物块可能匀速下滑B .物块仍以加速度a 匀加速下滑C .物块将以大于a 的加速度匀加速下滑D .物块将以小于a 的加速度匀加速下滑12.如图4所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A.都等于g2 B.g2和0 图4C.M A+M BM B·g2和0 D.0和M A+M BM B·g213.图4如图4所示,质量为4 kg的物体静止在水平面上,物体与水平面间的动摩擦因数为0.5.物体受到大小为20 N与水平方向成37°角斜向上的拉力F作用时,沿水平面做匀加速运动,求物体加速度的大小.(g取10 m/s2,sin37°=0.6,cos 37°=0.8)14.图2如图2所示,沿水平方向做匀变速直线运动的车厢中,小球的悬线偏离竖直方向37°,球和车厢相对静止,球的质量为1 kg.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况;(2)求悬线对球的拉力.15.质量为m人站在自动扶梯上,扶梯正以加速度a向上加速运动,a与水平方向夹角为θ。
牛顿第二定律经典例题及答案
牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。
当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。
其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。
高一物理(必修一)《牛顿第二定律》练习题(附答案解析)
高一物理(必修一)《牛顿第二定律》练习题(附答案解析)班级:___________姓名:___________考号:___________一、单选题1.在升降机底部安装一个加速度传感器,其上放置了一个质量为m的小物块,如图甲所示。
升降机从t=0时刻开始竖直向上运动,加速度传感器显示加速度a随时间t变化的图像如图乙所示。
取竖直向上为正方()A.速度不断减小B.加速度先变小再变大C.先是加速度增大的加速运动,后是加速度减小的减速运动D.到最低点时,小孩和杆处于平衡状态5.蹦床运动深受人们喜爱,如图为小明同学在杭州某蹦床馆,利用传感器测得蹦床弹力随时间的变化图。
假设小明仅在竖直方向运动,忽略空气阻力,依据图像给出的物理信息,可得()A.7.5s至8.3s内,运动员先处于失重状态再处于超重状态B.小明的最大加速度为502m/sC.小明上升的最大高度为20mD.小明在整个蹦床过程中机械能守恒θ=︒的光滑斜面上,物块A、B质量分别为m和2m。
物块A静止在轻弹簧上面,6.如图所示,在倾角为30物块B用细线与斜面顶端相连,A、B紧挨在一起但A、B之间无弹力。
已知重力加速度为g,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是()g g3g二、多选题10.甲、乙两个物体在同一直线上沿正方向运动,a甲=4 m/s2,a乙=4-m/s2,那么对甲、乙两物体判断正确Mg5参考答案与解析1.C【详解】AB.当a>0时,物块具有向上的加速度,处于超重状态,故AB错误;C.t=t0时刻,a=0,F N=mg,故C正确;D.t=3t0时刻,a=2g,由牛顿第二定律有F N-mg=ma得F N=3mg故D错误。
故选C。
2.D【详解】A.梦天舱和天和舱因之间因冲击对梦天舱和天和舱产生的力大小相等方向相反,可知梦天舱和天可知梦天舱和天和舱的加速度大小不相和舱的加速度方向不同,梦天舱和天和舱的质量不等,根据F ma等,故A错误;B.空间站内的宇航员受到地球的万有引力,由于万有引力全部提供做圆周运动的向心力,所以宇航员处于完全失重状态,故B错误;C.第一宇宙速度为环绕地球做圆周运动的物体的最大速度,可知对接后空间站绕地运行速度小于第一宇宙速度,故C错误;D.对接后空间站的速度会发生变化,若不启动发动机调整轨道,对接后空间站的轨道将会是椭圆,故D正第11 页共11 页。
高中物理必修一牛顿第二定律典型例题
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(A)。
【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。
[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。
牛顿第二定律专题(含经典例题)
牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。
物理牛顿第二定律F=ma试题答案及解析
物理牛顿第二定律F=ma试题答案及解析1.如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是( )【答案】A【解析】解答本题时可按以下思路分析:开始时F较小,两物体一起以相同的加速度运动,当F增大到某一值时,两物体相对滑动,m1水平方向仅受滑动摩擦力作用,加速度不变,m2水平方向所受合力增大,加速度增大,因此两物体加速度变化不同.2.如图,质量m="2" kg的物体静止于水平地面的A处,A、B间距L="20" m.用大小为30 N,沿水平方向的外力拉此物体,经t="2" s拉至B处.(已知cos37°="0.8," sin37°=0.6.取g="10" m/s2)(1)求物体与地面间的动摩擦因数μ;(2)用大小为30 N,与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t.【答案】(1)0.5 (2)1.03 s【解析】(1)物体做匀加速运动解得:对物体由牛顿第二定律得:F-μmg=ma解得:(2)设F作用的最短时间为t,物体先以大小为a的加速度匀加速时间t,撤去外力后,以大小为a′的加速度匀减速时间t′到达B处,速度恰为0,对物体由牛顿第二定律得:Fcos37°-μ(mg-Fsin37°)=ma解得:由于匀加速阶段的末速度即为匀减速阶段的初速度,因此有:at=a′t′解得:解得:3.如图所示,在高出水平地面h="1.8" m 的光滑平台上放置一质量M="2" kg、由两种不同材料连接成一体的薄板A,其右段长度l1="0.2" m且表面光滑,左段表面粗糙.在A最右端放有可视为质点的物块B,其质量m="1" kg.B与A左段间动摩擦因数μ=0.4.开始时二者均静止,先对A施加F="20" N 水平向右的恒力,待B脱离A(A尚未露出平台)后,将A取走.B离开平台后的落地点与平台右边缘的水平距离x="1.2" m.(取g="10" m/s2)求:(1)B离开平台时的速度vB.(2)B从开始运动到刚脱离A时,B运动的时间tB 和位移xB.(3)A左段的长度l2.【答案】(1)2 m/s (2)0.5 s 0.5 m (3)1.5 m【解析】(1)物块B离开平台后做平抛运动:x=vBth= gt2解之可得vB="2" m/s(2)物块B与A右端接触时处于静止状态,当B与A左端接触时做匀加速直线运动,设加速度为aB,则μmg=maBv B =aBtB又xB = aBtB2解得tB="0.5" s xB="0.5" m(3)A刚开始运动时,A做匀加速直线运动,设加速度为a1,B刚开始运动时,A的速度为v1,加速度为a2,则有F=Ma1v 12=2a1l1F-μmg=Ma2l 2=v1tB+ a2tB2- aBtB2解得l2="1.5" m4.一质点受多个力的作用,处于静止状态,现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小。
2024年新高一物理初升高衔接《牛顿第二定律》含答案解析
第16讲牛顿第二定律模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三教材习题学解题模块四核心考点精准练模块五小试牛刀过关测1.通过分析探究验数据,能得出牛顿第二定律的数学表达式F=kma,并能准确表达牛顿第二定律的内容;2.能根据1N的定义,理解牛顿第二定律的表达式是如何从F=kma变到F=ma的,体会单位产生的过程;3.能够从合力到加速度的同时性、矢量性等方面理解牛顿第二定律,理解牛顿第二定律是连接运动与力的桥梁;4.会运用牛顿第二定律分析和处理实际生活中简单问题,体会物理的实用价值。
■知识点一:牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成,加速度的方向跟的方向相同。
(2)牛顿第二定律可表述为a∝Fm,也可以写成等式F=,其中k是比例系数,F指的是物体所受的。
牛顿第二定律不仅阐述了力、质量和加速度三者数量间的关系,还明确了的方向与的方向一致。
■知识点二:力的单位(1)F=kma中k的数值取决于F、m、a的单位的选取。
(2)“牛顿”的定义:当k=1时,质量为1kg的物体在某力的作用下获得1m/s2的加速度,这个力即为1牛顿(用符号N表示),1N=。
此时牛顿第二定律可以表述为。
【参考答案】1.牛顿第二定律(1)反比、作用力(2)kma、合力、加速度、力2.力的单位1_kg·m/s2、F=ma。
教材习题01在平直路面上,质量为1100kg的汽车在进行研发的测试,当速度达到100km/h时取消动力,经过70s 停了下来。
汽车受到的阻力是多少?重新起步加速时牵引力为2000N,产生的加速度是多少?假定试车过程中汽车受到的阻力不变。
解题方法利用加速度定义式求解a,注意速度单位换算;再利用牛顿第二定律求解加速度。
【答案】437N,方向与运动方向相反;1.422m/s,方向与运动方向相同。
教材习题02某同学在列车车厢的顶部用细线悬挂一个小球,在列车以某一加速度渐渐启动的过程中,细线就会偏过一定角度并相对车厢保持静止,通过测定偏角的大小就能确定列车的加速度。
高中物理 必修1【牛顿第二定律的应用】典型题(带解析)
高中物理 必修二【牛顿第二定律的应用】典型题1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102 s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确.3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B.倾角θ越大,雨滴对屋顶压力越大C.倾角θ越大,雨滴从顶端O下滑至屋檐M时的速度越大D.倾角θ越大,雨滴从顶端O下滑至屋檐M时的时间越短解析:选AC.设屋檐的底角为θ,底边长度为L,注意底边长度是不变的,屋顶的坡面长度为x,雨滴下滑时加速度为a,对雨滴受力分析,只受重力mg和屋顶对雨滴的支持力F N,垂直于屋顶方向:mg cos θ=F N,平行于屋顶方向:ma=mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h =12at 2联立解得:F f =4 N.(2)下落过程由牛顿第二定律: mg -F f =ma 1 得:a 1=8 m/s 2 落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma ,解得:μ=36.(2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能.由x=12a1t2,得a1=2 m/s2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P 点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置( )A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得 F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2,对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s 松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°。
高中物理必修1《牛顿第二定律》难题有答案解析
例1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大答案:D变式1、例2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对答案:A变式2、例3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速答案:A问题2:牛顿第二定律的基本应用问题:例4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。
(取)求:(1)该火箭启动后获得的加速度。
(2)该火箭启动后脱离发射塔所需要的时间。
解析:本题考查牛顿第二定律和匀变速直线运动的规律在实际中的应用,首先应对火箭进行受力分析,因火箭发射在竖直方向上,一定不要漏掉重力,再利用牛顿第二定律求出火箭加速度,利用匀变速直线运动规律求时间。
(1)如图所示,根据牛顿第二定律:∴(2)设火箭在发射塔上运动的时间为t,则:∴。
答案:(1)(2)例5. 如图(1)所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。
高一物理16:牛顿第二定律(答案)
高一物理16:牛顿第二定律(参考答案)一、知识清单1. 【答案】二、选择题2. 【答案】 CD【解析】 对于给定的物体,其质量是不变的,合外力变化时,加速度也变化,合外力与加速度的比值不变,A 、B 错;加速度的方向总是跟它所受合外力的方向相同,C 正确;由a =Fm 可知D 正确.3. 【答案】 C【解析】 根据牛顿第二定律,得 a =F -f m =1 000-500500m/s 2=1 m/s 2拖车对马匹的拉力与马对拖车的拉力是一对作用力与反作用力关系,大小相等,所以拖车对马匹的拉力为1 000 N ,故选C 项. 4. 【答案】B【解析】mg -F 阻=ma =m ·13g ,则F 阻=23mg .故选项B 正确.5. 【答案】C【解析】抽取前,1受到重力和弹力,二力处于平衡状态F=mg ,抽取后的瞬间由于弹簧的长度来不及改变,所以弹力大小不变,故1仍旧处于平衡状态,即加速度a1=0,抽取前,2受到重力和向下的弹力以及向上的支持力,三力处于平衡状态,抽取后的瞬间,木板的支持力消失,弹力不变,所以2受到重力和向下的弹力作用,根据牛顿第二定律可得,故选C点评:本题难度较小,做此类型题目的关键是知道在抽取掉某个物体的瞬间,由于弹簧的长度来不及改变,所以弹力大小保持不变 6. 【答案】A【解析】A 、B 看作整体,加速度a=3mg/2m=1.5g,选项A 正确; 7. 【答案】BD【解析】小球受重力和拉力,稳定时悬绳向左偏转的角度为θ时,根据平衡条件cos ,tan T F F mg mgθθ==合小球的加速度tan mg a gtan mθθ==,方向水平向右;细线对小球的拉力cos T mgF θ= 8. 【答案】 A【解析】 由题图可知,小车向左做匀减速直线运动,其加速度大小a =g tan θ;小车对物块B 向右的静摩擦力为F f =ma =mg tan θ;竖直向上的支持力F N =mg ,小车对物块B 产生的作用力的大小为F =F 2f +F 2N =mg1+tan 2 θ,方向斜向右上方,故A 正确. 9. 【答案】D【解析】据题意可知,小车向右做匀加速直线运动,由于球固定在杆上,而杆固定在小车上,则三者属于同一整体,根据整体法和隔离法的关系分析可知,球和小车的加速度相同,所以球的加速度也应该向右,故选项D 正确。
高中物理必修一 牛顿第二定律 (含练习解析)
牛顿第二定律【学习目标】1.深刻理解牛顿第二定律,把握Fam=的含义.2.清楚力的单位“牛顿”是怎样确定的.3.灵活运用F=ma解题.【要点梳理】要点一、牛顿第二定律(1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比.(2)公式:Fam∝或者F ma∝,写成等式就是F=kma.(3)力的单位——牛顿的含义.①在国际单位制中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2.②比例系数k的含义.根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位.要点二、对牛顿第二定律的理解(1)同一性【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论:①物体此时受哪些力的作用?②每一个力是否都产生加速度?③物体的实际运动情况如何?④物体为什么会呈现这种运动状态?【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F.②由“力是产生加速度的原因”知,每一个力都应产生加速度.③物体的实际运动是沿力F的方向以a=F/m加速运动.④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F.从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性.因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同.(2)瞬时性前面问题中再思考这样几个问题:①物体受到拉力F作用前做什么运动?②物体受到拉力F作用后做什么运动?③撤去拉力F后物体做什么运动?分析:物体在受到拉力F前保持静止.当物体受到拉力F后,原来的运动状态被改变.并以a=F/m加速运动.撤去拉力F后,物体所受合力为零,所以保持原来(加速时)的运动状态,并以此时的速度做匀速直线运动.从以上分析知,物体运动的加速度随合力的变化而变化,存在着瞬时对应的关系.F =ma 对运动过程中的每一瞬间成立,某一时刻的加速度大小总跟那一时刻的合外力大小成正比,即有力的作用就有加速度产生.外力停止作用,加速度随即消失,在持续不断的恒定外力作用下,物体具有持续不断的恒定加速度.外力随着时间而改变,加速度就随着时间而改变.(3)矢量性从前面问题中,我们也得知加速度的方向与物体所受合外力的方向始终相同,合外力的方向即为加速度的方向.作用力F 和加速度a 都是矢量,所以牛顿第二定律的表达式F =ma 是一个矢量表达式,它反映了加速度的方向始终跟合外力的方向相同,而速度的方向与合外力的方向无必然联系.(4)独立性——力的独立作用原理①什么是力的独立作用原理,如何理解它的含义?物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就像其他力不存在一样,这个性质叫做力的独立作用原理.②对力的独立作用原理的认识a .作用在物体上的一个力,总是独立地使物体产生一个加速度,与物体是否受到其他力的作用无关.如落体运动和抛体运动中,不论物体是否受到空气阻力,重力产生的加速度总是g .b .作用在物体上的一个力产生的加速度,与物体所受到的其他力是同时作用还是先后作用无关.例如,跳伞运动员开伞前,只受重力作用(忽略空气阻力),开伞后既受重力作用又受阻力作用,但重力产生的加速度总是g .c .物体在某一方向受到一个力,就会在这个方向上产生加速度.这一加速度不仅与其他方向的受力情况无关,还和物体的初始运动状态无关.例如,在抛体运动中,不论物体的初速度方向如何,重力使物体产生的加速度总是g ,方向总是竖直向下的.d .如果物体受到两个互成角度的力F 1和F 2的作用,那么F 1只使物体产生沿F 1方向的加速度11F a m =,F 2只使物体产生沿F 2方向的加速度22F a m=. 在以后的学习过程中,我们一般是先求出物体所受到的合外力,然后再求出物体实际运动的合加速度.(5)牛顿第一定律是牛顿第二定律的特例吗?牛顿第一定律说明维持物体的速度不需要力,改变物体的速度才需要力.牛顿第一定律定义了力,而牛顿第二定律是在力的定义的基础上建立的,如果我们不知道物体在不受外力情况下处于怎样的运动状态,要研究物体在力的作用下将怎样运动,显然是不可能的,所以牛顿第一定律是研究力学的出发点,是不能用牛顿第二定律代替的,也不是牛顿第二定律的特例.要点三、利用牛顿第二定律解题的一般方法和步骤(1)明确研究对象.(2)进行受力分析和运动状态分析,画出示意图.(3)求出合力F 合.(4)由F ma =合列式求解.用牛顿第二定律解题,就要对物体进行正确的受力分析,求合力.物体的加速度既和物体的受力相联系,又和物体的运动情况相联系,加速度是联系力和运动的纽带.故用牛顿第二定律解题,离不开对物体的受力情况和运动情况的分析.【说明】①在选取研究对象时,有时整体分析、有时隔离分析,这要根据实际情况灵活选取. ②求出合力F 合时,要灵活选用力的合成或正交分解等手段处理.一般受两个力时,用合成的方法求合力,当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上有:x F ma =(沿加速度方向).0y F =(垂直于加速度方向).特殊情况下分解加速度比分解力更简单.应用步骤一般为:①确定研究对象;②分析研究对象的受力情况并画出受力图;③建立直角坐标系,把力或加速度分解在x 轴或y 轴上;④分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程;⑤统一单位,计算数值.【注意】在建立直角坐标系时,不管选取哪个方向为x 轴正方向,所得的最后结果都应是一样的,在选取坐标轴时,应以解题方便为原则来选取.【典型例题】类型一、对牛顿第二定律的理解例1、物体在外力作用下做变速直线运动时( )A .当合外力增大时,加速度增大B .当合外力减小时,物体的速度也减小C .当合外力减小时,物体的速度方向与外力方向相反D .当合外力不变时,物体的速度也一定不变【思路点拨】对同一物体,合外力的大小决定了加速度大小,但是,加速度与速度没有必然的联系。
物理牛顿第二定律F=ma试题答案及解析
物理牛顿第二定律F=ma试题答案及解析1.某同学在探究力与物体运动关系的实验中,曾尝试用一质量为m1的弹簧测力计拉动质量为m2的物体向上做匀加速运动,其操作情况如图所示。
如果该同学对弹簧测力计施加竖直向上的拉力F,则在向上匀加速运动的过程中,弹簧测力计的读数是()。
A.-m2gB.FC.D.【答案】C【解析】该同学对弹簧测力计施加竖直向上的拉力F,由牛顿第二定律,F-(m1+m2)g=(m1+m2)a;设弹簧测力计的读数是F',隔离质量为m2的物体,F'-m2g=m2a;联立解得F'=,选项C正确。
2.如图所示,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a1、a2.重力加速度大小为g,则有( )A.B.C.D.【答案】C【解析】抽出木板的瞬间,弹簧的弹力未变,故木块1所受合力仍为零,其加速度为a1=0.对于木块2受弹簧的弹力F1=mg和重力Mg作用,根据牛顿第二定律得因此选项C正确。
3.将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v-t图象如图所示.以下判断正确的是( )A.前3 s内货物处于超重状态B.最后2 s内货物只受重力作用C.前3 s内与最后2 s内货物的平均速度相同D.第3 s末至第5 s末的过程中,货物的机械能守恒【答案】A、C【解析】由货物运动的v-t图象可知,前3 s内货物向上做匀加速直线运动,货物处于超重状态,A正确;最后2 s内货物向上做匀减速直线运动,加速度为-3 m/s2,说明货物除受重力外,还受其他力的作用,B错误;由平均速度公式得,前3秒内与最后2 s内货物的平均速度都为3 m/s,C对;第3 s末至第5 s末的过程中,货物的速度不变,动能不变,重力势能增加,故机械能增加,D错误.4.图1中,质量为m的物块叠放在质量为2m的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为μ=0.2.在木板上施加一水平向右的拉力F,在0~3 s内F 的变化如图2所示,图中F以mg为单位,重力加速度g="10" m/s2.整个系统开始时静止.(1)求1 s、1.5 s、2 s、3 s末木板的速度以及 2 s、3 s末物块的速度;(2)在同一坐标系中画出0~3 s内木板和物块的v-t图象,据此求0~3 s内物块相对于木板滑过的距离.【答案】(1)4 m/s 4.5 m/s 4 m/s 4 m/s 4 m/s 4 m/s(2)图见精讲精析 2.25 m【解析】(1)设木板和物块的加速度分别为a和a′,在t时刻木板和物块的速度分别为vt 和v′t,木板和物块之间摩擦力的大小为Ff,依据牛顿第二定律、运动学公式和摩擦力公式得:Ff=ma′①Ff =μmg,当v′t<vt②v′t2=v′t1+a′(t2-t1) ③F-Ff=2ma ④v t2=vt1+a(t2-t1) ⑤结合题给条件得:v 1="4" m/s,v1.5="4.5" m/s,v 2="4" m/s,v2′="4" m/s⑥2 s末木板和物块达到共同速度,此后两物体一起做匀速直线运动,故v3="4" m/s,v3′="4" m/s⑦(2)由上述公式得到物块与木板运动的v-t图象,如图所示.在0~3 s内物块相对于木板的距离Δs 等于木板和物块v-t图线下的面积之差,即图中带阴影的四边形面积,该四边形由两个三角形组成,上面的三角形面积为0.25 m,下面的三角形面积为2 m,因此Δs="2.25" m.5.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
高中物理牛顿第二定律经典例题
牛顿第二运动定律(一)【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是:A、物体从A下降和到B的过程中,速率不断变小B、物体从B上升到A的过程中,速率不断变大C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小D、物体在B点时,所受合力为零的对应关系,弹簧这种【解析】本题主要研究a与F合特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物体正确的受力分析,是解决本题的关键,找出AB之=0,由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体间的C位置,此时F合做a减小的变加速直线运动。
在C位置mg=kx c,a=0,物体速度达最大。
由C→B的过程中,由于mg<kx2,a=kx2/m-g,物体做a增加的减速直线运动。
同理,当物体从B→A时,可以分析B→C做加速度度越来越小的变加速直线运动;从C→A做加速度越来越大的减速直线运动。
C正确。
例2如图3-10所示,在原来静止的木箱内,放有A物体,A被一伸长的弹簧拉住且恰好静止,现突然发现A被弹簧拉动,则木箱的运动情况可能是A、加速下降B、减速上升肥C、匀速向右运动D、加速向左运动【解析】木箱未运动前,A物体处于受力平衡状态,受力情况为:重力mg,箱底的支持力N,弹簧拉力F和最大的静摩擦力f m(向左)由平衡条件知:N=mg F=f m。
由于发现A弹簧向右拉动(已知),可能有两种原因,一种是由A向右被拉动推知,F>f m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。
另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D正确。
高一物理《牛顿第二定律》知识点讲解
高一物理《牛顿第二定律》知识点讲解ma2.例题:一辆质量为800kg的轿车在水平路面上行驶,发动机输出的动力为6000N,空气阻力和轮胎与路面的摩擦力合力为4000N,求车的加速度和行驶的加速度。
解析:选取研究对象为轿车,分析受力情况,发动机输出的动力为作用在车上的力,空气阻力和摩擦力为阻力,作用在车上的力和阻力为合外力。
建立直角坐标系,选择水平方向为x轴,竖直方向为y轴,根据力的平衡关系,将合外力分解为x轴方向和y轴方向的分力,得到Fx=6000N-4000N=2000N,Fy=0.根据牛顿第二定律F=ma,得到a=Fx/m=2000N/800kg=2.5m/s²。
由于是水平运动,行驶的加速度与车的加速度相同,即为2.5m/s²。
3.注意事项:在解题时,需要注意选取适当的参考系和坐标系,正确分解合外力,应用牛顿第二定律求解加速度,最后再根据题目所求的量得出答案。
同时,需要注意牛顿第二定律的适用范围和局限性,不能将其应用于微观、高速运动情况。
物理解题的步骤:1)审题:明确已知和待求,注意文中隐含的条件,理解物理现象和过程。
2)选取研究对象:可以是单个物体或多个物体组成的系统,分析其受力、运动、做功和能量转化情况,并画出草图。
3)选择适当的物理规律,如牛二定律、运动学公式、动量定理、动量守恒定律、动能定理和机械能守恒定律。
4)在运用规律前,设出题中没有的物理量,建立坐标系,规定正方向等。
5)确定所选规律运动用何种形式建立方程,有时要运用到几何关系式。
6)确定不同状态、过程下所选的规律,及它们之间的联系,统一写出方程,并给予序号标明。
在求解过程中,需要注意解题过程和最后结果的检验,必要时对结果进行讨论。
通过以上步骤,可以将物理问题转化为数学问题,从而求解出答案。
牛顿第二定律讲解和例题解析
例1:如图所示.地面上放m=40kg的木箱,用大小为 10N与水平方向夹角300的力推木箱,木箱恰好匀速运动, 若用此力与水平方向成300角斜向上拉木箱,30s可使木箱 前进多少米?(g取10m/s2)
0v2
s相
相
2a
相
032
0.9m
25
A从开始运动到相对静止经历的时间
t 0 v相 0.6s a相
在此时间内B的位移 s 1a t2 1.8m
2 B
B
A、B相对静止时的速度v=aBt==
随后A、B一起以a`=-μBg=-2m/s2作匀减速运动直至
停止,这段时间内的位移
0v2 0062
s`
0.09m
与传送带之间的动摩擦因数, AB长16米,求:以下两
种情况下物体从A到B所用的时间.
(1)传送带顺时针方向转动
A
(2)传送带逆时针方向转动
B 370
解:(1)传送带顺时针方向转动时受力如图示
:在斜面方向上有: mg sinθ-μmg cosθ= m a
N fA
则:a = gsinθ-μgcosθ= 2m/s2 B
②若v≥ v,A2 工2件aS由A到B,全程做匀加速运动,到
达B端的速度vB=
vA 22aS 23m/s
③若 vA2 >2avS>vA,工件由A到B,先做匀加速运动, 当速度增加到传送带速度v时,工件与传送带一起作匀速
运动速度相同,工件到达B端的速度vB=v.
④若v≤
v
2 A
,2a工S 件由A到B,全程做匀减速运动,到达
第二讲牛顿第二定律(原卷版+解析)
第二讲牛顿第二定律➢知识梳理一、牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同。
2.表达式:F=kma,当F、m、a单位采用国际单位制时k=1,F=ma。
3.适用范围①牛顿第二定律只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
二、单位制、基本单位、导出单位1.单位制:基本单位和导出单位一起组成了单位制。
①基本量:只要选定几个物理量的单位,就能够利用物理公式推导出其他物理量的单位,这些被选定的物理量叫做基本量。
②基本单位:基本量的单位。
力学中的基本量有三个,它们是质量、时间、长度,它们的单位千克、秒、米就是基本单位。
③导出单位:由基本量根据物理关系推导出来的其他物理量的单位。
2.国际单位制的基本单位➢知识训练考点一、牛第二定律的理解1.牛顿第二定律的五个性质(1)矢量性:加速度方向与合力的方向相同,表达式是矢量式。
(2)独立性:作用在物体上的每一个力都可以产生一个加速度,物体的加速度是所有力产生的加速度的矢量和。
(3)因果性:F 是产生a 的原因。
(4)同体性:F 、a 、m 必须针对同一个物体或系统(5)瞬时性:加速度与合力F 是瞬时对应关系,同时产生,同时变化,同时消失。
2.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系。
(2)合力与速度夹角为锐角时,物体加速;合力与速度夹角为钝角时,物体减速。
(3)a =Δv Δt 是加速度的定义式,a 与v 、Δv 、Δt 无直接关系;a =Fm 是加速度的决定式。
例1、有关运动与相互作用的关系,下列说法正确的是( ) A .一个物体速度向东,则其受合力一定向东 B .一个物体速度越大,则其受合力一定越大 C .一个物体受合力为0,则其速度一定为0 D .一个物体受合力越大,则其速度变化一定越快例2、(2022·山东省实验模拟)物块在水平向右的恒定推力F 的作用下刚好沿倾角为30°的固定斜面向上做匀速运动,已知物块与斜面之间的动摩擦因数μ=33,重力加速度为g ,若推力F 改为沿斜面向上推物块,则物块的加速度为( ) A .2g B .33g C .(3-1)gD .(3+1)g例3、如图所示,弹簧左端固定,右端自然伸长到O 点并系住质量为 m 的物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(A)。
【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。
[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。
若理解为对斜面的正压力,则是斜面受到的力。
在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。
在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。
【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ]A.不断增大B.不断减少C.先增大后减少D.先增大到一定数值后保持不变【误解一】选(A)。
【误解二】选(B)。
【误解三】选(D)。
【正确解答】选(C)。
【错因分析与解题指导】要计算摩擦力,应首先弄清属滑动摩擦力还是静摩擦力。
若是滑动摩擦,可用f=μN计算,式中μ为滑动摩擦系数,N是接触面间的正压力。
若是静摩擦,一般应根据物体的运动状态,利用物理规律(如∑F=0或∑F = ma)列方程求解。
若是最大静摩擦,可用f=μsN计算,式中的μs是静摩擦系数,有时可近似取为滑动摩擦系数,N是接触面间的正压力。
【误解一、二】都没有认真分析物体的运动状态及其变化情况,而是简单地把物体受到的摩擦力当作是静摩擦力或滑动摩擦力来处理。
事实上,滑块所受摩擦力的性质随着α角增大会发生变化。
开始时滑块与平板将保持相对静止,滑块受到的是静摩擦力;当α角增大到某一数值α0时,滑块将开始沿平板下滑,此时滑块受到滑动摩擦力的作用。
当α角由0°增大到α0过程中,滑块所受的静摩擦力f的大小与重力的下滑力平衡,此时f = mgsinα.f 随着α增大而增大;当α角由α0增大到90°过程中,滑块所受滑动摩擦力f=μN=μmgcosα,f 随着α增大而减小。
【误解三】的前提是正压力N不变,且摩擦力性质不变,而题中N随着α的增大而不断增大。
【例5】如图,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法中正确的是 [ ]A.M和m一起加速下滑B.M和m一起减速下滑C.M和m仍一起匀速下滑【误解一】选(A)。
【误解二】选(B)。
【正确解答】选(C)。
【错因分析与解题指导】[误解一]和[误解二]犯了同样的错误,前者片面地认为凹形槽中放入了砝码后重力的下滑力变大而没有考虑到同时也加大了正压力,导致摩擦力也增大。
后者则只注意到正压力加大导致摩擦力增大的影响。
事实上,凹形槽中放入砝码前,下滑力与摩擦力平衡,即Mgsinθ=μMgcosθ;当凹形槽中放入砝码后,下滑力(M + m)gsinθ与摩擦力μ(M + m)gcosθ仍平衡,即(M + m)gsinθ=μ(M + m)gcosθ凹形槽运动状态不变。
【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。
【误解】因为人在竖直方向受力平衡,即N = mg,所以摩擦力f=μN=μmg。
【正确解答】如图2,建立直角坐标系并将加速度a沿已知力的方向正交分解。
水平方向加速度a2=acosθ由牛顿第二定律知f = ma2 = macosθ【错因分析与解题指导】计算摩擦力必须首先判明是滑动摩擦,还是静摩擦。
若是滑动摩擦,可用f=μN计算;若是静摩擦,一般应根据平衡条件或运动定律列方程求解。
题中的人随着自动扶梯在作匀加速运动,在水平方向上所受的力应该是静摩擦力,[误解]把它当成滑动摩擦力来计算当然就错了。
另外,人在竖直方向受力不平衡,即有加速度,所以把接触面间的正压力当成重力处理也是不对的。
用牛顿运动定律处理平面力系的力学问题时,一般是先分析受力,然后再将诸力沿加速度方向和垂直于加速度方向正交分解,再用牛顿运动定律列出分量方程求解。
有时将加速度沿力的方向分解显得简单。
该题正解就是这样处理的。
【例7】在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。
已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块 [ ]A.有摩擦力作用,摩擦力方向水平向右B.有摩擦力作用,摩擦力方向水平向左C.有摩擦力作用,但摩擦力方向不能确定D.以上结论都不对【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(D)。
【错因分析与解题指导】[误解一]根据题目给出的已知条件m1>m2,认为m1对三角形木块的压力大于m2对三角形木块的压力,凭直觉认为这两个压力在水平方向的总效果向右,使木块有向右运动的趋势,所以受到向左的静摩擦力。
[误解二]求出m1、m2对木块的压力的水平分力的合力F=(m1cosθ1sinθ1—m2cosθ2sinθ2)g后,发现与m1、m2、θ1、θ2的数值有关,故作此选择。
但因遗漏了m1、m2与三角形木块间的静摩擦力的影响而导致错误。
解这一类题目的思路有二:1.先分别对物和三角形木块进行受力分析,如图2,然后对m1、m2建立受力平衡方程以及对三角形木块建立水平方向受力平衡方程,解方程得f的值。
若f=0,表明三角形木块不受地面的摩擦力;若f为负值,表明摩擦力与假设正方向相反。
这属基本方法,但较繁复。
2.将m1、m2与三角形木块看成一个整体,很简单地得出整体只受重力(M + m1 + m2)g和支持力N两个力作用,如图3,因而水平方向不受地面的摩擦力。
【例8】质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]A.a A=a B=0 B.a A=a B=gC.a A>g,a B=0 D.a A<g,a B=0分析分别以A、B两球为研究对象.当细线未剪断时,A球受到竖直向下的重力m A g、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力m B g,竖直向上弹簧的弹力T图2.它们都处于力平衡状态.因此满足条件T = m B g,T′=m A g + T =(m A+m B)g.细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态,aB=0;而A球则在两个向下的力作用下,其瞬时加速度为答 C.说明1.本题很鲜明地体现了a与F之间的瞬时关系,应加以领会.2.绳索、弹簧以及杆(或棒)是中学物理中常见的约束元件,它们的特性是不同的,现列表对照如下:【例9】在车箱的顶板上用细线挂着一个小球(图1),在下列情况下可对车厢的运动情况得出怎样的判断:(1)细线竖直悬挂:______;(2)细线向图中左方偏斜:_________(3)细线向图中右方偏斜:___________ 。
【分析】作用在小球上只能有两个力:地球对它的重力mg、细线对它的拉力(弹力)T.根据这两个力是否处于力平衡状态,可判知小球所处的状态,从而可得出车厢的运动情况。
(1)小球所受的重力mg与弹力T在一直线上,如图2(a)所示,且上、下方向不可能运动,所以小球处于力平衡状态,车厢静止或作匀速直线运动。
(2)细线左偏时,小球所受重力mg与弹力T不在一直线上[如图2(b)],小球不可能处于力平衡状态.小球一定向着所受合力方向(水平向右方向)产生加速度.所以,车厢水平向右作加速运动或水平向左作减速运动.(3)与情况(2)同理,车厢水平向左作加速运动或水平向右作减速运动[图2(c)].【说明】力是使物体产生加速度的原因,不是产生速度的原因,因此,力的方向应与物体的加速度同向,不一定与物体的速度同向.如图2(b)中,火车的加速度必向右,但火车可能向左运动;图2(c)中,火车的加速度必向左,但火车可能向右运动.【例10】如图1,人重600牛,平板重400牛,如果人要拉住木板,他必须用多大的力(滑轮重量和摩擦均不计)?【误解】对滑轮B受力分析有2F=T对木板受力分析如图2,则N+F=N+G板又N=G人【正确解答一】对滑轮B有2F=T对人有N+F=G人对木板受力分析有F+T=G板+N【正确解答二】对人和木板整体分析如图3,则T+2F=G人+G板由于T=2F【错因分析与解题指导】[误解]错误地认为人对木板的压力等于人的重力,究其原因是没有对人进行认真受力分析造成的。
【正确解答一、二】选取了不同的研究对象,解题过程表明,合理选取研究对象是形成正确解题思路的重要环节。
如果研究对象选择不当,往往会使解题过程繁琐费时,并容易发生错误。
通常在分析外力对系统的作用时,用整体法;在分析系统内物体(或部分)间相互作用时,用隔离法。
在解答一个问题需要多次选取研究对象时,可整体法和隔离法交替使用。
【例11】如图1甲所示,劲度系数为k2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,另一劲度系数为k1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,要想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高的距离是多少?【分析】由于拉A时,上下两段弹簧都要发生形变,所以题目给出的物理情景比较复杂,解决这种题目最有效的办法是研究每根弹簧的初末状态并画出直观图,清楚认识变化过程如图1乙中弹簧2的形变过程,设原长为x20,初态时它的形变量为△x2,末态时承重2mg/3,其形变量为△x2′,分析初末态物体应上升△x2-△x2′.对图丙中弹簧1的形变过程,设原长为x10(即初态).受到拉力后要承担物重的1/3,则其形变是为△x1,则综合可知A点上升量为d=△x1+△x2-△x2′【解】末态时对物块受力分析如图2依物块的平衡条件和胡克定律F1+F2′=mg (1)初态时,弹簧2弹力F2 = mg = k2△x2(2)式(3)代入式(1)可得由几何关系d=△x1+△x2-△x2′(4)【说明】从前面思路分析可知,复杂的物理过程,实质上是一些简单场景的有机结合.通过作图,把这个过程分解为各个小过程并明确各小过程对应状态,画过程变化图及状态图等,然后找出各状态或过程符合的规律,难题就可变成中档题,思维能力得到提高。