2020高二数学上册期末考试测试题及答案

合集下载

2020-2021学年人教版高二上册数学期末数学试卷带答案

2020-2021学年人教版高二上册数学期末数学试卷带答案

2020-2021学年高二(上)期末数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合A={x|(x−7)(x+12)<0},B={x|x+6>0},则A∩B=( )A.{x|−6<x<12}B.{x|−6<x<7}C.{x|x>−12}D.{x|6<x<7}2. “四边形ABCD是菱形”是“四边形ABCD的对角线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 双曲线x2−4y2=−8的渐近线方程为()A.y=±2xB.y=±12x C.y=±√2x D.y=±√22x4. “一尺之棰,日取其半,万世不竭”这句话出自《庄子•天下篇》,其意思为“一根一尺长的木棰,每天截取其一半,永远都取不完”.设第一天这根木棰被截取一半剩下a1尺,第二天被截取剩下的一半剩下a2尺,…,第五天被截取剩下的一半剩下a5尺,则a1+a2a5=()A.18B.20C.22D.245. 已知抛物线C的焦点到准线的距离大于2,则C的方程可能为()A.y2=4xB.y2=−3xC.x2=6yD.y=−8x26. 如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点,若O为底面A1B1C1D1的中心,则异面直线C1E与AO所成角的余弦值为()A.√3015B.√3030C.815D.2√3015|PQ|=|PF2|,则动点Q的轨迹方程为( )A.(x+2)2+y2=34B.(x+2)2+y2=68C.(x−2)2+y2=34D.(x−2)2+y2=688. 如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30∘,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45∘.已知小车的速度是20km/ℎ,且cos∠AOB=−3√38,则此山的高PO=()A.1kmB.√22km C.√3km D.√2km二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9. 设命题p:∀n∈N,6n+7为质数,则()A.¬p为假命题B.¬p:∃n∈N,6n+7不是质数C.¬p为真命题D.¬p:∀n∈N,6n+7不是质数10. 设S n是等差数列{a n}的前n项和,且a1=2,a3=8,则()A.a5=12B.公差d=3C.S2n=n(6n+1)D.数列{1a n a n+1}的前n项和为n6n+411. 已知a>b>0,且a+3b=1,则()A.ab的最大值为112B.ab的最小值为112C.1 a +3b的最小值为16 D.a2+15b2的最小值为58轴上,直线AP 与直线y =−3交于点C ,直线BP 与直线y =−3交于点D .设直线AP 的斜率为k ,则满足|CD|=36的k 的值可能为( )A.1B.−17C.110D.−7+2√109三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13. 设向量AB →=(1,2,4),CD →=(m,1,1),AB →⊥CD →,则实数m =________.14. 若双曲线x 26−y 2m =1的虚轴长为6√2,则该双曲线的离心率为________.15. 在△ABC 中,若B =π3,tan C =2√3,AC =2,则AB =________.16. 已知点P (m,n )是抛物线x 2=−8y 上一动点,则√m 2+n 2+4n +4+√m 2+n 2−4m +2n +5的最小值为________.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.)17. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2−a 2=58bc ,sin C =2sin B .(1)求cos A ;(2)若△ABC 的周长为6+√15,求△ABC 的面积.18. 如图,在直三棱柱ABC −A 1B 1C 1中,AC ⊥BC ,AC =AA 1=2BC ,E ,F 分别为侧棱BB 1,CC 1的中点.(1)证明:BF//平面A 1C 1E ;(2)求B1C与平面A1C1E所成角的正弦值.19. 已知数列{a n}的首项为4.(1)若数列{a n−2n}是等差数列,且公差为2,求{a n}的通项公式;(2)在①a3−a2=48且a2>0,②a3=64且a4>0,③a2021=16a2a2017这三个条件中任选一个,补充在下面的问题中并解答.问题:若{a n}是等比数列,________,求数列{(3n−1)a n}的前n项和S n.注:如果选择多个条件分别解答,则按第一个解答计分.20. 如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且AB=BC=√5,AC=4.(1)证明:AD⊥CF;(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.−y2=1有相同的焦点F.21. 已知抛物线C:y2=2px(p>0)与双曲线x23(1)求C的方程,并求其准线l的方程;(2)如图,过F且斜率存在的直线与C交于不同的两点A(x1,y1),B(x2,y2),直线OA与准线l交于点N,过点A作l的垂线,垂足为M.证明:y1y2为定值,且四边形AMNB为梯形.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√55,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为π3,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】可求出集合A,B,然后进行交集的运算即可.2.【答案】A【解析】利用充分条件和必要条件的定义,结合平面几何知识进行判断,即可得到答案.3.【答案】B【解析】根据题意,将双曲线的方程变形为标准方程,分析可得其焦点位置以及a、b的值,利用双曲线的渐近线方程计算可得答案.4.【答案】D【解析】设这根木棰的长度为1尺,分别计算每一次截取的量可得剩余的量,可得答案.5.【答案】C【解析】利用已知条件推出p>2,然后判断选项的正误即可.6.【答案】D【解析】建立空间直角坐标系,利用向量夹角计算公式即可得出.7.【答案】B【解析】由椭圆的方程求出a,b,c的值,由此可得|PF1|+|PF2|=2a=2√17,再由已知可|QF1|=2√17,进而可以求解.8.【答案】设OP=x,由题意可得:Rt△OBP中,∠PBO=45∘;在Rt△OAP中,∠PAO=30∘,即可得出OB,OA.AB=×20=2.5.在△OAB中,利用余弦定理即可得出.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】B,C【解析】先判断命题p为真命题,然后利用含有一个量词的命题的否得到¬p,利用命题的否定与原命题的真假相反得到答案.10.【答案】B,C,D【解析】本题先设等差数列{a n}的公差为d,根据已知条件即可计算出d的值,判断选项B,然后根据通项公式计算出a5的值,判断选项A,再根据等差数列的求和公式计算出S2n的表达式,判断选项C,最后计算出等差数列{a n}的通项公式,进一步计算出数列{}的通项公式,运用裂项相消法计算出数列{}的前n项和,判断选项D.11.【答案】A,C,D【解析】根据基本不等式的性质分别判断A,B,C,根据二次函数的性质判断D即可.12.【答案】A,D【解析】设出点P的坐标,求出直线PA,PB的斜率的乘积,然后再设出直线PA,PB的方程,进而可以求出点C,D的横坐标,进而可以求出|CD|,即可求解.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.【答案】−6【解析】由题意利用两个向量垂直的性质,两个向量的数量积公式,计算求得m的值.14.【答案】215.【答案】8√1313【解析】由已知利用同角三角函数基本关系式可求sin C的值,进而根据正弦定理即可求解AB的值.16.【答案】3【解析】抛物线的准线为y=2,焦点F坐标为(0, −2),表示点P(m, n)与点F(0, −2)的距离与点P(m, n)与点A(2, −1)的距离之和,由抛物线的定义和两点之间线段最短可得最小值,进而可得结论.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.17.【答案】解:(1)∵b2+c2−a2=58bc,∴cos A=b2+c2−a22bc =58bc2bc=516.(2)∵sin C=2sin B,∴c=2b.由余弦定理,得a2=b2+c2−2bc cos A=154b2,∴a=√152b.∵△ABC的周长为6+√15,∴3b+√152b=6+√15,解得b=2,∴S△ABC=12bc sin A=12×b×2b√1−(516)2=12×2×4×√23116=√2314.【解析】(1)由已知利用余弦定理即可求解cos A的值.(2)由已知利用正弦定理化简可得c=2b,由余弦定理得a=√152b,根据△ABC的周长,可求b的值,进而利用三角形的面积公式即可计算得解.18.(1)证明:在三棱柱ABC −A 1B 1C 1中,∵ BB 1=CC 1,BB 1//CC 1,E ,F 分别为侧棱BB 1,CC 1的中点, ∴ BE//FC 1,BE =FC 1,∴ 四边形BEC 1F 是平行四边形,∴ BF//EC 1 .∵ C 1E ⊂平面A 1C 1E ,BF ⊄平面A 1C 1E , ∴ BF//平面A 1C 1E .(2)解:以C 为坐标原点,CA →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系C −xyz ,设BC =1,则A 1(2,0,2),C 1(0,0,2),E(0,1,1),B 1(0,1,2),C(0,0,0), C 1A 1→=(2,0,0),EC 1→=(0,−1,1) ,CB 1→=(0,1,2) . 设平面A 1C 1E 的法向量为n →=(x,y,z ),则{n →⋅C 1A 1→=2x =0,n →⋅EC 1→=−y +z =0,令y =1,得n →=(0,1,1),则sin <CB 1→⋅n →>=|cos <CB 1→⋅n →>|=3√5⋅√2=3√1010, 故B 1C 与平面A 1C 1E 所成角的正弦值为3√1010. 【解析】(1)推导出BE C 1F ,从而四边形BEC 1F 是平行四边形,进而BF // EC 1,由此能证明BF // 平面A 1C 1E .(2)以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出B 1C 与平面A 1C 1E 所成角的正弦值. 19.【答案】解:(1)因为a 1=4,所以a n−2n=2+2(n−1)=2n,所以a n=2n+2n.(2)选①:a3−a2=48且a2>0;由题意,设数列{a n}的公比为q.由a3−a2=48,得4q2−4q=48,解得q=4或q=−3,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n,所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83选②:a3=64且a4>0;由题意,设数列{a n}的公比为q.由a3=64,得4q2=64,解得q=±4,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4所以S n=(3n−2)4n+1+8.3选③:a2021=16a2a2017;由题意,设数列{a n}的公比为q.由a2021=16a2a2017,得a2021=16a1a2018=64a2018,则q3=64,解得q=4,所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83(1)直接利用已知条件求出数列的通项公式,再得到{a n }的通项公式;(2)根据条件分别求出数列的通项公式,然后利用错位相减法,求出数列{(3n −1)a n }的前n 项和.20.【答案】(1)证明:∵ 四边形ACDE 为正方形,∴ AD ⊥CE .∵ 平面ABCDE ⊥平面CEFG ,平面ABCDE ∩平面CEFG =CE ,∴ AD ⊥平面FECG .又CF ⊂平面FECG ,∴ AD ⊥CF .(2)解:以C 为坐标原点,CD →的方向为x 轴的正方向,建立如图所示的空间直角坐标系C −xyz .∵ AB =BC =√5,AC =4, ∴ 点B 到AC 的距离为1,∴ G(0,0,4√2),F(4,4,4√2),B (−1,2,0),GF →=(4,4,0),BG →=(1,−2,4√2).设平面BFG 的一个法向量为n →=(x,y,z ),则n →⋅GF →=n →⋅BG →=0,即4x +4y =x −2y +4√2z =0,令y =4√2,得n →=(−4√2,4√2,3).取m →=(0,0,1)为平面ABCDE 的一个法向量,∴ cos ⟨m →,n →⟩=m →⋅n →|m →||n →|=3√73=3√7373, ∴ 平面BFG 与平面ABCDE 所成锐二面角的余弦值为3√7373.【解析】(1)由四边形ACDE 为正方形,可得AD ⊥CE ,再由面面垂直的性质可得AD ⊥平面FECG ,从而得到AD ⊥CF ;(2)以E 为坐标原点,建立空间直角坐标系A −xyz ,利用向量法能求出平面BFG 与平面ABCDE 所成锐二面角的余弦值.21.【答案】(1)解:∵ 双曲线x 23−y 2=1的右焦点为F (2,0),∴ p 2=2, 解得p =4,∴ C 的方程为y 2=8x ,其准线l 的方程为x =−2.(2)证明:由题意可知,直线AB 过点F 且斜率存在,设直线AB 的方程为y =k (x −2)(k ≠0),联立{y =k (x −2),y 2=8x,整理,得ky 2−8y −16k =0,则Δ=64+64k 2>0恒成立,y 1y 2=−16k k =−16,故y 1y 2为定值.由题意,得点N 在准线l 上,设点N (−2,m ),由k OA =k ON ,得y 1x 1=m −2, 又∵ y 2=−16y 1,∴ m =−2y 1x 1=−2y 1y 128=−16y 1=y 2,∴ BN//x 轴//AM .又∵ x 1≠x 2,|AM|≠|BN|,∴ 四边形AMNB 为梯形.【解析】(1)根据题意可得双曲线的右焦点为(2, 0),则,解得p ,进而可得C 的方程和准线l 的方程;(2)设直线AB 方程为y =k(x −2)(k ≠0),联立直线AB 与抛物线的方程得关于y 的一元二次方程,由韦达定理可得y 1∗y 2为定值;设点N 为(−2, m),由k OA =k ON ,推出可得m =y 2,进而可得BN // x 轴 // AM ,|AM|≠|BN ,即可得证.22.【答案】解:(1)依题意可知{e =c a =2√55,2c =8,a 2=b 2+c 2,解得a =2√5,c =4,故C 的方程为x 220+y 24=1.(2)依题意可设直线l 的方程为y =√3x +m .联立{y =√3x +m,x 220+y 24=1,整理得16x 2+10√3mx +5m 2−20=0,则Δ=300m2−64(5m2−20)>0,解得−8<m<8.设A(x1, y1),B(x2, y2),则x1+x2=−5√3m8,x1x2=5m2−2016,|AB|=√1+3√(x1+x2)2−4x1x2=√−5m2+3204,原点到直线l的距离d=√1+3=|m|2,则△AOB的面积S=12d⋅|AB|=12×|m|2×√−5m2+3204=√−5(m2−32)2+512016,当且仅当m2=32,即m=±4√2时,△AOB的面积有最大值2√5.【解析】(1)根据椭圆的离心率和焦距列方程组,解得a,b,c,进而可得椭圆的方程.(2)依题意可设直线l的方程为,联立直线l与椭圆的方程,得关于x的一元二次方程,可得△>0,解得−8<m<8.设A(x1, y1),B(x2, y2),由韦达定理可得x1+x2,x1x2,由点到直线的距离公式可得原点到直线l的距离d,再计算三角形AOB的面积最大值,即可.。

河南省郑州市郑州领航实验学校2020学年高二数学上学期期末考试试题 理(含解析)

河南省郑州市郑州领航实验学校2020学年高二数学上学期期末考试试题 理(含解析)

河南省郑州市郑州领航实验学校 2020 学年高二上期期末考试数学(理)试卷第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列命题结论正确的是( )A. 若 ,则B. 若,则C. 若 ,则D. 若 ,则【答案】C【解析】A.c≤0 时,不成立;B.举反例:取 a=﹣2,b=﹣1,c=﹣4,d=﹣3,则 ab>cd,因此不成立;C.∵a<b,∴a﹣c<b﹣c,正确;D.举反例:取 a=﹣2,b=﹣1,则 a2>b2,因此不成立.故选:C.2. 已知命题 :,那么下列结论正确的是( )A. 命题 :B. :C. 命题 : 【答案】BD. :∴:故选:B 3. 设的内角所对的边分别为 ,若A.B.C.D.【答案】C【解析】由可得:,,则角()∴,又∴,由内角和定理可知: 故选:C4. “”是“方程表示椭圆”的( )A. 充分不必要条件 【答案】BB. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【解析】试题分析:方程表示椭圆可得或,所以“1<m<3”是“方程表示椭圆”的必要不充分条件考点:椭圆方程及充分条件必要条件5. 已知数列 满足递推关系, ,则 ( )A.B.【答案】C【解析】∵C.D.,,∴,∴ 为首项为 2,公差为 1 的等差数列,∴,即故选:C6. 若 满足,则 的最大值为( )A. 0 B. 3 【答案】CC. 4D. 5【解析】试题分析:由图可得在 处取得最大值,由选 C.最大值,故考点:线性规划. 【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规 划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为;(3)作平行线:将直线平移,使直线与可行域有交点,且观察在可行域中使 最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出 的最大(小)值.7. 已知 为等比数列,,则()A. 7 B. 5 C.D.【答案】D【解析】∵ 为等比数列,∴,又∴ 是方程的两个实根,∴,或,解得:.故选:D 点睛:等比数列的基本量运算问题的常见类型及解题策略:①化基本量求通项.求等比数列的两个基本元素 和 ,通项便可求出,或利用知三求二,用方程求解.②化基本量求特定项.利用通项公式或者等比数列的性质求解.③化基本量求公 比.利用等比数列的定义和性质,建立方程组求解.④化基本量求和.直接将基本量代入前 项和公式求解或利用等比数列的性质求解.8. 斜率为 1,过抛物线的焦点的直线被抛物线所截得的弦长为( )A. 8 B. 6 【答案】AC. 4D. 10【解析】由抛物线得 x2=4y,∴p=2,焦点 F(0,1).∴斜率为 1 且过焦点的直线方程为 y=x+1. 代入 x2=4y,消去 x,可得 y2﹣6y﹣1=0. ∴y1+y2=6.∴直线截抛物线所得的弦长为 y1+ +y2+ =y1+y2+p=6+2=8.故选 A. 点睛: 在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。

2020年高二数学上册期末考试试卷及答案

2020年高二数学上册期末考试试卷及答案

精选教育类应用文档,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!祝同学们期末考出好成绩!欢迎同学们下载,希望能帮助到你们!2020年高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C)A.⌝p:∃x∈R,sinx≥1B.⌝p:∀x∈R,sinx≥1C.⌝p:∃x∈R,sinx>1 D.⌝p:∀x∈R,sinx>12.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B).A.160 B.180 C.200 D.2203.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=60°,则c的值等于( C ).A.5 B.13 C.13D.374.若双曲线x2a 2-y2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D)A.73B.54C.43D.535.在△ABC中,能使sinA>32成立的充分不必要条件是( C)A.A∈⎝⎛⎭⎪⎫0,π3B.A∈⎝⎛⎭⎪⎫π3,2π3C.A∈⎝⎛⎭⎪⎫π3,π2D.A∈⎝⎛⎭⎪⎫π2,5π66.△ABC中,如果Aatan=Bbtan=Cctan,那么△ABC是( B).A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形7. 如图,PA⊥平面ABCD,四边形ABCD为正方形,E是CD的中点,F是AD上一点,当BF⊥PE 时,AF∶FD的值为( B)A.1∶2 B.1∶1 C.3∶1 D.2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线A B1夹角的余弦值为( A)A.55B. 53C.255 D. 359.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( D ). A .(-∞,2] B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =kx +34分为面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A. ⎝ ⎛⎭⎪⎪⎫0,22B. ⎝ ⎛⎭⎪⎪⎫0,33C. ⎝ ⎛⎭⎪⎪⎫0,55D.⎝ ⎛⎭⎪⎪⎫0,66解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫0,33。

浙江省绍兴市嵊州市2020-2021学年高二上学期期末数学试题(word版含答案)

浙江省绍兴市嵊州市2020-2021学年高二上学期期末数学试题(word版含答案)

浙江省绍兴市嵊州市2020-2021学年高二上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列直线中,与直线210x y ++=平行的是( )A .210x y ++=B .2410x y ++=C .210x y -+=D .2410x y -+=2.双曲线2212x y -=的渐近线方程为( )A .2y x =±B .12y x =±C .y =D .2y x =± 3.已知球O 的体积为36π,则该球的表面积为( )A .6πB .9πC .12πD .36π 4.如图,已知平行六面体1111ABCD A B C D -,E ,F 分别是棱11C D ,1BB 的中点,记1,,AB a AD b AA c ===,则EF =( )A .12EF a b c =++ B .3322EF a b c =++ C .1122EF a b c =-- D .1122EF a b c =-++ 5.已知平面α,直线m ,n .( )A .若//,//m n n α,则//m αB .若,//m n n α⊥,则m α⊥C .若//,//m n αα,则//m nD .若,//m n αα⊥,则m n ⊥6.已知曲线22:1()12x y E m m m -=∈--R ,( ) A .若E 表示双曲线,则2m >B .若12m <<,则E 表示双曲线C .若E 表示椭圆,则2m >D .若12m <<且32m ≠,则E 表示椭圆 7.已知圆222:22230C x y mx y m ++++-=,则( )A .圆心C 在一条平行于x 轴的定直线上运动,且其半径存在最小值B .圆心C 在一条平行于y 轴的定直线上运动,且其半径存在最小值C .圆心C 在一条平行于x 轴的定直线上运动,且其半径存在最大值D .圆心C 在一条平行于y 轴的定直线上运动,且其半径存在最大值8.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤ B .12sin sin 1θθ+≥ C .122πθθ+≤ D .122πθθ+≥9.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( )A .221k e -=B .221k e +=C .2211e k -=D .2211e k+= 10.如图,已知直三棱柱111ABC A B C -的所有棱长均相等,P 是侧面11AAC C 内一点,设P 到平面11BB C C 的距离为d ,若12PA d =,则点P 的轨迹是( )A .圆的一部分B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分二、双空题 11.已知()()()1,2,2,1,,2A B C x --三点共线,则x =______,直线AB 的倾斜角为_________.12.若某一个圆柱体的轴截面是边长为2的正方形,则该圆柱体的底面圆半径是_______,侧面积是_______.13.已知某几何体的三视图如图所示(单位:cm ),则该几何体的体积为_______3cm ,其中最长棱的长度是_______cm .三、填空题14.已知圆221:20C x y y +-=和圆222:440C x y x y m +-++=相交于A ,B 两点,若直线AB 的方程为2340x y -+=,则||AB =________,m =______.15.如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别是棱111,,AA BC C D 的中点,设M 是该正方体表面上的一点,若(,)EMxEF yEG x y =+∈R ,则点M的轨迹所形成的长度是________.16.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB恰好经过焦点F ,则4AF BF +的最小值为_______.17.如图,已知直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,E 是棱AB 的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.四、解答题18.已知直线1:230l x y +-=和2:230l x y +-=相交于点A .(1)求经过点A 且与1l 垂直的直线方程;(2)设经过点(0,1)P -的直线l 与12,l l 分别相交于B ,C ,若AB AC =,求直线l 的方程.19.如图,在直三棱柱111ABC A B C -中,底面ABC 是边长为2的正三角形,D 是棱1CC 的中点,1AB AA =.(1)证明:1AB BD ⊥;(2)求二面角1B AB D --的平面角的余弦值.20.已知圆221:1O x y +=,圆222:(4)4O x y -+=,P 是直线:20l x my +-=上一点,过点P 分别作圆12,O O 的切线,切点分别为A ,B .(1)若||PA 的最小值为1,求实数m 的值;(2)若直线l 上有且仅有2个点P 满足||2||PB PA =,求实数m 的取值范围.21.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,侧面PAD 是等腰直角三角形,PA PD ⊥,E ,F ,G 分别是,,AD BC PB 的中点,1AB =,2PB BC ==.(1)证明://PE 平面AFG ;(2)求直线PB 与平面AFG 所成角的正弦值.22.如图,已知A ,B ,C ,D 是抛物线2:2x y Ω=上四个不同的点,且//AB CD ,设直线AC 与直线BD 相交于点P ,设(0)PC CA λλ=>.(1)求证:A ,P ,B 三点的横坐标成等差数列;(2)当直线AB 经过点(0,1)Q ,且2λ=时,若PAB △面积的为203,求直线AB 的方程.参考答案1.B【分析】根据两直线的位置关系的判定方法,逐项判定,即可求解.【详解】对于A 中,可得121121==,根据两直线的位置关系,可得两直线重合,不符合题意; 对于B 中,可得121241=≠,根据两直线的位置关系,可得两直线平行,符合题意; 对于C 中,可得1221≠-,根据两直线的位置关系,可得两直线相交,不符合题意; 对于C 中,可得1224≠-,根据两直线的位置关系,可得两直线相交,不符合题意; 2.A【分析】求出a 、b 的值,即可得出所求双曲线的渐近线方程.【详解】在双曲线2212x y -=中,a =1b =,因此,该双曲线的渐近线方程为2b y x x a =±=±. 故选:A.3.D【分析】根据球的体积公式求出半径,即可求出表面积.【详解】设球的体积为R ,则由题可得34363R ππ=,解得3R =,则该球的表面积为24336ππ⨯=.故选:D.4.C【分析】利用空间向量的线性运算即可求解.【详解】1111112EF EC C F AB C B B F =+=++ ()11112222a b c a b c ⎛⎫=+-+-=-- ⎪⎝⎭. 故选:C5.D【分析】根据线面平行,垂直的判定定理和性质即可判断.【详解】对A ,若//,//m n n α,则//m α或m α⊂,故A 错误;对B ,若,//m n n α⊥,则m 和α平行、相交或在平面内,故B 错误;对C ,若//,//m n αα,则,m n 平行、相交或异面,故C 错误;对D ,若,//m n αα⊥,则m n ⊥,故D 正确.故选:D.6.D【分析】根据曲线方程,分别求出曲线表示双曲线、椭圆时参数的取值范围,即可判断;【详解】解:因为曲线22:1()12x y E m m m -=∈--R ,当()()120m m -->解得2m >或1m <时曲线表示双曲线;当102012m m m m ->⎧⎪->⎨⎪-≠-⎩即12m <<且32m ≠时曲线表示椭圆; 故选:D7.C【分析】首先将圆的方程化成标准式,表示出圆心坐标及半径,即可判断;【详解】解:因为222:22230C x y mx y m ++++-=所以()()222:14C x m y m +++=-,故圆心坐标为(),1C m --,半径r =故圆心坐标在直线1y =-上运动,2r ≤,当0m =时半径取得最大值, 故选:C8.C【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤-⎪⎝⎭,利用三角函数的单调性判断选项.【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 9.B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项. 【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩, 1121121131232y y y y k x x x x -===⋅-, 利用点差法22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B【点睛】 关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项. 10.D 【分析】取11,B C BC 的中点,M N ,得出平面222A B C ,作122PP B C ⊥,在直角12PPC 中,求得2PC =,以1C 为原点,1C C 为x 轴,11C A 为y 轴建立平面直角坐标系,求得点(,)P x y 的轨迹方程,即可求解. 【详解】如图所示,取11,B C BC 的中点,M N ,连接1,,A M AN MN , 得到平行于平面ABC 且过点P 的平面222A B C ,如图(1)(2)所示, 作122PP B C ⊥,则1PP d =,在直角12PPC 中,可得2PC =, 在图(3)中,设直三棱柱111ABC A B C -的所有棱长均为a ,且(,)P x y , 以1C 为原点,1C C 为x 轴,11C A 为y 轴建立平面直角坐标系, 则1(0,)A a ,所以21,4y A P d ==, 所以222(0))4x a d -+-=,整理得222220x y ay a --+=, 所以点P 的轨迹是双曲线的一部分. 故选:D.11.3 4π【分析】由三点共线得斜率相等即可求解. 【详解】直线AB 斜率为12121AB k +==+,BC 斜率为212BC k x -=-,因为()()()1,2,2,1,,2A B C x --三点共线,所以AB BC k k =,则3x =,由tan 1θ=得4πθ=所以直线AB 的倾斜角为4π故答案为:3;4π 12.1 4π 【分析】根据圆柱的轴截面可求得圆柱的底面圆半径及其圆柱的侧面积. 【详解】因为圆柱体的轴截面是边长为2的正方形,则该圆柱的底面圆半径为212r ==, 该圆柱的母线长为2l =,因此,圆柱的侧面积为22124S rh πππ==⨯⨯=. 故答案为:1;4π.13.73【分析】由三视图还原原几何体,该几何体为棱台,由棱台体积公式求棱锥体积,由勾股定理求最长棱的长度. 【详解】解:由三视图还原原几何体如图所示,该几何体为棱台,上底面为腰长为1的等腰直角三角形,所以上底面111122S =⨯⨯=,下底面为腰长为2的等腰直角三角形,下底面12222S '=⨯⨯=,高等于2;所以体积(1117223323V h S S ⎛'=++=⨯⨯+= ⎝又2BE DE EF ===,DF ==CF AD =AC =DF =,故答案为:73;【点睛】本题考查由三视图求面积,体积,关键是由三视图还原原几何体.14.138- 【分析】将圆的方程作差得到直线AB 的方程,即可得到m 的值,再根据垂径定理可以构建1,,2AB r d 满足勾股定理,从而求得相交弦||AB 的值. 【详解】因为圆221:20C x y y +-=和圆222:440C xy x y m +-++=相交于A ,B 两点将两圆相减得直线AB 的方程为460x y m --=,则8m =-.又221:20C x y y +-=得圆心为(,)1C 01,半径为1,故圆心(,)1C 01到直线AB 的距离为13d ==所以1213AB ===,13AB ∴=;,8- 【点睛】1.两圆相交的情况下,将圆的方程作差就可以得到相交直线的方程;2.根据垂径定理可以构建1,,2AB r d 满足勾股定理。

吉林省吉林高二上期末数学试卷(文)(附答案解析)(2020届)

吉林省吉林高二上期末数学试卷(文)(附答案解析)(2020届)

吉林省吉林高二(上)期末数学试卷(文科)一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!) 1.(5分)等差数列{a n }中,a 3=4,a 7=10,则a 6=( ) A .B .C .D .2.(5分)在△ABC 中,a=18,B=60°,C=75°,则b=( ) A .6B .9C .4D .93.(5分)不等式(x+5)(1﹣x )≥8的解集是( ) A .{x|x ≤1或x ≥﹣5} B .{x|x ≤﹣3或x ≥﹣1}C .{x|﹣5≤x <1}D .{x|﹣3≤x ≤﹣1}4.(5分)已知焦点在y 轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为( ) A .B .C .D .5.(5分)等比数列{a n }中,a 1a 2a 3=3,a 10a 11a 12=24,则a 13a 14a 15=( ) A .48 B .72 C .144 D .1926.(5分)在△ABC 中,sin 2A+sin 2B+sinAsinB=sin 2C ,则角C 等于( ) A .30°B .60°C .120°D .150°7.(5分)已知x >0,y >0,且+=2,则x+y 的最小值为( ) A .6B .7C .8D .98.(5分)已知两定点F 1(0,﹣5),F 2(0,5),平面内动点 P 到F 1、F 2的距离之差的绝对值是6,则点P 的轨迹方程为( ) A .B .C .D .9.(5分)在△ABC 中,A=60°,AB=4,S △ABC =2,则BC 边等于( )A .2B .2C .D .310.(5分)已知数列{a n }满足a 1=1,a n+1=a n +2n ,则a 10=( ) A .1024B .1023C .2048D .204711.(5分)函数f (x )=2x 2﹣4lnx 的单调减区间为( )A.(﹣1,1)B.(1,+∞)C.(0,1) D.[﹣1,0)12.(5分)抛物线y=x2+bx+c在点(1,2)处的切线n的倾斜角是135度,则过点(b,c)且与切线n垂直的直线方程为()A.x﹣y+3=0 B.x﹣y+7=0 C.x﹣y﹣1=0 D.x﹣y﹣3=0二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是.14.(5分)函数y=的定义域为R,则k的取值范围.15.(5分)已知点P到点F(0,1)的距离比它到直线y=﹣5的距离小4,若点P的轨迹与直线x﹣4y+2=0的交点为A、B,则线段AB的中点坐标为.16.(5分)函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是.三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.19.(12分)已知等差数列{an }中,a7=9,S7=42(1)求a15与S20(2)数列{cn }中cn=2n an,求数列{cn}的前n项和Tn.20.(12分)已知数列{an }的前n项和为Sn,若Sn=n2+5n.(1)证明数列{an}是等差数列;(2)求数列{}的前n项和Tn.21.(12分)已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.且斜率为1,交椭圆于A、B两点,求弦长|AB|.(2)若直线m椭圆左焦点F122.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).2019-2020学年吉林省吉林高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!) 1.(5分)等差数列{a n }中,a 3=4,a 7=10,则a 6=( ) A .B .C .D .【解答】解:∵等差数列{a n }中,a 3=4,a 7=10,∴,解得, ∴a 6=1+5×=.故选:C .2.(5分)在△ABC 中,a=18,B=60°,C=75°,则b=( ) A .6B .9C .4D .9【解答】解:∵在△ABC 中,a=18,B=60°,C=75°, ∴A=45°,由正弦定理=得:b===9,故选:C .3.(5分)不等式(x+5)(1﹣x )≥8的解集是( ) A .{x|x ≤1或x ≥﹣5} B .{x|x ≤﹣3或x ≥﹣1} C .{x|﹣5≤x <1} D .{x|﹣3≤x ≤﹣1}【解答】解:∵(x+5)(1﹣x )≥8, ∴(x+3)(x+1)≤0, 解得:﹣3≤x ≤﹣1, 故选:D .4.(5分)已知焦点在y 轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为( ) A .B .C .D .【解答】解:根据题意,要求椭圆的半短轴长为3,焦距为4, 即b=3,2c=4, 解可得b=3,c=2; 则a==,又由椭圆的焦点在y 轴上,则椭圆的方程为+=1;故选:D .5.(5分)等比数列{a n }中,a 1a 2a 3=3,a 10a 11a 12=24,则a 13a 14a 15=( ) A .48 B .72 C .144 D .192【解答】解:设等比数列{a n }的公比为q ,∵a 1a 2a 3=3,a 10a 11a 12=24,∴(q 9)3==8,解得:q 9=2.则a 13a 14a 15=q 36•a 1a 2a 3=24×3=48, 故选:A .6.(5分)在△ABC 中,sin 2A+sin 2B+sinAsinB=sin 2C ,则角C 等于( ) A .30°B .60°C .120°D .150°【解答】解:∵sin 2A+sin 2B+sinAsinB=sin 2C , 由正弦定理可得,a 2+b 2+ab=c 2,由余弦定理可得,cosC===﹣,∴由C ∈(0°,180°),可得:C=120°. 故选:C .7.(5分)已知x >0,y >0,且+=2,则x+y 的最小值为( ) A .6B .7C .8D .9【解答】解:∵x >0,y >0,且+=2,∴+=1,∴x+y=(x+y )(+)=5++≥5+2=5+3=8,当且仅当y=3x=6时取等号.故选:C .8.(5分)已知两定点F 1(0,﹣5),F 2(0,5),平面内动点 P 到F 1、F 2的距离之差的绝对值是6,则点P 的轨迹方程为( ) A .B .C .D .【解答】解:根据题意,两定点F 1(0,﹣5),F 2(0,5),则|F 1F 2|=10, 若动点 P 到F 1、F 2的距离之差的绝对值是6,则有6<10,则P 的轨迹是以F 1(0,﹣5),F 2(0,5)为焦点的双曲线,其中c=5,a=3, 则b==4,则双曲线的方程为:﹣=1;故选:C .9.(5分)在△ABC 中,A=60°,AB=4,S △ABC =2,则BC 边等于( )A .2B .2C .D .3【解答】解:∵A=60°,AB=4,S △ABC =2=AB•AC•sinA=,∴AC=2,∴由余弦定理可得:BC===2.故选:B .10.(5分)已知数列{a n }满足a 1=1,a n+1=a n +2n ,则a 10=( )A .1024B .1023C .2048D .2047【解答】解:∵数列{a n }满足a 1=1,a n+1=a n +2n , ∴a n =a 1+(a 2﹣a 1)+…+(a n ﹣a n ﹣1)=1+21+22+…+2n ﹣1==2n ﹣1.(n ∈N *).∴a 10=210﹣1=1023. 故选B .11.(5分)函数f (x )=2x 2﹣4lnx 的单调减区间为( ) A .(﹣1,1) B .(1,+∞) C .(0,1) D .[﹣1,0) 【解答】解:f (x )的定义域是(0,+∞), f′(x )=4x ﹣=,令f′(x )<0,解得:0<x <1, 故选:C .12.(5分)抛物线y=x 2+bx+c 在点(1,2)处的切线n 的倾斜角是135度,则过点(b ,c )且与切线n 垂直的直线方程为( )A .x ﹣y+3=0B .x ﹣y+7=0C .x ﹣y ﹣1=0D .x ﹣y ﹣3=0 【解答】解:令f (x )=x 2+bx+c ,则f′(x )=2x+b , ∴f (x )在(1,2)处的切线斜率为k=f′(1)=2+b , ∴2+b=tan135°=﹣1, ∴b=﹣3.又f (x )过点(1,2),∴1﹣3+c=2,即c=4. ∴过(﹣3,4)且与n 垂直的直线方程为: y ﹣4=x+3,即x ﹣y+7=0. 故选B .二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是﹣6 .【解答】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最小,此时z最小,由,解得,即A(3,﹣3),此时z=2×3+4×(﹣3)=﹣6,故答案为:﹣6.14.(5分)函数y=的定义域为R,则k的取值范围[0,2] .【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].15.(5分)已知点P 到点F (0,1)的距离比它到直线y=﹣5的距离小4,若点P 的轨迹与直线x ﹣4y+2=0的交点为A 、B ,则线段AB 的中点坐标为 (,) . 【解答】解:∵点P 到F (0,1)的距离比它到直线y=﹣5的距离小4, ∴点P 在直线l 的上方,点P 到F (0,1)的距离与它到直线y=﹣1的距离相等 ∴点M 的轨迹C 是以F 为焦点,y=﹣1为准线的抛物线, ∴曲线C 的方程为x 2=4y ,设A (x 1,y 1),B (x 2,y 2),AB 的中点为(x 0,y 0) 将直线x ﹣4y+2=0代入x 2=4y ,可得x 2=x+2, 解得x 1=2或x 2=﹣1, 则y 1=1或y 2=,∴x 0=(2﹣1)=,y 0=(1+)=, ∴AB 的中点为(,),故答案为:(,)16.(5分)函数f (x )=x 3﹣x 2﹣x+k 的图象与x 轴刚好有三个交点,则k 的取值范围是 (﹣,1) .【解答】解:f′(x )=3x 2﹣2x ﹣1, 令f′(x )=0得x=﹣或x=1,∴当x <﹣或x >1时,f′(x )>0,当﹣<x <1时,f′(x )<0,∴f (x )在(﹣∞,﹣)上单调递增,在(﹣,1)上单调递减,在(1,+∞)上单调递增, ∴当x=﹣时,f (x )取得极大值f (﹣)=+k ,当x=1时,f (x )取得极小值f (1)=k﹣1.∵f (x )的图象与x 轴刚好有三个交点,∴,解得:﹣<k<1.故答案为:(﹣,1).三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.【解答】解:(1)由b2﹣a2=c•(b﹣c)得:a2=b2+c2﹣bc根据余弦定理:a2=b2+c2﹣2bccosA得:又:△ABC中,0°<A<180°,则A=60,由正弦定理:结合解出:又:△ABC中,0°<B<180°﹣60°,则B=45,(2)由a=4,A=60°写出余弦定理:a2=b2+c2﹣2bccosA得:b2+c2﹣bc=16①再由面积公式:及已知得:bc=16②联立①②,且b>0,c>0解得:b=4,c=4.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.【解答】解:(1)化为:,由正弦定理,得:,又三角形中,sinA>0,化简,得:即:,又:△ABC中,0°<B<180°,得:B=60°;(2)把sinAcosB+cosAsinB=2sinA化为:sin(A+B)=2sinA,由三角形内角和定理A+B+C=180°,得:sin(A+B)=sinC=2sinA,根据正弦定理,得:c=2a,又,结合余弦定理:b2=a2+c2﹣2accosB,即为48=5a2﹣4a2•,解得:a=4,c=8,由面积公式:=×4×8×,得:.19.(12分)已知等差数列{an }中,a7=9,S7=42(1)求a15与S20(2)数列{cn }中cn=2n an,求数列{cn}的前n项和Tn.【解答】解:(1)设等差数列{an }的公差为d,则由a7=9,S7=42联立:,解得:,则数列的通项公式为:an=n+2∴.(2)由(1)知:,则:①∴②,①﹣②得:,,﹣﹣(n+2)•2n+1,整理得:.20.(12分)已知数列{a n }的前n 项和为S n ,若S n =n 2+5n .(1)证明数列{a n }是等差数列;(2)求数列{}的前n 项和T n .【解答】证明:(1)当n=1时,S 1=1+5=6=a 1当n ≥2时,化简,得:a n =2n+4检验,n=1时,代入上式符合. 则;解:(2)由题意知:=,=,解得:.21.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为,若抛物线y 2=4x 的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m 椭圆左焦点F 1且斜率为1,交椭圆于A 、B 两点,求弦长|AB|.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c ∵抛物线y 2=4x 的焦点为F (1,0),∴c=1,又离心率, 则: 再由b 2=a 2﹣c 2得:b 2=4;所求椭圆标准方程为:,(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1(2)由(1)知,左焦点为F1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=22.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).【解答】(1)解:,化为:,由于原函数定义域为(0,+∞).∴k≥0时,f'(x)>0恒成立,则原函数在定义域内为单调增函数.当k<0时,令f'(x)=0有正数解:;∴在区间上时,f'(x)<0,此时,原函数为减函数.在区间上时,f'(x)>0,此时,原函数为增函数.综上:k≥0时,原函数为增函数,增区间为(0,+∞),k<0时,原函数的增区间为:减区间为:.(2)证明:由(1)知,当k<0时,在时,原函数有极大值,且为最大值.要证明,只需证明:,作差:=,设:,则:,令:ϕ'(t)=0,解得:t=1,且t>1时,ϕ'(t)<0,原函数为减函数,t<1时,ϕ'(t)>0,原函数为增函数,则:ϕ(1)=ln1﹣1+1=0为函数最大值,∴,即.。

2020学年高二上学期数学(文)期末考试卷(详解)(精编版)——精品文档

2020学年高二上学期数学(文)期末考试卷(详解)(精编版)——精品文档

222y 223x 4932239492x 72y47272572020学年高二上学期数学(文)期末考试卷(精编版)一、选择题(每小题5分,共50分,把每小题的答案对应选项填涂在答题卡上) 1.已知数列{a n }是等比数列,若a 1·a 5 = 9,则a 3= ( )A .±3B .-3C .3D .32.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验。

I .随机抽样法;II .分层抽样法. 上述两问题和两方法配对正确的是( ) A .①配I ,②配IIB .①配II ,②配IC .①配Ⅰ,②配1D .①配11,②配II3.己知 - = l 的渐近线方程是 ( ) A .y = ± xB .y = ± xC .y =± xD .y =± x4.下列有关命题的说法错误的是( )A .命题:若x 2-3x +2=0则x =1的逆否命题为:若x ≠ l ,则x 2-3x +2≠0 B .x = 1是x 2-3x +2=0的充分不必要条件 C .若P ∧g 为假命题,则p,q 均为假命题D .对于命题p :要∃x ∈R,使得x 2+ x +1< 0,则-P :∀x ∈R,均有x 2+x +l≥05.已知圆x 2+y 2=1 则y -x 的最大值 ( ) A .1B .2C .2D .36.下图是2007年在广州举行的全国少数民族运动会上,七位评委 为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一 个最低分后,所剩数据的平均数和方差分别为( ) A .84,4.84B .84,1.6C .85,1.6D .85,47.F 1,F 2是椭圆 + =1的两个焦点,A 为椭圆上一点,且∠F 1AF 2= 90°,则⊿AF 1F 2的面积为 ( ) A .7B .C .D .212132y 214161201⎪⎭⎫⎝⎛1,21()2,1()2,28.“m = ”是“直线(m +2)x +3my +1= 0与直线(m -2)x + (m +2)y -3= 0相互垂直”的 ( )。

2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)

2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)

2020-2021学年天津市和平区高二(上)期末数学试卷一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=22.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣13.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.58.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是.11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m =.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是.三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.2020-2021学年天津市和平区高二(上)期末数学试卷参考答案与试题解析一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=2【解答】解:圆心为(1,﹣1),半径为2的圆的标准方程是:(x﹣1)2+(y+1)2=4.故选:C.2.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣1【解答】解:数列{a n},满足a n+1=,当a1=时,解得a2=2,当n=2,解得,当n=3时,解得,所以数列的周期为3.故.故选:A.3.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:根据题意,双曲线的焦点在x轴上,而直线x+2y=5与x轴交点为(5,0),则c=5,进而有9+a2=25,解可得a2=16,则双曲线的方程为:,其渐近线方程为:y=±x;故选:A.4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.【解答】解:已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,将点P(2,2)代入圆(x﹣1)2+y2=5恒成立,则点P在圆上.即过点P(2,2)的直线与圆(x﹣1)2+y2=5相切的切线只有一条,令过点P(2,2)的切线的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,由此切线与ax﹣y+1=0平行,两直线的斜率相等且y轴截距不等,可得k=a且﹣2k+2≠1;由圆心到切线的距离等于圆的半径,可得圆的半径r==,k=﹣,即a=﹣;故选:C.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.【解答】解:由等差数列的性质可得:====.故选:C.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±【解答】解:由题意a2、a4是方程2x2﹣11x+8=0的两根,故有a2a4=4又{a n}为等比数列∴a2a4=a32,∴a3=±2.故选:B.7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5【解答】解:依题意可知抛物线的准线方程为y=﹣1,∴点A到准线的距离为4+1=5,根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,∴点A与抛物线焦点的距离为5,故选:D.8.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.【解答】解:根据题意,圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0),则有,联立可得:y=,即两圆公共弦所在直线的方程为y=,圆C1:x2+y2=4,其圆心为(0,0),半径r=2,若公共弦的弦长为2,则圆C1的圆心C1到公共弦的距离d==,又由a>0,则有=,解可得a=,故选:A.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.【解答】解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选:D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是(﹣2,0).【解答】解:∵抛物线方程y2=﹣8x,∴焦点在x轴,p=4,∴焦点坐标为(﹣2,0)故答案为(﹣2,0).11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m=.【解答】解:直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,由l1⊥l2,得3m+(m﹣2)=0,即4m=2,解得m=.故答案为:.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取x=1,得=(1,1,2),∴点B到平面D1EC的距离:d===.故答案为:.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=2n﹣1.【解答】解:数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),所以,,…,,所以=,所以.故答案为:2n﹣1.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是[1﹣,3].【解答】解:如图所示:曲线y=3﹣,即y﹣3=﹣,平方可得(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+,或b=1﹣.结合图象可得1﹣≤b≤3,故答案为:[1﹣,3].三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.【解答】解:(1)设等差数列{a n}的公差为d,则,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,S n==n2.(2)b n===,∴数列{b n}的前n项和为T n=+…+==.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.【解答】解:(1)证明:连接AC,交BD于点O,连接OE,∵ABCD为正方形,∴O是AC的中点,∵E是PC的中点,∴OE∥P A,∵P A⊄平面BDE,OE⊂平面BDE,∴P A∥平面BDE.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,则B(2,2,0),D(0,0,0),E(0,1,1),C(0,2,0),=(2,2,0),=(0,1,1),设平面BDE的法向量=(x,y,z),则,设x=1,则=(1,﹣1,1),平面DEC的法向量=(1,0,0),设平面BDE与平面DEC的夹角为θ,则cosθ===,∴平面BDE与平面DEC的夹角的余弦值为.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.【解答】解:(Ⅰ)由e==,且a=2,则c=1,b==,故椭圆C的方程为+=1;(Ⅱ)F1(﹣1,0),F2(1,0),设经过右焦点F2的直线l的方程为x=my+1,与椭圆方程3x2+4y2=12联立,可得(4+3m2)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,由⊥,即AF1⊥BF1,k•k=•=﹣1,即有(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=(1+m2)•(﹣)+2m•(﹣)+4=0,解得m=±,则直线l的方程为x=±y+1,即为y=±(x﹣1).18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.【解答】解:(1)数列{a n}的前n项和S n=1﹣a n①.所以当n=1时,.当n≥2时,S n﹣1=1﹣a n﹣1②,①﹣②得:a n=S n﹣S n﹣1=a n﹣1﹣a n,整理得2a n=a n﹣1,故(常数),所以数列{a n}是以为首项,为公比的等比数列;所以,首项符合通项,所以.证明:(2)设,所以①,②,①﹣②得:=,所以.。

宁夏2020学年高二数学上学期期末考试试卷理含解析

宁夏2020学年高二数学上学期期末考试试卷理含解析

高二上学期期末考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线的焦点坐标为()A. B. C. D.【答案】C【解析】双曲线中,且焦点在y轴上,所以,解得.所以双曲线的焦点坐标为.故选C.2.已知命题,,则命题的否定为()A. ,B. ,C. ,D. ,【答案】A【解析】【分析】根据全程命题的否定是特称命题,这一规则书写即可.【详解】全称命题“,”的否定为特称命题,故命题的否定为“,”.故答案为:A.【点睛】这个题目考查了全称命题的否定的写法,换量词否结论,不变条件.3.经过点的抛物线的标准方程为()A. B.C. 或D. 无法确定【解析】【分析】分情况设出抛物线的方程,代入已知点即可得到具体方程。

【详解】由题设知抛物线开口向右或开口向上,设其方程为或,将点代入可得或,所以所求抛物线的标准方程为或.故选.【点睛】这个题目考查了抛物线方程的求法,可成为待定系数法,较为基础.4.已知空间向量,,则“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据向量垂直的点积运算得到x的值,进而得到结果.【详解】,,或-3.故x=1是的充分不必要条件.故答案为:B.【点睛】这个题目考查了向量垂直的坐标表示,也考查了充分必要条件的判断,题目基础. 判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p 为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5.已知的周长为10,且,,则顶点的轨迹方程为()A. B.C. D.【答案】D【解析】根据椭圆定义可得到轨迹是椭圆,又因为三点不共线故去掉两个点.【详解】由题6>4,故点的轨迹为焦点在轴上的椭圆,,,故,故椭圆的方程为,又不共线,所以的轨迹方程为.故选.【点睛】求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.6.若命题是真命题,则实数的取值范围是()A. B.C. D.【答案】B【解析】【分析】根据题干得到需满足,解出不等式即可.【详解】命题是真命题,则需满足,解得或. 故选.【点睛】这个题目考查了已知命题的真假,求参的问题.涉及二次函数在R上有解的问题,开口向上,只需要判别式大于等于0即可.7.已知双曲线的一条渐近线方程为,,分别是双曲线的左,右焦点,点在双曲线上,且,则()A. 1B. 17C. 1或17D. 18【答案】B【解析】【分析】根据渐近线的斜率为得到a值,再由双曲线定义得到结果.【详解】依题意,有,所以.因为,所以点在双曲线的左支上,故有,解得.故选.【点睛】这个题目考查了双曲线的标准方程的应用和概念的应用,较为简单.8.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.【答案】C【解析】【分析】通过题干条件得到面的法向量,,求法向量和的夹角即可.【详解】由题知,为平面的一个法向量,又因为,所以.故答案为:C.【点睛】求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可。

天津市2020学年高二数学上学期期末考试试题(含解析) (4)

天津市2020学年高二数学上学期期末考试试题(含解析) (4)

高二数学上学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( ) A. (4,1,0)-B. (4,1,4)--C. (4,1,0)-D.(4,1,4)--【答案】C 【解析】 【分析】由111(,,)m x y z =,222(,,)n x y z =,则122212(,,)m n x x x y z z -=---,代入运算即可得解.【详解】解:因为向量(2,0,1)a =-,向量(0,1,2)b =-, 则2(4,0,2)a=-,则2a b -=(4,1,0)-, 故选:C.【点睛】本题考查了向量减法的坐标运算,属基础题.2.设P 是椭圆22221x y a b+=(0)a b >>上的一动点,则P 到该椭圆的两个焦点的距离之和为( ) A. 2b B. 2aC. bD. a【答案】B 【解析】 【分析】由椭圆的定义122PF PF a +=即可得解.【详解】解:设椭圆的两个焦点为12,F F ,点P 为椭圆上的点, 由椭圆的定义有:122PF PF a +=, 故选:B.【点睛】本题考查了椭圆的定义,属基础题.3.抛物线214x y =的准线方程是( ) A. 116x = B. 116x =-C. 2x =-D. 1x =-【答案】D 【解析】 【分析】先将抛物线方程化为标准方程,再求抛物线的准线方程即可. 【详解】解:由抛物线的方程为214x y =, 化为标准式可得24y x =,即抛物线24y x =的准线方程是:1x =-,故选:D.【点睛】本题考查了抛物线的标准方程,重点考查了抛物线的准线方程,属基础题. 4.中心在坐标原心、焦点在x 轴,且长轴长为18、焦距为12的椭圆的标准方程为( )A. 22x y 18172+=B. 22x y 1819+=C. 22x y 18145+=D.22x y 18136+= 【答案】A 【解析】 【分析】根据条件,求得a 、b 、c 的值,进而可得椭圆的标准方程. 【详解】由题可得218a =,26c =,故281a =,272b =,又焦点在x 轴上,所以所求椭圆的标准方程为2218172x y+=,故选A .【点睛】本题考查了椭圆标准方程的求法,注意焦点的位置,属于基础题.5.如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a AA c BC b ===,则BM可表示为( )A. 1122a b c -++ B.1122a b c ++ C. 1122a b c --+D. 1122a b c -+【答案】A 【解析】111111()()2222BM BB B M c BA BC c a b a b c =+=++=+-+=-++,故本题正确答案为.A6.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 A. 2833x y =B. 233x y =C. 28x y =D.216x y =【答案】D 【解析】由e=c a =2得4=22c a =1+22b a,∴22b a=3.∴双曲线的渐近线方程为3x,抛物线x 2=2py 的焦点是(0,2p), 它到直线3x 的距离d=2=22p±=4p,∴p=8.∴抛物线方程为x 2=16y. 故选D.7.若两个向量()()1,2,3,3,2,1AB AC ==,则平面ABC 的一个法向量为( ) A. ()1,2,1-- B. ()1,2,1C. ()1,2,1-D. ()1,2,1-【答案】A 【解析】 【分析】设平面ABC 的法向量为(,,)n x y z =,根据数量积等于0,列出方程组,即可求解. 【详解】设平面ABC 的法向量为(,,)n x y z =,则00n AB n AC ⎧⋅=⎨⋅=⎩,即230320x y z x y z ++=⎧⎨++=⎩,令1x =-,则2,1y z ==-,即平面ABC 的一个法向量为(1,2,1)n =--,故选A.【点睛】本题主要考查了平面的法向量的求解,其中解答中根据法向量与平面内的两个不共线的向量垂直,列出关于,,x y z 的方程组求解是解答的关键,着重考查了推理与计算能力,属于基础题.8.已知抛物线2:8C x y =的焦点为F ,O 为原点,点P 是抛物线C 的准线上的一动点,点A 在抛物线C 上,且4AF =,则PA PO +的最小值为( ) A. 2 B. 13 C. 13 D. 46【答案】B 【解析】 【分析】求出A 点坐标,作O 关于准线的对称点M ,利用连点之间相对最短得出AM 为PA PO +的最小值.【详解】解:抛物线的准线方程为2y =-,∵4AF =,∴A 到准线的距离为4,故A 点纵坐标为2, 把2y =代入抛物线方程可得4x =±. 不妨设A 在第一象限,则()4,2A ,点O 关于准线2y =-的对称点为()0,4M -,连接AM , 则PO PM =,于是PA PO PA PM AM +=+≥ 故PA PO +的最小值为2246213AM =+=.故选B .【点睛】本题考查了抛物线的简单性质,属于基础题.9.设12F F 、分别为双曲线22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,12F F 、为直径的圆交双曲线某条渐近线于M N 、两点,且满足120MAN ︒∠=,则双曲线的离心率为( ) A.3321 C.23D.103【答案】B 【解析】【分析】先求出双曲线的渐近线方程,然后求出(,),(,)M a b N a b --,再利用向量数量积运算即可得解.【详解】解:由双曲线方程为22221x y a b-=,则其渐近线方程为by x a=±, 联立222222x y c b y x a c a b⎧+=⎪⎪=⎨⎪=+⎪⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,即(,),(,)M a b N a b --, 又(,0)A a -,则(2,)AM a b =,(0,)AN b =-, 则222214()2AM AN b a b b ⋅=-=+-,解得2234b a =,即2223()4c a a -=, 即2237c a =, 即213c e a ==, 故选:B.【点睛】本题考查了双曲线渐近线方程的求法,重点考查了双曲线的离心率,属中档题. 二.填空题:本大题共6小题,每小题5分,多空题只答对一空得3分,共30分. 10.若向量(,1,3)a x =-,向量(2,,6)b y =,且//a b ,则x =_____,y =_____. 【答案】 (1). 1 (2). -2 【解析】 【分析】由题意可得1326x y -==,再求解即可.【详解】解:由向量(,1,3)a x =-,向量(2,,6)b y =,且//a b , 则1326x y -==, 解得:x 1,y 2==-, 故答案为:1,-2.【点睛】本题考查了空间向量共线的坐标运算,属基础题.11.若双曲线221916x y -=上一点P 到左焦点的距离为4,则点P 到右焦点的距离是 .【答案】10 【解析】试题分析:由双曲线方程可知293,26a a a =∴==,由定义122PF PF a -=得210PF =考点:双曲线定义点评:双曲线上的点到两焦点距离之差的绝对值等于2a12.若方程22151x y m m +=--表示焦点在y 轴的椭圆,则实数m 的取值范围是_____.【答案】(3,5) 【解析】 【分析】由椭圆的几何性质可得501015m m m m ->⎧⎪->⎨⎪->-⎩,再解不等式组即可得解.【详解】解:由方程22151x y m m +=--表示焦点在y 轴的椭圆,则501015m m m m->⎧⎪->⎨⎪->-⎩,解得:513m m m <⎧⎪>⎨⎪>⎩,即35m <<,故答案为:(3,5).【点睛】本题考查了椭圆的几何性质,属基础题.13.在空间直角坐标系O xyz -中,(1,2,1)A -,(1,1,1)B ,(0,1,2)C ,则异面直线OA 与BC 所成角的余弦值为______. 3【解析】 【分析】先求出向量OA 与BC 所成角的余弦值,再求异面直线OA 与BC 所成角的余弦值即可. 【详解】解:由(1,2,1)A -,(1,1,1)B ,(0,1,2)C , 则(1,2,1)OA =-,(1,0,1)BC=-,则向量OA 与BC 所成角的余弦值为3362OA BC OA BC⋅==-⨯, 则异面直线OA 与BC 33【点睛】本题考查了空间向量的坐标运算,重点考查了空间向量的应用,属基础题. 14.已知过点M (1,0)的直线AB 与抛物线y 2=2x 交于A ,B 两点,O 为坐标原点,若OA ,OB 的斜率之和为1,则直线AB 方程为______. 【答案】2x +y -2=0 【解析】 【分析】设直线AB 的方程并代入抛物线方程,根据韦达定理以及斜率公式,可得t 的值,进而得到直线的方程.【详解】依题意可设直线AB 的方程为:x=ty+1,代入y 2=2x 得2220y ty --=, 设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2,y 1+y 2=2t , 所以12121212122()22422OA OB y y y y tk k t x x y y y y ++=+=+===--,∴21t -=,解得12t =-,∴直线AB 的方程为:x=12y -+1,即2x+y-2=0. 故答案为2x+y-2=0.【点睛】本题考查了直线与抛物线的位置关系的应用,以及直线方程的求解,其中设出直线的方程,代入抛物线的方程,利用韦达定理以及斜率公式求解是解答的关键,着重考查了运算与求解能力,属于中档试题.15.在空间直角坐标系O xyz -中,(2,2,2)a x y =--,(3,2,3)b x y x =-,且12a b ⋅=,则222m x y x =++的最小值是________,最大值是__________.【答案】 (1). 0 (2). 8 【解析】 【分析】先利用空间向量数量积运算可得22143x y +=,再利用椭圆的参数方程求最值即可得解.【详解】解:因为(2,2,2)a x y =--,(3,2,3)b x y x =-,且12a b ⋅=, 所以2223(2)(2)(2)(3)3412x x y x x y -++-⨯-=+=,即22143x y +=,设2cos ,3x y θθ==,则22222224cos 3sin 4cos cos 4cos 3(cos 2)1m x y x θθθθθθ=++=++=++=+-,又[]cos 1,1θ∈-, 则min0m =,max 8m =故答案为:0,8.【点睛】本题考查了空间向量数量积运算,重点考查了椭圆的参数方程,属中档题. 三.解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点2,2)M -.(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.【答案】(1)2212y x -=;(2)实轴长232 【解析】 【分析】(1)由共渐近线双曲线方程的求法求解即可; (2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,2b '=,则渐近线方程为2a y x x b''=±=,∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,2ba∴=, ∴方程可化为222212x y a a -=,又双曲线C 经过点2,2)M ,代入方程,222212a a∴-=,解得1a =,2b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,2b =3c =,∴实轴长22a =,离心率为3==ce a,设双曲线C 的一个焦点为(3,0)-,一条渐近线方程为2y x =,|32|221d -⨯∴==+, 即焦点到渐近线的距离为2.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.17.如图,四棱锥P ABCD -的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点.(1)证明://PA 平面BDE ;(2)求二面角B DE C --的余弦值;(3)若点F 在线段PB (不包含端点)上,且直线PB ⊥平面DEF ,求线段DF 的长.【答案】(1)证明见解析(23326 【解析】【分析】(1)建立以D 为坐标原点,分别以DA DC DP 、、所在直线为x 轴、y 轴、z 轴的空间直角坐标系,再标出点的坐标,利用空间向量的应用即可得证;(2)求出平面BDE 的一个法向量,平面DEC 的一个法向量,再利用数量积公式求解即可;(3)假设棱PB 上存在点F ,使PB ⊥平面DEF ,由0PB DF ⋅=求解即可.【详解】证明:(1)以D 为坐标原点,分别以DA DC DP 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设2PD DC ==,则(2,0,0)A ,(0,0,2)P ,(2,2,0)B ,则(2,0,2)PA =-,(0,1,1)DE =,(2,2,0)DB =,设1(,,)n x y z =是平面BDE 的一个法向量,则由1100n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩,得0220y z x y +=⎧⎨+=⎩,取1y =-,得1(1,1,1)n =-. 1220PA n ⋅=-=,1PA n ∴⊥,又PA ⊄平面BDE ,//PA ∴平面BDE .(2)解:由(1)知1(1,1,1)n =-是平面BDE 的一个法向量,又2(2,0,0)n DA ==是平面DEC 的一个法向量.设二面角B DE C --的平面角为θ,由图可知12,n n θ=<>,1122123cos cos ,3n n n n n n θ⋅∴=<>==⋅, 故二面角B DE C --的平面角的余弦值为33. (3)假设棱PB 上存在点F ,使PB ⊥平面DEF ,设(01)PF PB λλ=<<,(,,)F x y z则(,,2)(2,2,2)x y z λ-=-,(2,2,22)F λλλ∴-,(2,2,22)DF λλλ=-,(2,2,2)PB =-, 由0PB DF ⋅=得442(22)0λλλ+--=,解得13λ=, 224,,333F ⎛⎫∴ ⎪⎝⎭, 则22222426||3333DF ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查了空间向量的综合应用,重点考查了运算能力,属中档题.18.已知点A(0,-2),椭圆E:22221x ya b+= (a>b>0)的离心率为32,F是椭圆E的右焦点,直线AF的斜率为33,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.【答案】(1)2214xy+=(2)72y x=-【解析】试题分析:设出F,由直线AF的斜率为233求得c,结合离心率求得a,再由隐含条件求得b,即可求椭圆方程;(2)点l x⊥轴时,不合题意;当直线l斜率存在时,设直线:2l y kx=-,联立直线方程和椭圆方程,由判别式大于零求得k的范围,再由弦长公式求得PQ,由点到直线的距离公式求得O到l的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF 23()0,2A - 所以2233c =,3c =又22232c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=. (2)解:设()()1122,,,P x y Q x y由题意可设直线l 的方程为:2y kx =-, 联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即3k <或3k > 1212221612,1414k x x x x k k +==++. 所以()22121214PQ k x x x x =++-2222164811414k k k k⎛⎫=+- ⎪++⎝⎭224143k k +-=点O 到直线l 的距离21d k =+所以214432OPQ k S d PQ ∆-== 2430k t -=>,则2243k t =+,24414424OPQ t S t t t∆==≤=++, 当且仅当2t =2432k -=, 解得7k =时取等号, 满足234k > 所以OPQ ∆的面积最大时直线l 的方程为:72y x =-或72y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.1、在最软入的时候,你会想起谁。

2020年四川省甘孜市西昌市中学高二数学文上学期期末试题含解析

2020年四川省甘孜市西昌市中学高二数学文上学期期末试题含解析

2020年四川省甘孜市西昌市中学高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在空间中,下列命题正确的是()A.没有公共点的两条直线平行 B.若平面α∥β,则平面α内任意一条直线m∥βC.与同一直线垂直的两条直线平行 D.已知直线不在平面内,则直线平面参考答案:B2. 已知正四棱柱中,=,为中点,则异面直线与所形成角的余弦值为( )A. B. C.D.参考答案:A3. 已知点在同一球面上,,,四面体的体积为,则这个球的体积为()A.8B.C.D.参考答案:B4. 用“辗转相除法”求得和的最大公约数是()A. B. C.D.参考答案:D5. 将x=2005输入如图所示的程序框图得结果()(A)-2005 (B) 2005 (C) 0(D) 2006参考答案:D略6. 袋中有3个红球,7个白球,从中无放回地任取5个,取到1个红球就得1分,则平均得分为()A.3.5分 B.2.5分 C.1.5 分 D.0.5分参考答案:C略7. .如图所示的曲线是函数的大致图象,则等于()A. B C. D.参考答案:A8. 已知函数的图象如右图所示,则其导函数的图象可能是A B C D参考答案:A9. 抛物线的焦点坐标为()A.(-,0)B.(-4,0)C.(0,-)D.(0,-2)参考答案:D【分析】将抛物线方程化为标准方程,求出的值,判断开口方向及焦点所在的坐标轴,即可得到焦点坐标【详解】将抛物线化为标准形焦点坐标为式,焦点在轴上,开口向下其焦点坐标为故选10. 设,则这四个数的大小关系是( )参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 在一椭圆中以焦点F1,F2为直径两端点的圆,恰好过短轴的两顶点,则此椭圆的离心率等于参考答案:略12. 已知椭圆C: +=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|= .参考答案:12【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】画出图形,利用中点坐标以及椭圆的定义,即可求出|AN|+|BN|的值.【解答】解:如图:MN的中点为Q,易得,,∵Q在椭圆C上,∴|QF1|+|QF2|=2a=6,∴|AN|+|BN|=12.故答案为:12.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,是对基本知识的考查. 13. △的三个顶点坐标为,则边上高线的长为______。

2020-2021学年高二上册数学期末数学试卷(文科)带答案

2020-2021学年高二上册数学期末数学试卷(文科)带答案

2020-2021学年高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).)1. 命题“对任意的x∈R,x3−2x+1≤0”的否定是()A.不存在x∈R,x3−2x+1≤0B.存在x∈R,x3−2x+1≤0C.存在x∈R,x3−2x+1>0D.对任意的x∈R,x3−2x+1>02. “p或q为真”是“非p为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 若=a+bi(a, b∈R),则a2019+b2020=()A.−1B.0C.1D.24. 与双曲线的焦点相同,且长轴长为的椭圆的标准方程为()A. B. C. D.5. 已知函数f(x)=x3−2x2,x∈[−1, 3],则下列说法不正确的是()A.最大值为9B.最小值为−3C.函数f(x)在区间[1, 3]上单调递增D.x=0是它的极大值点6. 双曲线x2a2−y23=1(a>0)有一个焦点与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为()A.y=±12x B.y=±2x C.y=±√33x D.y=±√3x7. 函数y=x cos x−sin x在下面哪个区间内是减函数()A. B.(π, 2π) C.D.(2π, 3π)8. 已知函数,则下列选项正确的是( )A.f(e)<f(π)<f(2.7)B.f(π)<f(e)<f(2.7)C.f(e)<f(2.7)<f(π)D.f(2.7)<f(e)<f(π)9. 已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l:3x −4y =0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.(0, √32] B.(0, 34]C.[√32, 1)D.[34, 1)10. 已知函数f(x)=ax 3−3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A.(2, +∞) B.(−∞, −2)C.(1, +∞)D.(−∞, −1)11. 如图所示点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆x 2+y 2−4x −12=0的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值范围是( )A.(6, 10)B.(8, 12)C.[6, 8]D.[8, 12]12. 设f(x)是定义在R 上的函数,其导函数为f′(x),若f(x)−f′(x)<1,f(0)=2021,则不等式f(x)>2020⋅e x +1(e 为自然对数的底数)解集为( ) A.(−∞, 0)∪(0, +∞) B.(2020, +∞)C.(0, +∞)D.(−∞, 0)∪(2020, +∞)二、填空题(共4小题,每小题5分,共20分))13. 已知复数z=11+i+i(i为虚数单位),则|z|=________.14. 命题“∃x0∈R,满足不等式”是假命题,则m的取值范围为________.15. 如图所示,抛物线形拱桥的跨度是20米,拱高是4米,在建桥时,每隔4米需要用一支柱支撑,则其中最长的支柱的长度为________米.16. 已知函数f(x)的导数f′(x)=a(x+1)(x−a),若f(x)在x=a处取到极大值,则a的取值范围是________.三、解答题(共6小题,共70分))17. (1)已知椭圆的离心率为,点(2,)在C上.求椭圆C的方程; 17.(2)求与椭圆4x2+5y2=20有相同的焦点,且顶点在原点的抛物线方程.18. 设关于x的不等式x2≤5x−4的解集为A,不等式x2−(a+2)x+2a≤0(a≥2)的解集为B.(1)求集合A,B;(2)若x∈A是x∈B的必要条件,求实数a的取值范围.19. 已知m∈R,命题p:方程x2m−1+y27−m=1表示焦点在y轴上的椭圆;命题q:“方程x2+y2−2x+(2m−6)y+m2−14m+26=0表示圆心在第一象限的圆”.(1)若命题p是真命题,求实数m的取值范围;(2)若命题p和q均为假命题,求实数m的取值范围.20. 函数.(1)求曲线y=f(x)在点(2, f(2))处的切线方程;(2)求f(x)在区间上的最大值.21. 已知中心在原点的椭圆的一个焦点为F1(3, 0),点M(4, y)(y>0)为椭圆上一点,△MOF1的面积为.(1)求椭圆C的方程;(2)是否存在平行于OM的直线l,使得直线l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出l的方程,若不存在,说明理由.22. 已知f(x)=ax−ln x,x∈(0, e],g(x)=ln x,其中e是自然常数,a∈R.x(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+1;2(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.参考答案与试题解析一、选择题(共12小题,每小题5分,共60分).1.【答案】C【解析】根据全称命题的否定是特称命题,任意改存在,结论否定,写出对应的命题即可.2.【答案】B【解析】根据充分条件和必要条件的定义分别进行判断即可.3.【答案】D【解析】化简复数,利用复数的相等即可得出a,b.再进行乘方运算即可.4.【答案】B【解析】求出双曲线的半焦距,利用椭圆长轴长,求解短半轴的长,即可得到椭圆方程.5.【答案】C【解析】对f(x)求导,分析f′(x)的正负,进而得f(x)的单调区间,极值可判断C错误,D正确,再计算出极值,端点处函数值f(1),f(3),可得函数f(x)的最大值,最小值,进而可判断A正确,B正确.6.【答案】D【解析】求出抛物线的焦点坐标,利用双曲线的几何性质求解渐近线方程即可.7.【答案】D【解析】分析知函数的单调性用三角函数的相关性质不易判断,易用求其导数的方法来判断其在那个区间上是减函数.8.【答案】D【解析】求出函数的导数,得到函数的单调性求出答案即可.9.【答案】A【解析】如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.取M(0, b),由点M到直线l的距离不小于45,可得√32+42≥45,解得b≥1.再利用离心率计算公式e=ca=√1−b2a2即可得出.10.【答案】B【解析】(i)当a=0时,f(x)=−3x2+1,令f(x)=0,解得x=±√33,两个解,舍去.(ii)当a≠0时,f′(x)=3ax2−6x=3ax(x−2a ),令f′(x)=0,解得x=0或2a.对a分类讨论:①当a<0时,由题意可得关于a的不等式组;②当a>0时,推出极值点不满足题意,推出结果即可.11.【答案】B【解析】由抛物线定义可得|AF|=x A+2,从而△FAB的周长=|AF|+|AB|+|BF|=x A+2+(x B−x A)+4=6+x B,确定B点横坐标的范围,即可得到结论.12.【答案】C【解析】构造函数,利用函数的导数判断函数的单调性,转化求解不等式的解集即可.二、填空题(共4小题,每小题5分,共20分)13.【答案】√22【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.14.【答案】[−4, 4]【解析】利用含有一个量词的命题的否定,将命题转化为“∀x∈R,x2+mx+4≥0”是真命题,然后利用一元二次不等式恒成立求解即可.15.【答案】【解析】先建立适当坐标系,设抛物线方程为x2=−2py(p>0),把点B(10, −4)代入抛物线方程,求得p,得到抛物线方程,进而把x=2代入抛物线方程求得y,可得最高支柱的高度.16.【答案】(−1, 0)【解析】讨论a的正负,以及a与−1的大小,分别判定在x=a处的导数符号,从而确定是否在x=a处取到极大值,从而求出所求.三、解答题(共6小题,共70分)17.【答案】由已知可得:,解得a=2,所以椭圆C的方程为;已知椭圆的标准方程为:,所以c=,则其焦点坐标分别为(−1, 0),5),当抛物线的焦点坐标为(1, 0)时,此时抛物线开口向右5=4x,当抛物线的焦点坐标为(−1, 8)时,此时抛物线开口向左2=−4x,综上,抛物线的方程为:y4=±4x.【解析】(1)根据已知建立等式关系即可求解;(2)先求出椭圆的焦点坐标,然后对抛物线的开口方向讨论即可求解.18.【答案】不等式x2≤5x−8,化为x2−5x+8≤0,因式分解为(x−1)(x−3)≤0,解得1≤x≤6,∴解集A=[1, 4];不等式x3−(a+2)x+2a≤5,化为(x−2)(x−a)≤0,当a>2时,解集M=[2;当a=2时,解集M={6};综上,不等式x2−(a+2)x+8a≤0(a≥2)的解集B={x|5≤x≤a}.∵x∈A是x∈B的必要条件,∴B⊆A,∴2≤a≤4,∴实数a的取值范围是[3, 4].【解析】先求解二元一次不等式解集,再根据充分条件和必要条件的定义分别进行判断即可.19.【答案】方程x 2m−1+y27−m=1表示焦点在y轴上的椭圆,可得7−m>m−1>0,解得1<m<4,则命题p是真命题,实数m的取值范围为(1, 4);方程x2+y2−2x+(2m−6)y+m2−14m+26=0表示圆心在第一象限的圆,可得3−m>0且4+(2m−6)2−4(m2−14m+26)>0,即m<3且m>2,解得2<m<3,命题p和q均为假命题,可得{m≥4m≤1m≥3m≤2,解得m≥4或m≤1.则m的取值范围是(−∞, 1]∪[4, +∞).【解析】(1)由方程表示焦点在y轴的椭圆可得7−m>m−1>0,可得所求范围;(2)由方程表示圆心在第一象限的圆,可得3−m>0且4+(2m−6)2−4(m2−14m+26)>0,解不等式可得m的范围,再由p,q均为假命题可得m的不等式组,解不等式可得所求范围.20.【答案】f(x)=+ln,x∈(0,所以f′(x)=-+=,x∈(0.因此f′(2)=,即曲线y=f(x)在点(7.又f(2)=ln2−,所以曲线y=f(x)在点(2, f(2))处的切线方程为y−(ln2−(x−2),即x−4y+3ln2−4=5.因为f′(x)=-+=,x∈(6,所以函数f(x)在(0, 1)上减少,+∞)上增加.所以函数f(x)在区间)或f(e)其中,f(,f(e)=,【解析】(1)求出函数的导数,求解切线的斜率,求解切线方程即可.(2)判断函数的单调性,然后转化求解函数的最大值即可.21.【答案】由MOF1的面积为,则,得y=1,5),又点M在椭圆上,①因为F1是椭圆的焦点,所以a5=b2+9②由①②解得:a2=18,b2=9,所以椭圆的方程为:;假设存在直线l满足题意,因为OM的斜率k=,设l的方程为y=,联立方程组,整理得9y5−16my+8m2−8=0,△=(16m)2−5×9×(8m4−9)>0,解得m,设A,B两点的坐标为(x7, y1),(x2, y7),则y,y,以AB为直径的圆的方程为(x−x1)(x−x2)(x−x2)+(y−y1)(y−y2)(y−y5)=0,该圆经过原点,所以x1x4+y1y2=3,又x1x2=(5y1−4m)(7y2−4m)=16y,所以x1x2+y1y2=17y6y2−16m(y1+y4)+16m2=,解得m=,经检验满足题意,所以存在直线l满足题意,此时直线l的方程为y=.【解析】(1)由已知三角形的面积即可求出点M的纵坐标,把点M的坐标代入椭圆方程再由a,b,c的关系即可求解;(2)先假设存在,然后由OM的斜率设出直线l的方程,联立直线l与椭圆的方程,利用韦达定理以及以AB为直径的圆过原点满足的等式即可求解.22.【答案】解:(1)因为f(x)=x−ln x,f′(x)=1−1x =x−1x,所以当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0, e]上的最小值为1.又g′(x)=1−ln xx2,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=1e <12,所以f(x)min−g(x)max>12,所以在(1)的条件下,f(x)>g(x)+12.(3)假设存在实数a,使f(x)=ax−ln x,x∈(0, e],有最小值3,则f′(x)=a−1x=ax−1x,①当a≤0时,f′(x)<0,f(x)在(0, e]上单调递减,f(x)min=f(e)=ae−1=3,a=4e,(舍去),此时函数f(x)的最小值不是3.②当0<1a <e时,f(x)在(0, 1a]上单调递减,f(x)在(1a, e]上单调递增.所以f(x)min=f(1a)=1+ln a=3,a=e2,满足条件.③当1a ≥e时,f(x)在(0, e]上单调递减,f(x)min=f(e)=ae−1=3,a=4e,(舍去),此时函数f(x)的最小值是不是3.综上可知存在实数a=e2,使f(x)的最小值是3.【解析】(1)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(2)利用(1)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(3)利用导数求函数的最小值,让最小值等于3,解参数a.试卷第11页,总11页。

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。

辽宁省丹东市第二中学2020年高二数学文上学期期末试题含解析

辽宁省丹东市第二中学2020年高二数学文上学期期末试题含解析

辽宁省丹东市第二中学2020年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的极大值为6,那么等于()A.6B.0C.5D.1参考答案:A2. 已知函数在上满足:对任意,都有,则实数的取值范围是().A.(-∞,2]B.(-∞, -2] C.[2,+∞)D.[-2,+∞)参考答案:C、按题意在上单调,而在时为减函数,∴为减函数,时,,,∴.选.3. 如果数据x1、x2、…、x n的平均值为,方差为S2,则3x1+5、3x2+5、…、3x n+5 的平均值和方差分别为()A.和S2B. 3+5和S2C. 3+5和9S2D.3+5和9S2+30S+25参考答案:C4. 曲线x2+y2﹣6x=0(y>0)与直线y=k(x+2)有公共点的充要条件是()A.B.C.D.参考答案:C【考点】直线与圆锥曲线的关系;必要条件、充分条件与充要条件的判断.【专题】计算题;直线与圆.【分析】曲线x2+y2﹣6x=0(y>0)是圆心在(3,0),半径为3的半圆,它与直线y=k(x+2)有公共点的充要条件是圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,由此能求出结果.【解答】解:∵曲线x2+y2﹣6x=0(y>0),∴(x﹣3)2+y2=9(y>0)为圆心在(3,0),半径为3的半圆,它与直线y=k(x+2)有公共点的充要条件是圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,∴,且k>0,解得0<k≤.故选C.【点评】本题考查直线与圆锥曲线的位置关系的应用,解题时要认真审题,注意点到直线的距离公式的灵活运用.5. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A 个B 个C 个D 个参考答案:A6. 曲线 (为参数)与坐标轴的交点是()A .B .C .D .参考答案:B7. 用数学归纳法证明:…>(n ∈N *,且n >2)时,第二步由“n=k 到n=k+1”的证明,不等式左端增添代数式是( )A . B. +-C .+D .-参考答案: B 略8. 已知某几何体的三视图如图所示,则该几何体的表面积是( )参考答案: B 略9. 设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( ).A. B .C .D.参考答案:B10. 已知x >0,y >0,且x+y =1,求的最小值是A 、4B 、6C 、7D 、9参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分11. 设分别是椭圆的左、右焦点,为椭圆上一点,是的中点,,则点到椭圆左焦点的距离为 .参考答案:4 略12. 设等差数列的前n 项和为,若,,则当取最小值时,n 等于______A .B .C .D .参考答案:613. 已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则b=_________.参考答案:14. 平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是.参考答案:k<﹣1或k>1【考点】抛物线的简单性质.【分析】由抛物线的定义,求出机器人的轨迹方程,过点P(﹣1,0)且斜率为k的直线方程为y=k (x+1),代入y2=4x,利用判别式,即可求出k的取值范围.【解答】解:由抛物线的定义可知,机器人的轨迹方程为y2=4x,过点P(﹣1,0)且斜率为k的直线方程为y=k(x+1),代入y2=4x,可得k2x2+(2k2﹣4)x+k2=0,∵机器人接触不到过点P(﹣1,0)且斜率为k的直线,∴△=(2k2﹣4)2﹣4k4<0,∴k<﹣1或k>1.故答案为:k<﹣1或k>1.15. 已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为_________.参考答案:略16. 方程的曲线即为y=f(x)的图象,对于函数y=f(x),下列命题中正确的是.(请写出所有正确命题的序号)①函数y=f(x)的图象关于直线y=x对称;②函数y=f(x)在R上是单调递减函数;③函数y=f(x)的图象不经过第一象限;④函数F(x)=9f(x)+7x至少存在一个零点;⑤函数y=f(x)的值域是R.参考答案:②③⑤【考点】曲线与方程.【分析】不妨取λ=﹣1,根据x、y的正负去绝对值,将方程化简,得到相应函数在各个区间上的表达式,由此作出函数的图象,即可得出结论.【解答】解:不妨取λ=﹣1,方程为=﹣1,图象如图所示.对于①,不正确,②③⑤,正确由F(x)=9f(x)+7x=0得f(x)=﹣x.因为双曲线的渐近线为y=±x所以函数y=f(x)与直线y=﹣x无公共点,因此F(x)=9f(x)+7x不存在零点,可得④不正确.故答案为:②③⑤.17. 函数的零点个数为()A.0B.1C.2D.3参考答案:B三、解答题:本大题共5小题,共72分。

2020-2021年人教版高二上册数学期末数学试卷带答案

2020-2021年人教版高二上册数学期末数学试卷带答案

2020-2021学年高二(上)期末数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分))1. 复数z 1,z 2在复平面内对应的点关于直线y =x 对称,且z 1=3+2i ,则z 2=________.2. 复数a−2i 1+2i (i 是虚数单位)是纯虚数,则实数a 的值为________.3. 抛物线x 2=16y 的准线方程是________.4. 已知复数z =2+4i ,其中i 是虚数单位,,则|ω|=________.5. 设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,若AC ⊥BD ,则四边形EFGH 的形状是________.6. 直线l 与抛物线y 2=4x 交于两点A(x 1, y 1),B(x 2, y 2),O 为坐标原点,若,则x 1x 2=________.7. 已知点F 1,F 2分别是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.8. 设F 1,F 2是双曲线x 25−y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于________9. 已知矩形ABCD 的边AB =a ,BC =2,PA ⊥平面ABCD ,PA =2,现有以下五个数据:(1)a =12;(2)a =1;(3)a =√3;(4)a =2;(5)a =4. 当在BC 边上存在点Q ,使PQ ⊥QD 时,则a 可以取________.(填上一个正确的数据序号即可)10. 在所有经过正方体ABCD −A 1B 1C 1D 1的任意两个顶点的直线中任取k 条,求这k 条直线恰是两两异面,则k 的最大值为________.11. 在平面几何里,有勾股点了“设△ABC的两边AC,AB互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,若三棱锥A−BCD的三个侧面ABC,ACD,ADB两类互相垂直,则有________.=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:12. 过双曲线x2−y215(x−4)2+y2=1作切线,切点分别为M,N,则|PM|2−|PN|2的最小值为________.二、选择题(本大题共4小题,满分20分,每题5分))13. “a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件14. 已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,却不一定存在直线与m垂直15. 正方体ABCD−A1B1C1D1中,E,F,G,H分别为CC1,BC,CD,BB1的中点,则下列结论正确的是()A.B1G // EFB.A1H⊥EFC.B1G与AE相交D.平面AEF∩平面AA1D1D=AD116. 已知直线l:x+y+2=0与椭圆Γ:=1交于A,B两点,直线l1与椭圆T交于M,N两点,有下列直线l1:①x−y−2=0;②x+y−2=0;③x+y−2=0;④x−y+2=0,其中满足△OAB与△OMN的面积相等的直线l1可以是()A.①②③B.①③④C.②③④D.①②③④三、解答题(本大题共5小题,满分35分))17. 已知复数z1,z2是实系数一元二次方程ax2+bx+c=0的两根,且复数z1在复平面内对应的点在第一象限,若z1+2z2=12−3i,其中i是虚数单位.(1)求复数z1,z2;(2)若复数z满足|z|=1,求|z−z1|的最大值和最小值.18. 唐代诗人李顾的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点A(3, 0)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营孙在区域即为回到军营.(1)若军营所在区域为Ω:x2+y2≤2,求“将军饮马”的最短总路程;(2)若军营所在区域为Ω:|x|+2|y|≤2,求“将军饮马”的最短总路程.19. 如图,已知正方体ABCD−A1B1C1D1的边长为1,点P在底面ABCD(含边界)内运动.(1)证明:BD⊥平面AA1C1C;(2)若A1P和A1B与平面ABCD所成的角相等,求点P的轨迹长度.20. 已知直线l:x=my+1过椭圆的右焦点F,且直线l交椭圆C于A,B两点,点A,F,B在直线l′:x=4上的射影依次为点D,K,E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当m变化时,探究λ1+λ2的值是否为定值?若是,求出λ1+λ2的值;否则,说明理由;(3)连接AE,BD,试探究当m变化时,直线AE与BD是否相交于顶点?若是,请求出定点的坐标,并给予证明;否则,说明理由.21. 已知平面内到定点A(1, 0)的距离与到定直线x=−1的距离之和为3的动点M的轨迹是Γ,(1)求曲线Γ与x轴的交点P的坐标;(2)求曲线Γ的方程;(3)设B(a, 1)(a为常数),求|MA|+|MB|的最小值d(a).参考答案与试题解析一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分)1.【答案】2+3i【解析】直接利用对称知识求出复数的代数形式即可.2.【答案】4【解析】化简复数为a +bi(a, b ∈R),然后由复数的实部等于零且虚部不等于0求出实数a 的值. 3.【答案】y =−4【解析】利用抛物线方程直接求解准线方程即可.4.【答案】【解析】求出,求出ω,从而求出|ω|的值即可.5.【答案】矩形【解析】利用三角形中位线定理可得四边形EFGH 是平行四边形.根据AC ⊥BD ,可得EF ⊥EH .即可判断出四边形EFGH 的形状是矩形.6.【答案】4【解析】把点的坐标代入方程,结合向量的数量积化简求解即可.7.【答案】2【解析】求出椭圆的a ,b ,运用中点的向量表示,得到|PF 1→+PF 2→|=2|PO →|,再设P(x, y),运用椭圆方程,以及二次函数的值域即可得到最小值.【答案】12【解析】先由双曲线的方程求出|F 1F 2|=6,再由|PF 1|:|PF 2|=2:1,求出|PF 1|,|PF 2|,由此转化求出△PF 1F 2的面积.9.【答案】(1)或(2)【解析】根据三垂线定理结合PQ ⊥QD ,可得PQ 在底面的射影AQ 也与QD 垂直,由此可得平面ABCD 内满足条件的Q 点应在以AD 为直径的圆上,得出a ≤1即可选出正确选项. 10.【答案】4个【解析】根据异面直线的判断方法,结合正方体的结构特征即可判断.11.【答案】S △ABC 2+S △ACD 2+S △ABD 2=S △BCD 2【解析】由边对应着面,边长对应着面积,由类比可得结果.12.【答案】13【解析】求得两圆的圆心和半径,设双曲线x 2−y 215=1的左右焦点为F 1(−4, 0),F 2(4, 0),连接PF 1,PF 2,F 1M ,F 2N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.二、选择题(本大题共4小题,满分20分,每题5分)13.【答案】C【解析】直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案. 14.【答案】C【解析】作两个相交平面,交线为n ,使直线m ⊥α,然后利用反证法说明,假设β内一定存在直线a 与m 平行,根据面面垂直的判定定理证明α⊥β,这与平面α与平面β相交不一定垂直矛盾,然后根据线面垂直的性质说明β内必存在直线与m 垂直,从而证得结论. 15.【答案】【解析】如图所示,建立空间直角坐标系,不妨取AD=2.A.B1G与EF为异面直线,即可判断出正误;B.计算•与0比较,即可判断出正误;C.根据GE // DC1,DC1 // AB1,可得四边形AB1EG为梯形,即可判断出正误;D.连接BC1,可得BC1 // EF,于是EF // AD1,即可判断出正误.16.【答案】B【解析】根据于椭圆具有轴对称和中心对称的性质,经过平移和旋转即可求出直线l1的方程.三、解答题(本大题共5小题,满分35分)17.【答案】设z1=a+bi,则z2=a−bi(a>5, b>0),由z1+5z2=12−3i,得(a+bi)+4(a−bi)=3a−bi=12−3i,∴3a=12,b=3,b=3.∴z8=4+3i,z7=4−3i;满足|z|=5的复数z在以原点为圆心,以1为半径的圆上,而,∴|z−z1|的最大值为4,最小值为4.【解析】(1)设z1=a+bi,则z2=a−bi(a>0, b>0),代入z1+2z2=12−3i,整理后利用复数相等的条件列式求得a与b的值,则z1,z2可求;(2)满足|z|=1的复数z在以原点为圆心,以1为半径的圆上,求出|z1|,则|z−z1|的最大值和最小值即可.18.【答案】若军营所在区域为Ω:x2+y4≤2,作图如下:设将军饮马点为P,到达营区点为B,则总路程|PB|+|PA|=|PB|+|PA′|,要使得路程最短,只需要|PB|+|PA′|最短,即点A′到军营的距离最短,即点A′到x2+y5≤2的最短距离,为|OA′|−=-若军营所在区域为Ω:|x|+2|y|≤2,作图如下:联立,解得x=4,即B(2,所以点A′到区域Ω最短距离|A′B|==,【解析】设点A(3, 0)关于直线x+y=4的对称点为A′(a, b),由对称性,解得A′(4, 1),作出可行域,结合图形,即可解得答案.19.【答案】证明:连接AC,由正方体的几何特征,得AC⊥BD,AA1⊥平面ABCD,BD⊂平面ABCD,所以AA1⊥BD,又AA3∩AC=A,所以BD⊥平面AA1C1C.A7B与平面ABCD所成的角为∠A1BA,A1P与平面ABCD所成的角为∠A2PA,所以tan∠A1BA=tan∠A1PA,即=,所以AB=AP,所以点P的轨迹为,以A为圆心AB为半径的圆的,所以点P的轨迹长度为×7π×1=.【解析】(1)连接AC,结合正方体的几何特征,得AC⊥BD,AA1⊥平面ABCD,再由线面垂直的判定定理可得BD⊥平面AA1C1C.(2)连接A1P,根据题意可得tan∠A1BA=tan∠A1PA,推出AB=AP,点P的轨迹为,以A为圆心AB为半径的圆的,进而可得点P的轨迹长度.20.【答案】易知椭圆的右焦点为F(1, 0),所以c=3,抛物线x2=4的焦点坐标为(0,),所以b=,a2=b2+c2=3+1=5,所以椭圆C的方程为+=1.易知,m≠7,-),设直线l交椭圆于A(x1, y2),B(x2, y2),由,得(5m2+4)y7+6my−9=7,所以△=(6m)2+36(8m2+4)=144(m3+1)>0,所以y2+y2=-,y5y2=-,又由=λ4,所以(x1,y1+)=λ1(1−x7, −y1),所以λ1=−4−,同理λ2=−1−,所以λ1+λ2=−7−(+),因为+==-)=,所以λ4+λ2=−2−(+)=−2−•,所以λ1+λ3的值为-.由(2)知A(x8, y1),B(x2, y3)所以D(4, y1),E(6, y2),所以直线AE方程为:y−y2=(x−4),当x=时,y=y2+(-====6,所以点N(,5)在直线AE上,同理可证,点N(,所以m变化时,直线AE与直线BD相交于定点(.【解析】(1)根据题意可得c=1,有抛物线x2=4的焦点坐标得b,计算出a2=b2+c2=4,进而可得椭圆C的方程为.(2)根据题意可得l与y轴的交点为M(0,-),设A(x1, y1),B(x2, y2),联立直线l与椭圆的方程,得关于x的一元二次方程,结合韦达定理可得y1+y2,y1y2,用坐标表示=λ1,得λ1=−1−,同理λ2=−1−,再计算化简λ1+λ2即可得出答案.(3)由(2)知A(x1, y1),B(x2, y2),进而可得D(4, y1),E(4, y2),写出直线AE方程,再把x=代入,得y=0,推出点N(,0)在直线AE上,同理可证,点N(,0)也在直线BD上,进而得出结论.21.【答案】设点M坐标为(x, y),因为动点M到定点A(1, 0)的距离到定直线x=−1的距离之和为3,所以√(x−1)2+y2+√(x+1)2=3,当y=0时,代入求得x=±32,所以曲线Γ与x轴的交点P的坐标(±32, 0);由(1)知曲线Γ方程为√(x−1)2+y2+√(x+1)2=3,当x<−4时,因为|x+1|>3,无轨迹,当−4≤x≤−1时,化为√(x−1)2+y2=x+4,化为y2=10x+15(−32≤x≤−1),当x>−1时,化为为√(x−1)2+y2=2−x,化为y2=−2x+3(−1<x≤32),综上可得,曲线方程为y2=10x+15(−32≤x≤−1),或y2=−2x+3(−1<x≤32),当−32≤x≤−1时,曲线Γ化为y2=10x+15,当−1<x≤32时,曲线Γ化为y2=−2x+3,令y=1则10x+15=1或−2x+3=1,解得x=−1.4或x=1,①当a≤1.4或a≥1时,MB+MA≥BA,所以d(a)=|AB|=√(a−1)2+1=√a2−2a+2,②当−1<a<1时,当直线y=1与y2=−2x+3(−1<x≤32)相交时,交点M满足MB+MA取得最小值,因为抛物线准线方程为x=2,所以直线y=1与准线交点坐标为(2, 1),此时d(a)=2−a ,③当−1.4<a ≤−1时,当直线y =1与y 2=10x +15(−32≤x ≤−1)相交时, 交点M 满足MB +MA 取得最小值,此时抛物线准线的方程为形,所以y =1与准线交点坐标为(−4, 1),此时d(a)=a +4,综上所述d(a)={√a 2−2a +2,a ≤−1.4或a ≥1a +4,−1.4<a ≤−12−a,−1<a <1. 【解析】(1)设点M 坐标为(x, y),根据题意可得√(x −1)2+y 2+√(x +1)2=3,令y =0,求得x ,即可得出答案.(2)分类当x <−4时,当−4≤x ≤−1时,当x >−1时,讨论曲线Γ方程.(3)通过分类讨论,在不同范围内,由曲线方程的意义求得最小值.。

高二数学上学期期末考试试卷含答案(共3套)

高二数学上学期期末考试试卷含答案(共3套)

高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。

2020-2021学年广东省梅州市高二上学期期末考试数学试题 解析版

2020-2021学年广东省梅州市高二上学期期末考试数学试题 解析版

2020-2021学年广东省梅州市高二(上)期末数学试卷一、单项选择题(共8小题).1.命题“∃x0∈(0,+∞),x02+1≤2x0”的否定为()A.∀x∈(0,+∞),x2+1≤2x B.∀x∈(0,+∞),x2+1>2xC.∀x∈(﹣∞,0],x2+1≤2x D.∀x∈(﹣∞,0],x2+1>2x2.已知直线l1:mx﹣2y+1=0,l2:x﹣(m﹣1)y﹣1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若向量,,且,则实数λ的值是()A.0B.1C.﹣2D.﹣14.已知圆C的圆心是直线x+y+1=0与直线x﹣y﹣1=0的交点,直线3x+4y﹣11=0与圆C 交于A,B两点,且|AB|=6,则圆C的方程为()A.x2+(y+1)2=18B.C.(x+y)2+y2=18D.5.已知双曲线的一个焦点与抛物线y2=﹣12x的焦点重合,则此双曲线的离心率为()A.6B.C.D.6.若函数f(x)=2x+在区间[0,+∞)上单调递增,则实数a的取值范围是()A.a≥0B.a≥2C.a<2D.a≤27.一个矩形铁皮的长为16cm,宽为10cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,若记小正方形的边长为x(cm),小盒子的容积为V(cm3),则()A.当x=2时,V有极小值B.当x=2时,V有极大值C.当时,V有极小值D.当时,V有极大值8.设函数f(x)是定义在R上的函数,其导函数为f'(x)若f(x)+f'(x)>1,f(0)=2020,则不等式e x f(x)>e x+2019的解集为()A.(﹣∞,0)B.(﹣∞,0)∪(2019,+∞)C.(2019,+∞)D.(0,+∞)二、多项选择题(共4小题).9.设f(x),g(x)都是单调函数,其导函数分别为f'(x),g'(x),h(x)=f(x)﹣g (x),下列命题中正确的是()A.若f'(x)>0,g'(x)>0,则h(x)单调递增B.若f'(x)>0,g'(x)<0,则h(x)单调递增C.f'(x)<0,g'(x)>0,则h(x)单调递减D.若f'(x)<0,g'(x)<0,则h(x)单调递减10.下列关于圆锥曲线的命题中,正确的是()A.设A,B为两个定点,k为非零常数,,则动点P的轨迹为双曲线B.设定C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P 的轨迹为椭圆C.方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率D.双曲线与椭圆有相同的焦点11.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,下列式子中正确的是()A.a1+c1=a2+c2B.a1﹣c1=a2﹣c2C.c1a2>a1c2D.12.关于函数,下列说法正确的是()A.x0=2是f(x)的极小值点B.函数y=f(x)﹣x有且只有1个零点C.存在正整数k,使得f(x)>kx恒成立D.对任意两个正实数x1,x2,且x1≠x2,若f(x1)=f(x2),则x1+x2>4三、填空题:本大题共4小题,每小题5分.13.直线l过坐标原点且与线y=e x相切,则l的方程为.14.已知过点的椭圆C的焦点分别为F1(﹣1,0),F2(1,0),则椭圆C的标准方程是.15.如图,桥的桥洞呈抛物线形,桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变为12米,此时桥洞顶部距水面的高度约为米(精确到0.1米).16.如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC 中点,则直线OE与直线PD所成角的余弦值为.四、解答题:解答应写出文字说明。

浙江省温州市2020学年十校联合体高二上期末数学试卷((有答案))

浙江省温州市2020学年十校联合体高二上期末数学试卷((有答案))

2019-2020学年浙江省温州市十校联合体高二(上)期末数学试卷、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1. (4分)准线方程是y=- 2的抛物线标准方程是(A. x 2=8yB. x 2=- 8y C, y 2= - 8x D, y 2=8x(4分)已知直线1I : x-y+1=0和l2: x-y+3=0,则1I 与l 2之间距离是(2V2B .乎 C. 6 D. 2(4分)正方体 ABCD- A 1B 1C 1D 1中,二面角 A-BD 1-B I 的大小是(y 22=1,则AOAB (O 为坐标原点)的面积为(A. JT9. (4分)已知在△ ABC 中,/ACB F ,AB=2BC 现将△ ABC 绕BC 所在直线旋转到△ PBC, 设二面角P- BC- A 大小为9, PB 与平面ABC 所成角为a, PC 与平面PAB 所成角为就若0V 9<九,则( )2. A.3. (4分)设三棱柱ABC- A 1B 1C 1体积为V, E, F, G 分别是AA, AB, AC 的中点,则三棱锥E 一AFG 体积是(A. — 口B. —yC. — vD.12 16 4. (4分)若直线x+y+m=0与圆x 2+y 2=m 相切,则 A. 0 或 2 B. 2 C.匹 D. &或 2m 的值是(5. (4分)在四面体 ABCD 中( )命题①:AD± BC 且 AC ,BDWJAB ,CD命题②:AC=AD 且 BC=BDIU AB± CD.A.命题①②都正确B.命题①②都不正确C.命题①正确,命题②不正确D.命题①不正确, 命题②正确 6. (4分)设m 、n 是两条不同的直线,命题是( )a 、 B 是两个不同的平面.考查下列命题,其中正确的 A. m± a,n? B, m± n? a± p B. // & m± a, n// ? m±n C. a± p, m± a, n // ? m ± n D. a± p, A B=m n±m? n,B7. A. JU y B. 7T 工C. D. 8. (4分)过点(0, -2)的直线交抛物线y 2=16x 于A (x 1, y 1),B (x 2, y 2)两点,且y 12- C.A.立且看in0 B・立《一■且win F〈“零~J J 心3C s《m且B " D.且& 36 310.(4分)如图,Fi, F2是椭圆Ci与双曲线C2的公共焦点,点A是Ci, C2的公共点.设Ci, Q的离心率分别是ei, e2, Z FiAF2=2 9,则()12.(6分)某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V=cm3,俯视图13.(4分)已知抛物线y2=4x的焦点为F,准线与x轴的交点为M, N为抛物线上的一点,则满足|即|二号慌川,则/町F=.14.(6分)已知直线li: y=mx+1和l2: x=-my+1相交于点P, O为坐标原点,则P点横坐标是(用m表示),I而I的最大值是.15.(6分)四面体ABCD中,已知AB=AC=BC=BD=CD=1则该四面体体积的最大值是表面积的最大值是.2216.(4分)过双曲线G:弓三二1 (a>0, b>0)的右顶点A作斜率为1的直线m,分别与两渐近线交于B, C两点,若|AB|二2|AC,则双曲线G的离心率为.17.(4分)在棱长为1的正方体ABCA A i B i C i D i中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|十| PD尸m的点P的个数为n,则n的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知抛物线C: y2=4x,直线l: y=-x+b与抛物线交于A, B两点.(I )若| AB| =8,求b的值;(H)若以AB为直径的圆与x轴相切,求该圆的方程.19.(15分)在四棱锥E— ABCD中,底面ABCD是正方形,AC与BD交于点O, EC1底面ABCD F为BE的中点.(I )求证:DE//平面ACF(II )求证:BD,AE;(田)若AB=岳CE在线段EO上是否存在点G,使CG,平面BDR若存在,求出毁的值,若不存在,请说明理由.20.(15 分)如图,四棱锥P- ABCD PA1底面ABCD AB//CD, AB± AD, AB=AD=PA=2 CD=4E, F分别是PC PD的中点.(I ) 证明:EF//平面PAB(II )求直线AC与平面ABEF所成角的正弦值.21.(15分)已知点C (XO, y0)是椭圆装―+y2=1上的动点,以C为圆心的圆过点F (1, 0).(I )若圆C与y轴相切,求实数X0的值;(H)若圆C与y轴交于A, B两点,求|FA?| FB的取值范围.2 222.(15分)已知椭圆C的方程是[一*9二],直线l:y=kx+m与椭圆C有且仅有一个公共点, 4 3若F i M^l, F2N,l, M, N分别为不足.(I )证明:丽1n| + |F 刈>2小(II )求四边形F1MNF2面积S的最大值.2019-2020学年浙江省温州市十校联合体高二(上)期末数学试卷AFG =^ S AABC , AE^AAp 参考答案与试题解析、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1. (4分)准线方程是y=- 2的抛物线标准方程是(A. x 2=8yB. x 2=- 8y C, y 2= - 8x D. y 2=8x【解答】解:由题意可知抛物线的焦点在 y 轴的正半轴, 设抛物线标准方程为:x 2=2py (p>0), ••・抛物线的准线方程为y=- 2, ・..L=2,2 ,故选C.3. (4分)设三棱柱ABC- A 1B 1C 1体积为V, E, F, G 分别是AA i, AB, AC 的中点,则三棱锥E 一AFG 体积是(【解答】解:.「三棱柱ABC- A 1B 1C 1体积为V, ・..V=Sx AB C ?AA 1 ,. E, F, G 分别是AA 1, AB, AC 的中点,•.p=4,••.抛物线的标准方x 2=8y.故选A.2. (4分)已知直线11: x - y+1=0和12: x- y+3=0,贝^ 11与12之间距离是(A. D. 2【解答】解::已知平行直线1I : x-y+1=0与l2: x- y+3=0,;1I 与l2间的距离d 1^U72 W2,A T yB 五怆正皿 12「•三棱锥E— AFG体积:V EAFG=y X s6. X * S^BC)X*N)=^S ABCPAA》]故选:D.a G4.(4分)若直线x+y+m=0与圆x2+y2=m相切,则m的值是()A. 0 或2B. 2C. &D. &或2【解答】解:二,圆x2+y2=m的圆心为原点,半径「二6若直线x+y+m=0与圆x2+y2=m相切,得圆心到直线的距离d=-^-=/r ,解之得m=2 (舍去0)故选B.5.(4分)在四面体ABCD中()命题①:AD± BC且AC, BDWJABL CD命题②:AC=AD且BC=BD0fj AB± CD.A.命题①②都正确B.命题①②都不正确C.命题①正确,命题②不正确D.命题①不正确,命题②正确【解答】解:对于①作AEL面BCD于E,连接DE,可得A已BC,同理可得AEE± BD,证得E 是垂心,则可得出AE± CD,进而可证得CDX面AEB,即可证出AB± CD,故①正确;对于②,取CD的中点O,连接AO, BO,则CD±AO, CD± BO,. AOnBO=Q.-.CD±面ABO,,. AB?面ABO,.-.CD± AB,故②正确.故选A.6. (4分)设m 、n 是两条不同的直线,a 、B 是两个不同的平面.考查下列命题,其中正确的 命题是( )A. m± a, n? B, m±n? a± 0B. all & m± a, n// ? m±nC. a± p, m± a, n // ? m± nD. a± p, aA p =m n±m? n± p【解答】解:设m 、n 是两条不同的直线,a 、B 是两个不同的平面,则:m ± a, n? B, m ,n 时,a 、B 可能平行,也可能相交,不一定垂直,故 A 不正确all 3 m ± a, n // B 时,m 与n 一定垂直,故B 正确a± p, m± a, n// B 时,m 与n 可能平行、相交或异面,不一定垂直,故 C 错误a± 3 aA B =m 寸,若n ,m, n? a,则n,机但题目中无条件n? a,故D 也不一定成立, 故选B.7. (4分)正方体 ABCD- AiBiCiDi 中,二面角A-BDi-Bi 的大小是(【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 为z 轴,建立空间直角坐标系, 设正方体ABCD- AiBiCiDi 中棱长为i,则 A (i, 0, 0), B (i, i, 0), Bi (i, i, i), Di (0,0, i), 尾(0, - i, 0),西=(-i, — i, i),西二(0, 0, i),设平面ABDi 的法向量n= (x, y, z),n-BA=-y=O 一 ,一则卜-- ,取y ,行n=S, 1, n ・ BDi = -K-y4-7=0L 从 设平面BBiDi 的法向量ir = (a, b, c),nrBB [二 c 二。

江苏省无锡市东方国际学校2020年高二数学文上学期期末试题含解析

江苏省无锡市东方国际学校2020年高二数学文上学期期末试题含解析

江苏省无锡市东方国际学校2020年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A. 2 B. 2 C. 2 D. 4参考答案:C【考点】:抛物线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:根据抛物线方程,算出焦点F坐标为().设P(m,n),由抛物线的定义结合|PF|=4,算出m=3,从而得到n=,得到△POF的边OF上的高等于2,最后根据三角形面积公式即可算出△POF的面积.解:∵抛物线C的方程为y2=4x∴2p=4,可得=,得焦点F()设P(m,n)根据抛物线的定义,得|PF|=m+=4,即m+=4,解得m=3∵点P在抛物线C上,得n2=4×3=24∴n==∵|OF|=∴△POF的面积为S=|OF|×|n|==2故选:C 【点评】:本题给出抛物线C:y2=4x上与焦点F的距离为4的点P,求△POF的面积.着重考查了三角形的面积公式、抛物线的标准方程和简单几何性质等知识,属于基础题.2. 现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A. 简单随机抽样法,分层抽样法B. 系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法 D.系统抽样法,分层抽样法参考答案:A3. 经过点P(1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为()A. x+2y﹣6=0 B. 2x+y﹣6=0 C. x﹣2y+7=0 D. x﹣2y﹣7=0参考答案:B考点:直线的斜截式方程.专题:计算题.分析:设出直线方程的截距式,把经过的点P(1,4)的坐标代入得a与b的等式关系,把截距的和a+b变形后使用基本不等式求出它的最小值.解答:解:设直线的方程为+=1(a>0,b>0),则有+=1,∴a+b=(a+b)×1=(a+b)×(+)=5++≥5+4=9,当且仅当=,即a=3,b=6时取“=”.∴直线方程为2x+y﹣6=0.故选B.点评:本题考查直线方程的截距式,利用基本不等式求截距和的最小值,注意等号成立的条件需检验.4. 已知在矩形ABCD中,AB=2,BC=3,则的模等于()A.0 B.5 C. D.2参考答案:D解析:因为又所以||=25. 已知函数的定义域是,关于函数给出下列命题:①对于任意,函数是上的减函数;②对于任意,函数存在最小值;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是 ().A.①② B.②③C.②④ D.③④参考答案:C6. 在某项测量中,测量结果服从正态分布.若在(0,1)内取值的概率为0.3,则在(1,+∞)内取值的概率为A.0.1 B.0.2 C.0.3 D.0.4参考答案:B略7. 函数的值域是( )A. B. C. D.参考答案:C略8. 已知实数x,y满足,则的最大值为A.4 B.3 C. 0 D.2参考答案:A9. 下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤参考答案:D【考点】F1:归纳推理;F5:演绎推理的意义.【分析】本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对5个命题逐一判断即可得到答案.【解答】解:归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.故①③⑤是正确的故选D10. 双曲线的渐近线方程是A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的(①.充分而不必要条件,②.必要而不充分条件,③.充要条件).参考答案:①12. 观察以下不等式:①1+<;②1++<;③1+++<,则第六个不等式是.参考答案:1++++…+<【考点】归纳推理.【分析】分析等式两边项数及分子、分母的变化规律,可得答案.【解答】解:由①1+<;②1++<;③1+++<,则第六个不等式是1++++…+<,故答案为1++++…+<.13. 如图,已知可行域为及其内部,若目标函数当且仅当在点B处取得最大值,则k 的取值范围是 .参考答案:14. =参考答案:15. ①的最小值为6;②当a>0,b>0时,;③最大值为;④当且仅当a,b均为正数时,恒成立.以上命题是真命题的是.参考答案:②③【考点】基本不等式.【分析】①取x=﹣1时,=﹣2<6,即可判断出真假;②当a>0,b>0时,两次利用基本不等式的性质即可判断出真假;③,可得y=≤=,即可判断出真假;④当且仅当0时,恒成立,即可判断出真假.【解答】解:①取x=﹣1时,=﹣2<6,因此是假命题;②当a>0,b>0时,≥4,当且仅当a=b>0时取等号,是真命题;③,∴y=≤=,当且仅当x=时取等号.因此其最大值为,是真命题;④当且仅当0时,恒成立,因此是假命题.以上命题是真命题的是②③.故答案为:②③.16. 已知点的坐标满足,过点的直线与圆相交于、两点,则的最小值为_____________.参考答案:4略17. 2018年6月份上合峰会在青岛召开,面向高校招募志愿者,中国海洋大学海洋环境学院的8名同学符合招募条件并审核通过,其中大一、大二、大三、大四每个年级各2名.若将这8名同学分成甲乙两个小组,每组4名同学,其中大一的两名同学必须分到同一组,则分到乙组的4名同学中恰有2名同学是来自于同一年级的分组方式共有种.参考答案:24三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!2020高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C)A.⌝p:∃x∈R,sinx≥1B.⌝p:∀x∈R,sinx≥1C.⌝p:∃x∈R,sinx>1 D.⌝p:∀x∈R,sinx>1 2.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B).A.160 B.180 C.200 D.2203.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=60°,则c 的值等于( C ).A.5 B.13 C.13D.374.若双曲线x2a2-y2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D)A.73B.54C.43D.535.在△ABC中,能使sinA>32成立的充分不必要条件是( C)A.A∈⎝⎛⎭⎪⎪⎫0,π3B.A∈⎝⎛⎭⎪⎪⎫π3,2π3C.A∈⎝⎛⎭⎪⎪⎫π3,π2D.A∈⎝⎛⎭⎪⎪⎫π2,5π66.△ABC中,如果Aatan=Bbtan=Cctan,那么△ABC是( B).A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形7. 如图,PA⊥平面ABCD,四边形ABCD为正方形,E是CD的中点,F是AD上一点,当BF⊥PE时,AF∶FD的值为( B)A.1∶2 B.1∶1 C.3∶1 D.2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A.55 B.53C.255 D. 359.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( D ). A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]10.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =kx +34分为面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A. ⎝ ⎛⎭⎪⎪⎫0,22B. ⎝ ⎛⎭⎪⎪⎫0,33C. ⎝ ⎛⎭⎪⎪⎫0,55D.⎝ ⎛⎭⎪⎪⎫0,66解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫0,33。

第Ⅱ卷(选择题 共90分)二、填空题:本大题共5小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知某抛物线的准线方程为y=1,则该抛物线的标准方程为________。

x 2=-4y14.若a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是______75__。

15.过椭圆221164x y +=内一点M(2,1)引一条弦,使弦被点M 平分,则这条弦所在直线 的斜率等于________ -1216.已知函数f (x )=x α的图象过点(4,2),令 a n =1f n ++f n,n ∈N *。

记数列{a n }的前n 项和为S n ,则S 2 016=________。

2 017-1三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.17.(12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C 。

(1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积。

解 (1)由sin 2B =2sin A sin C 及正弦定理,得b 2=2ac ,∵a =b ,∴a =2c 。

由余弦定理,得cos B =a 2+c 2-b 22ac=a 2+14a 2-a 22a ×12a=14。

(2)由(1)得b 2=2ac 。

∵B =90°,a =2,∴a 2+c 2=2ac ,∴a =c =2,∴S △ABC =12ac=1。

18.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0。

(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围。

解 (1)由x 2-4ax +3a 2<0,得:(x -3a )(x -a )<0, 当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3。

由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0。

解得:2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3。

若p 且q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3。

(2)p 是q 的必要不充分条件,即q 推出p ,且p 推不出q ,设集合A ={x |p (x )};集合B ={x |q (x )},则集合B 是集合A 的真子集, 又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a )。

所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2,当a <0时,显然A ∩B =∅,不合题意,19.(本小题满分12分)已知动圆经过点F (2,0),并且与直线x =-2相切。

(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB |。

解 (1)设动圆圆心P (x ,y )。

因为动圆经过点F (2,0),并且与直线x =-2相切,所以点P 到定点F (2,0)的距离与到定直线x =-2的距离相等,故点P 的轨迹是一条抛物线,其焦点为F ,准线为x =-2,设轨迹方程为y 2=2px (p >0),则p2=2,所以轨迹M 的方程为y 2=8x 。

(2)轨迹M 的焦点(2,0),直线l 的斜率k =tan 135°=-1,于是其方程为y =-(x -2)。

由⎩⎪⎨⎪⎧y =-x -,y 2=8x ,消去y 得x 2-12x +4=0。

设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12, 于是|AB |=x 1+x 2+p =12+4=16。

20.(12分)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,△ABC 是直角三角形,且PA =AB =AC 。

又平面QBC 垂直于底面ABC 。

(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求锐二面角Q -PB -A 的余弦值。

解 (1)证明:过点Q 作QD ⊥BC 交BC 于点D , 因为平面QBC ⊥平面ABC 。

所以QD ⊥平面ABC 。

又PA ⊥平面ABC , 所以QD ∥PA 。

而QD ⊂平面QBC ,PA ⊄平面QBC , 所以PA ∥平面QBC 。

(2)因为PQ ⊥平面QBC , 所以∠PQB =∠PQC =90°。

又PB =PC ,PQ =PQ , 所以△PQB ≌△PQC , 所以BQ =CQ 。

所以点D 是BC 的中点,连接AD ,则AD ⊥BC ,因此AD ⊥平面QBC ,故四边形PADQ是矩形。

分别以AC ,AB ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系。

设PA =2a ,则Q (a ,a,2a ),B (0,2a,0),P (0,0,2a )。

设平面QPB 的法向量为n =(x ,y ,z ), 因为PQ →=(a ,a,0),PB →=(0,2a ,-2a ), 所以⎩⎪⎨⎪⎧ax +ay =0,2ay -2az =0,取n =(1,-1,-1)。

又平面PAB 的一个法向量为m =(1,0,0), 设锐二面角Q -PB -A 的大小为θ, 则cos θ=|cos 〈m ,n 〉|=m ·n |m ||n |=33,即锐二面角Q -PB -A 的余弦值等于33。

21.(本小题满分12分)若{}n a 的前n 项和为n S ,点),(n S n 均在函数y =x x 21232-的图像上。

(Ⅰ)求数列{}n a 的通项公式;n a =3n-2(Ⅱ)13+=n n n a a b ,n T 是数列{}n b 的前n 项和,(1) 点),(n S n 均在函数y =x x 21232-的图像上,∴n S =n n 21232-,故=-1n S )1(21)1(232---n n )2(≥n ,…从而当2≥nn S -1-n S =3n-2,即n a =3n-2,又当n=1时,111==S a ,满足上式∴n a =3n-2(2) 13+=n n n a a b ,n a =3n-2, ∴)13)(23(3+-=n n b n =131231+--n n ∴++-+-+-=...101717141411n T 131231+--n n =.1331311+=+-n nn22.(本小题满分12分)已知椭圆x 2+2y 2=a 2(a >0)的一个顶点和两个焦点构成的三角形的面积为4。

(1)求椭圆C 的方程;(2)已知直线y =k (x -1)与椭圆C 交于A ,B 两点,是否存在x 轴上的点M (m,0),使得对任意的k ∈R ,MA→·MB →为定值?若存在,求出点M 的坐标;若不存在,说明理由。

相关文档
最新文档