2020年高二数学上册期末考试试卷及答案
2020-2021学年人教版高二上册数学期末数学试卷带答案
2020-2021学年高二(上)期末数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合A={x|(x−7)(x+12)<0},B={x|x+6>0},则A∩B=( )A.{x|−6<x<12}B.{x|−6<x<7}C.{x|x>−12}D.{x|6<x<7}2. “四边形ABCD是菱形”是“四边形ABCD的对角线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 双曲线x2−4y2=−8的渐近线方程为()A.y=±2xB.y=±12x C.y=±√2x D.y=±√22x4. “一尺之棰,日取其半,万世不竭”这句话出自《庄子•天下篇》,其意思为“一根一尺长的木棰,每天截取其一半,永远都取不完”.设第一天这根木棰被截取一半剩下a1尺,第二天被截取剩下的一半剩下a2尺,…,第五天被截取剩下的一半剩下a5尺,则a1+a2a5=()A.18B.20C.22D.245. 已知抛物线C的焦点到准线的距离大于2,则C的方程可能为()A.y2=4xB.y2=−3xC.x2=6yD.y=−8x26. 如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点,若O为底面A1B1C1D1的中心,则异面直线C1E与AO所成角的余弦值为()A.√3015B.√3030C.815D.2√3015|PQ|=|PF2|,则动点Q的轨迹方程为( )A.(x+2)2+y2=34B.(x+2)2+y2=68C.(x−2)2+y2=34D.(x−2)2+y2=688. 如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30∘,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45∘.已知小车的速度是20km/ℎ,且cos∠AOB=−3√38,则此山的高PO=()A.1kmB.√22km C.√3km D.√2km二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9. 设命题p:∀n∈N,6n+7为质数,则()A.¬p为假命题B.¬p:∃n∈N,6n+7不是质数C.¬p为真命题D.¬p:∀n∈N,6n+7不是质数10. 设S n是等差数列{a n}的前n项和,且a1=2,a3=8,则()A.a5=12B.公差d=3C.S2n=n(6n+1)D.数列{1a n a n+1}的前n项和为n6n+411. 已知a>b>0,且a+3b=1,则()A.ab的最大值为112B.ab的最小值为112C.1 a +3b的最小值为16 D.a2+15b2的最小值为58轴上,直线AP 与直线y =−3交于点C ,直线BP 与直线y =−3交于点D .设直线AP 的斜率为k ,则满足|CD|=36的k 的值可能为( )A.1B.−17C.110D.−7+2√109三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13. 设向量AB →=(1,2,4),CD →=(m,1,1),AB →⊥CD →,则实数m =________.14. 若双曲线x 26−y 2m =1的虚轴长为6√2,则该双曲线的离心率为________.15. 在△ABC 中,若B =π3,tan C =2√3,AC =2,则AB =________.16. 已知点P (m,n )是抛物线x 2=−8y 上一动点,则√m 2+n 2+4n +4+√m 2+n 2−4m +2n +5的最小值为________.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.)17. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2−a 2=58bc ,sin C =2sin B .(1)求cos A ;(2)若△ABC 的周长为6+√15,求△ABC 的面积.18. 如图,在直三棱柱ABC −A 1B 1C 1中,AC ⊥BC ,AC =AA 1=2BC ,E ,F 分别为侧棱BB 1,CC 1的中点.(1)证明:BF//平面A 1C 1E ;(2)求B1C与平面A1C1E所成角的正弦值.19. 已知数列{a n}的首项为4.(1)若数列{a n−2n}是等差数列,且公差为2,求{a n}的通项公式;(2)在①a3−a2=48且a2>0,②a3=64且a4>0,③a2021=16a2a2017这三个条件中任选一个,补充在下面的问题中并解答.问题:若{a n}是等比数列,________,求数列{(3n−1)a n}的前n项和S n.注:如果选择多个条件分别解答,则按第一个解答计分.20. 如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且AB=BC=√5,AC=4.(1)证明:AD⊥CF;(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.−y2=1有相同的焦点F.21. 已知抛物线C:y2=2px(p>0)与双曲线x23(1)求C的方程,并求其准线l的方程;(2)如图,过F且斜率存在的直线与C交于不同的两点A(x1,y1),B(x2,y2),直线OA与准线l交于点N,过点A作l的垂线,垂足为M.证明:y1y2为定值,且四边形AMNB为梯形.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√55,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为π3,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】可求出集合A,B,然后进行交集的运算即可.2.【答案】A【解析】利用充分条件和必要条件的定义,结合平面几何知识进行判断,即可得到答案.3.【答案】B【解析】根据题意,将双曲线的方程变形为标准方程,分析可得其焦点位置以及a、b的值,利用双曲线的渐近线方程计算可得答案.4.【答案】D【解析】设这根木棰的长度为1尺,分别计算每一次截取的量可得剩余的量,可得答案.5.【答案】C【解析】利用已知条件推出p>2,然后判断选项的正误即可.6.【答案】D【解析】建立空间直角坐标系,利用向量夹角计算公式即可得出.7.【答案】B【解析】由椭圆的方程求出a,b,c的值,由此可得|PF1|+|PF2|=2a=2√17,再由已知可|QF1|=2√17,进而可以求解.8.【答案】设OP=x,由题意可得:Rt△OBP中,∠PBO=45∘;在Rt△OAP中,∠PAO=30∘,即可得出OB,OA.AB=×20=2.5.在△OAB中,利用余弦定理即可得出.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】B,C【解析】先判断命题p为真命题,然后利用含有一个量词的命题的否得到¬p,利用命题的否定与原命题的真假相反得到答案.10.【答案】B,C,D【解析】本题先设等差数列{a n}的公差为d,根据已知条件即可计算出d的值,判断选项B,然后根据通项公式计算出a5的值,判断选项A,再根据等差数列的求和公式计算出S2n的表达式,判断选项C,最后计算出等差数列{a n}的通项公式,进一步计算出数列{}的通项公式,运用裂项相消法计算出数列{}的前n项和,判断选项D.11.【答案】A,C,D【解析】根据基本不等式的性质分别判断A,B,C,根据二次函数的性质判断D即可.12.【答案】A,D【解析】设出点P的坐标,求出直线PA,PB的斜率的乘积,然后再设出直线PA,PB的方程,进而可以求出点C,D的横坐标,进而可以求出|CD|,即可求解.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.【答案】−6【解析】由题意利用两个向量垂直的性质,两个向量的数量积公式,计算求得m的值.14.【答案】215.【答案】8√1313【解析】由已知利用同角三角函数基本关系式可求sin C的值,进而根据正弦定理即可求解AB的值.16.【答案】3【解析】抛物线的准线为y=2,焦点F坐标为(0, −2),表示点P(m, n)与点F(0, −2)的距离与点P(m, n)与点A(2, −1)的距离之和,由抛物线的定义和两点之间线段最短可得最小值,进而可得结论.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.17.【答案】解:(1)∵b2+c2−a2=58bc,∴cos A=b2+c2−a22bc =58bc2bc=516.(2)∵sin C=2sin B,∴c=2b.由余弦定理,得a2=b2+c2−2bc cos A=154b2,∴a=√152b.∵△ABC的周长为6+√15,∴3b+√152b=6+√15,解得b=2,∴S△ABC=12bc sin A=12×b×2b√1−(516)2=12×2×4×√23116=√2314.【解析】(1)由已知利用余弦定理即可求解cos A的值.(2)由已知利用正弦定理化简可得c=2b,由余弦定理得a=√152b,根据△ABC的周长,可求b的值,进而利用三角形的面积公式即可计算得解.18.(1)证明:在三棱柱ABC −A 1B 1C 1中,∵ BB 1=CC 1,BB 1//CC 1,E ,F 分别为侧棱BB 1,CC 1的中点, ∴ BE//FC 1,BE =FC 1,∴ 四边形BEC 1F 是平行四边形,∴ BF//EC 1 .∵ C 1E ⊂平面A 1C 1E ,BF ⊄平面A 1C 1E , ∴ BF//平面A 1C 1E .(2)解:以C 为坐标原点,CA →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系C −xyz ,设BC =1,则A 1(2,0,2),C 1(0,0,2),E(0,1,1),B 1(0,1,2),C(0,0,0), C 1A 1→=(2,0,0),EC 1→=(0,−1,1) ,CB 1→=(0,1,2) . 设平面A 1C 1E 的法向量为n →=(x,y,z ),则{n →⋅C 1A 1→=2x =0,n →⋅EC 1→=−y +z =0,令y =1,得n →=(0,1,1),则sin <CB 1→⋅n →>=|cos <CB 1→⋅n →>|=3√5⋅√2=3√1010, 故B 1C 与平面A 1C 1E 所成角的正弦值为3√1010. 【解析】(1)推导出BE C 1F ,从而四边形BEC 1F 是平行四边形,进而BF // EC 1,由此能证明BF // 平面A 1C 1E .(2)以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出B 1C 与平面A 1C 1E 所成角的正弦值. 19.【答案】解:(1)因为a 1=4,所以a n−2n=2+2(n−1)=2n,所以a n=2n+2n.(2)选①:a3−a2=48且a2>0;由题意,设数列{a n}的公比为q.由a3−a2=48,得4q2−4q=48,解得q=4或q=−3,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n,所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83选②:a3=64且a4>0;由题意,设数列{a n}的公比为q.由a3=64,得4q2=64,解得q=±4,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4所以S n=(3n−2)4n+1+8.3选③:a2021=16a2a2017;由题意,设数列{a n}的公比为q.由a2021=16a2a2017,得a2021=16a1a2018=64a2018,则q3=64,解得q=4,所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83(1)直接利用已知条件求出数列的通项公式,再得到{a n }的通项公式;(2)根据条件分别求出数列的通项公式,然后利用错位相减法,求出数列{(3n −1)a n }的前n 项和.20.【答案】(1)证明:∵ 四边形ACDE 为正方形,∴ AD ⊥CE .∵ 平面ABCDE ⊥平面CEFG ,平面ABCDE ∩平面CEFG =CE ,∴ AD ⊥平面FECG .又CF ⊂平面FECG ,∴ AD ⊥CF .(2)解:以C 为坐标原点,CD →的方向为x 轴的正方向,建立如图所示的空间直角坐标系C −xyz .∵ AB =BC =√5,AC =4, ∴ 点B 到AC 的距离为1,∴ G(0,0,4√2),F(4,4,4√2),B (−1,2,0),GF →=(4,4,0),BG →=(1,−2,4√2).设平面BFG 的一个法向量为n →=(x,y,z ),则n →⋅GF →=n →⋅BG →=0,即4x +4y =x −2y +4√2z =0,令y =4√2,得n →=(−4√2,4√2,3).取m →=(0,0,1)为平面ABCDE 的一个法向量,∴ cos ⟨m →,n →⟩=m →⋅n →|m →||n →|=3√73=3√7373, ∴ 平面BFG 与平面ABCDE 所成锐二面角的余弦值为3√7373.【解析】(1)由四边形ACDE 为正方形,可得AD ⊥CE ,再由面面垂直的性质可得AD ⊥平面FECG ,从而得到AD ⊥CF ;(2)以E 为坐标原点,建立空间直角坐标系A −xyz ,利用向量法能求出平面BFG 与平面ABCDE 所成锐二面角的余弦值.21.【答案】(1)解:∵ 双曲线x 23−y 2=1的右焦点为F (2,0),∴ p 2=2, 解得p =4,∴ C 的方程为y 2=8x ,其准线l 的方程为x =−2.(2)证明:由题意可知,直线AB 过点F 且斜率存在,设直线AB 的方程为y =k (x −2)(k ≠0),联立{y =k (x −2),y 2=8x,整理,得ky 2−8y −16k =0,则Δ=64+64k 2>0恒成立,y 1y 2=−16k k =−16,故y 1y 2为定值.由题意,得点N 在准线l 上,设点N (−2,m ),由k OA =k ON ,得y 1x 1=m −2, 又∵ y 2=−16y 1,∴ m =−2y 1x 1=−2y 1y 128=−16y 1=y 2,∴ BN//x 轴//AM .又∵ x 1≠x 2,|AM|≠|BN|,∴ 四边形AMNB 为梯形.【解析】(1)根据题意可得双曲线的右焦点为(2, 0),则,解得p ,进而可得C 的方程和准线l 的方程;(2)设直线AB 方程为y =k(x −2)(k ≠0),联立直线AB 与抛物线的方程得关于y 的一元二次方程,由韦达定理可得y 1∗y 2为定值;设点N 为(−2, m),由k OA =k ON ,推出可得m =y 2,进而可得BN // x 轴 // AM ,|AM|≠|BN ,即可得证.22.【答案】解:(1)依题意可知{e =c a =2√55,2c =8,a 2=b 2+c 2,解得a =2√5,c =4,故C 的方程为x 220+y 24=1.(2)依题意可设直线l 的方程为y =√3x +m .联立{y =√3x +m,x 220+y 24=1,整理得16x 2+10√3mx +5m 2−20=0,则Δ=300m2−64(5m2−20)>0,解得−8<m<8.设A(x1, y1),B(x2, y2),则x1+x2=−5√3m8,x1x2=5m2−2016,|AB|=√1+3√(x1+x2)2−4x1x2=√−5m2+3204,原点到直线l的距离d=√1+3=|m|2,则△AOB的面积S=12d⋅|AB|=12×|m|2×√−5m2+3204=√−5(m2−32)2+512016,当且仅当m2=32,即m=±4√2时,△AOB的面积有最大值2√5.【解析】(1)根据椭圆的离心率和焦距列方程组,解得a,b,c,进而可得椭圆的方程.(2)依题意可设直线l的方程为,联立直线l与椭圆的方程,得关于x的一元二次方程,可得△>0,解得−8<m<8.设A(x1, y1),B(x2, y2),由韦达定理可得x1+x2,x1x2,由点到直线的距离公式可得原点到直线l的距离d,再计算三角形AOB的面积最大值,即可.。
2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案
2020-2021学年高二(上)期末数学试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a<b<0,那么下列不等式中正确的是()A.ab<b2B.ab>a2C.1a <1bD.1a>1b2. 抛物线y=−4x2的准线方程为()A.y=−116B.y=116C.x=−1D.x=13. 下列求导结果正确的是()A.(cosπ6)′=−sinπ6B.(3x)′=x⋅3x−1C.(log2x)′=log2exD.(sin2x)′=cos2x4. 已知命题p:∃x0∈(1, +∞),使得;命题q:∀x∈R,2x2−3x+5> 0.那么下列命题为真命题的是()A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)5. 已知在△ABC中,角A,B,C的对边分别为a,b,c.若,则B=()A. B. C. D.6. 若变量x,y满足约束条件,则z=2x+y的最小值为()A. B.6 C. D.47. 等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+...+a2n−1)(n∈N∗),a1a2a3=−27,则a5=()A.81B.24C.−81D.−248. 已知a>0,b>0,且3a+2b=ab,则a+b的最小值为()A. B. C. D.9. 已知双曲线的一条渐近线平行于直线,且该双曲线的一个焦点在直线l上,则此双曲线的方程为()A. B. C. D.10. 若函数f(x)=e x−2ax2+1有两个不同的极值点,则实数a的取值范围是()A. B. C. D.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.))11. 已知在数列{a n}中,a5=4,其前n项和为S n,下列说法正确的是()A.若{a n}为等差数列,a2=1,则S10=45B.若{a n}为等比数列,a1=1,则a3=±2C.若{a n}为等差数列,则a1a9≤16D.若{a n}为等比数列,则a2+a8≥812. 已知曲线C:mx2+ny2=1,下列说法正确的是()A.若m=n>0,则C是圆,其半径为.B.若m>0,n=0,则C是两条直线.C.若n>m>0,则C是椭圆,其焦点在y轴上.D.若mn<0,则C是双曲线,其渐近线方程为.三、填空题(每题5分,满分20分,将答案填在答题纸上))13. 设等差数列{a n}的前n项和为S n,若2a5=a3+4,则S13=________.14. 设点P是曲线上的任意一点,曲线在点P处的切线的倾斜角为α,则α的取值范围是________.(用区间表示)15. 若△ABC的三边长分别为3,5,7,则该三角形的内切圆半径等于________.16. 设椭圆的左焦点为F,直线x=m与椭圆C相交于A,B两点.当△ABF的周长最大时,△ABF的面积为b2,则椭圆C的离心率e=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 设命题p:实数x满足x2−4mx+3m2<0(m>0);命题q:实数x满足.若¬p是¬q的充分不必要条件,求实数m的取值范围.18. 已知数列{a n}的前n项和为S n,且2S n=3a n−3.(Ⅰ)求数列{a n}的通项公式;a n,,求数列{c n}的前n项和T n.(Ⅱ)设b n=log319. 已知函数f(x)=x3−2x2+x.(1)求曲线y=f(x)在点(−1, −4)处的切线方程;(2)求曲线y=f(x)过点(1, 0)的切线方程.20. 已知在△ABC中,角A,B,C的对边分别为a,b,c,且a+b+c=12.(Ⅰ)若a=2,b=5,求cos A的值;(Ⅱ)若sin A cos2=2sin C,且△ABC的面积为10sin C,试判断△ABC的形状并说明理由.21. 已知椭圆经过如下四个点中的三个,,P2(0, 1),,.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以线段AB为直径的圆经过椭圆M的右顶点C (A,B均不与点C重合),证明:直线l过定点.22. 已知函数f(x)=ln x+ax2+(2a+1)x+1.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<0时,证明:f(x)≤−−1.参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】利用不等式的基本性质即可判断出.2.【答案】B【解析】利用抛物线的标准方程及其性质即可得出.3.【答案】C【解析】根据基本初等函数和复合函数的求导公式对每个选项的函数求导即可.4.【答案】B【解析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.5.【答案】A【解析】利用正弦定理以及同角三角函数的关系式,直接求角B的大小6.【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.7.【答案】C【解析】设等比数列{a n}的公比为q,由S2n=4(a1+a3+...+a2n−1)(n∈N∗),令n=1,则S2=4a1,可得a2=3a1,根据a1a2a3=−27,可得a23=−27,解得a2.利用等比数列的通项公式即可得出.8.【答案】B【解析】将3a+2b=ab变形为,再由“乘1法”,即可得解.9.【答案】B【解析】根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.10.【答案】C【解析】由导数与极值的关系知可转化为方程f′(x)=0在R上有两个不同根,结合函数的性质可求.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.)11.【答案】A,C【解析】对于A,利用等差数列通项公式列出方程组,求出a1=0,d=1,由此能求出S10;对于B,利用等比数列能通项公式求出q2=2,进而能求出a3;对于C,利用等差数列通项公式得a1+a9=2a5=8,当a1,a9一正一负时,a1a9≤16成立,当a1,a9均大于0时,则a1a9≤()2=16;对于D,{a n}为等比数列时,a2a8==16,当a2,a8均大于0时,a2+a8≥2=8,当a2,a8均小于0时,a2+a8=−(−a2−a8)≤−2=−(8)12.【答案】A,B,D【解析】通过m,n的取值,判断曲线的形状,即可判断选项.三、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】52【解析】利用等差数列{a n}的通项公式列方程求得a1+6d=4,再由S13==13(a1+6d),能求出结果.14.【答案】【解析】求出原函数的导函数,利用配方法求得导函数的值域,再由直线的斜率等于倾斜角的正切值,即可求得曲线在点P处的切线的倾斜角α的范围.15.【答案】【解析】由已知结合余弦定理可求C,易得三角形的面积,所以内切圆半径满足关系:S=(a+b+c)r.16.【答案】【解析】判断三角形周长取得最大值时,求出m的值,利用三角形的面积,列出方程,求解椭圆的离心率即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】由x2−4mx+5m2<0,得(x−m)(x−5m)<0,又m>0,所以m<x<3m,由,得0<4−x<5因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件.设A=(3, m)B=(2,则B是A的真子集,故或即.【解析】求出命题p,q为真命题的等价条件,根据¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,进行转化求解即可.18.【答案】(1)当n=1时,2a6=2S1=2a1−1,∴a8=1当n≥2时,8a n=2S n−2S n−2=(3a n−3)−(8a n−1−3)即:,∴数列{a n}为以3为首项,4为公比的等比数列.∴(2)由(Ⅰ)知,a n=n,所以b n=log3故.即①所以②①②得所以.【解析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式;(Ⅱ)利用乘公比错位相减法的应用求出数列的和.19.【答案】解:(1)由题意得f′(x)=3x2−4x+1,∴f′(−1)=8,∴曲线y=f(x)在点(−1, −4)处的切线方程为y+4=8(x+1),即8x−y+4=0.(2)设切点为(x0, y0),∵切点在函数图象上,∴y0=x03−2x02+x0,故曲线在该点处的切线为y −(x 03−2x 02+x 0)=(3x 02−4x 0+1)(x −x 0).∵ 切线过点(1, 0),∴ 0−(x 03−2x 02+x 0)=(3x 02−4x 0+1)(1−x 0)即(x 0−1)2(2x 0−1)=0,解得x 0=1或x 0=12,当x 0=1时,切点为(1,0),∵ f ′(1)=0,∴ 切线方程为y −0=0⋅(x −1)即y =0.当x 0=12时,切点为(12,18), ∵ f ′(12)=−14, ∴ 切线方程为y −0=−14(x −1)即x +4y −1=0.综上可得,切线方程为y =0或x +4y −1=0.【解析】(Ⅰ)求出原函数的导函数,得到函数在x =−1处的导数,再由直线方程的点斜式得答案;(Ⅱ)设出切点坐标,得到函数在切点处的切线方程,代入已知点的坐标,求得切点坐标,进一步求解过点(1, 0)的切线方程.利用导数研究某一点的切线方程问题(含参问题).20.【答案】(1)∵ a +b +c =12,a =2,∴ c =5. ∴ -(2)∵ △ABC 为直角三角形,, ∴,即sin A +sin B +sin A cos B +cos A sin B =4sin C ,∴ sin A +sin B +sin (A +B)=4sin C ,∵ A +B +C =π,A +B =π−C .∴ sin A +sin B =3sin C ,由正弦定理得a +b =3c ,∵ a +b +c =12,可得8c =12.从而a +b =9.又∵ △ABC 的面积为10sin C ,∴.即ab=20,∴a=5,b=5,又∵c=6,可得cos B==,可得B为直角,∴△ABC为直角三角形.【解析】(1)由题意可求c的值,进而根据余弦定理即可求解cos A的值.(2)由已知利用三角函数恒等变换的应用化简已知等式可得sin A+sin B=3sin C,由正弦定理得a+b=3c,解得c,可得a+b=9,利用三角形的面积公式可求ab=20,解得a,b的值,即可判断得解.21.【答案】(1);由题意,点与点,根据椭圆的对称性且椭圆过其中的三个点可知,点和点,又因为点与点,即椭圆过点,P3(,),P7(0, 1),所以,且,故a6=4,b2=3,所以,椭圆M的方程为.(2)证明:直线l恒过点.由题意,可设直线AB的方程x=ky+m(m≠2),联立消去x2+4)y2+2kmy+m2−4=0,设A(x1, y8),B(x2, y2),则有,①又以线段AB为直径的圆过椭圆的右顶点C,∴,由,,得(x2−2)(x2−8)+y1y2=5,将x1=ky1+m,x6=ky2+m代入上式得,将①代入上式求得或m=2(舍),则直线l恒过点.【解析】(Ⅰ)由椭圆的对称性可得椭圆过点,,P2(0, 1),代入椭圆的方程,列方程组,解得a,b,进而可得椭圆的方程.(Ⅱ)设直线AB的方程x=ky+m(m≠2),A(x1, y1),B(x2, y2),联立直线AB与椭圆的方程可得关于y的一元二次方程,由韦达定理可得y1+y2,y1y2,由线段AB为直径的圆过椭圆的右顶点C,得,用坐标表示,可得m,进而可得答案.22.【答案】(1)因为f(x)=ln x+ax2+(2a+5)x+1,所以,当a≥7时,f′(x)≥0恒成立,+∞)上单调递增;当a<0时,令f′(x)>5,所以,令f′(x)<0,则2ax+2<0,所以f(x)的增区间为,减区间为.综上:当a≥3时,f(x)的增区间为(0;当a<0时,f(x)的增区间为.(2)证明:由(Ⅰ)知,当a<0时max=f(−),,令g(t)=ln t−t+3(t>0),则,令g′(t)>0,则5<t<1,则t>1,所以g(t)在(6, 1)上单调递增,+∞)上单调递减,故g(t)max=g(1)=0,所以ln t−t+3≤0又因为,所以则,从而,所以.【解析】(Ⅰ)对f(x)求得,对a分类讨论,利用导数与单调性的关系求解即可;(Ⅱ)由(Ⅰ)可知f(x)max=f(−),,令g(t)=ln t−t+1(t>0),利用导数可得g(t)的最大值为0,可得,从而可得.。
宁夏2020学年高二数学上学期期末考试试题文(含解析)
高二数学上学期期末考试试题 文(含解析)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20}A x x x =--<,集合{|14}B x x =<<,则AB =( )A. {|12}x x <<B. {|24}x x <<C. {|11}x x -<<D. {|14}x x -<<【答案】D 【解析】 【分析】解集合A 得集合A 的解集,根据并集运算求解即可. 【详解】解不等式得集合{|12}A x x =-<< 集合{|14}B x x =<< 则{|14}A B x x ⋃=-<< 所以选D【点睛】本题考查了并集的基本运算,属于基础题. 2.命题“x R ∀∈,2240x x -+≤”的否定为( )A. 0x R ∃∈,200240x x -+>B. x R ∀∈,2240x x -+≥C. x R ∀∉,2240x x -+≤D. 0x R ∃∉,200240x x -+>【答案】A 【解析】 【分析】根据全称命题的否定是特称命题得到答案.【详解】命题“x R ∀∈,2240x x -+≤”的否定为:0x R ∃∈,200240x x -+>故选:A【点睛】本题考查了全称命题的否定,属于简单题. 3.抛物线24y x =的焦点到准线的距离为( )A. 2B. 1C.14D.18【答案】D 【解析】 由24y x =有214x y =,所以112,48p p ==,即抛物线的焦点到准线的距离为18,选D. 4.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据必要不充分条件的判定方法,即可作差判定,得到答案.【详解】由题意可知,“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破流量”,所以“攻破楼兰”是“返回家乡”的必要不充分条件,故选A.【点睛】本题主要考查了充分条件和必要条件的定义及判定,其中解答中熟记充分条件和必要条件的定义,合理、准确盘判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A. 3 B. 4C. 5D. 6【答案】B 【解析】 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b +≥ 4= .当且仅当1a b == 时,等号成立.故选B .【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.6.已知双曲线C :()222210,0x y a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A. 22145x y -=B. 2211210x y -=C. 22154x y -=D. 22143x y -= 【答案】A 【解析】 【分析】根据渐近线得到b a =,计算椭圆焦点得到答案.【详解】双曲线C :()222210,0x y a b a b -=>>的一条渐近线方程为y x =,故b a =221123x y +=的焦点为()3,0±,故2,a b == 故选:A【点睛】本题考查了双曲线的标准方程,渐近线知识,椭圆的焦点,意在考查学生的计算能力.7.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A. 58 B. 88C. 143D. 176【答案】B 【解析】 试题分析:等差数列前n项和公式1()2n n n a a s +=,481111111()11()111688222a a a a s ++⨯====.考点:数列前n 项和公式. 【此处有视频,请去附件查看】8.设a<b,函数2()()y x a x b=--的图象可能是( )A. B. C. D.【答案】C【解析】/()(32)y x a x a b=---,由/0y=得2,3a bx a x+==,∴当x a=时,y取极大值0,当23a bx+=时y取极小值且极小值为负.故选C.【此处有视频,请去附件查看】9.若x、y满足约束条件3020x yx yy+-<⎧⎪-≥⎨⎪≥⎩,则43z x y=-的最小值为()A. 0B. -1C. -2D. -3【答案】C【解析】【分析】画出可行解域,画出直线4:3l y x=,平移直线l,找到使直线4:33zl y x=-在y轴截距最大的点,把坐标代入即可求出43z x y=-的最小值.【详解】画出可行解域如下图:平移直线 04:3l y x =,当经过3020x y x y +-=⎧⎨-=⎩交点(1,2)A 时,直线4:33zl y x =- 在y 轴截距最大,即43z x y =-有最小值,最小值为2-,故本题选C . 【点睛】本题考查了线性规划问题,解决此类问题的关键是画出正确的可行解域. 10.若函数f(x)=x 3-2cx 2+x 有极值点,则实数c 的取值范围为A. 32⎫+∞⎪⎪⎣⎭ B. 33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭C. 3,2⎛⎫+∞ ⎪ ⎪⎝⎭D. 33,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】函数f(x)=x 3-2cx 2+x 有极值点,则'()f x 有两个不同的根,>0∆ ,得解.【详解】因为f(x)=x 3-2cx 2+x 有极值点,'()f x 值有正有负,所以2'()341f x x cx =-+=0有两个不同的根,()24120c ∆=->,解得:3322c -, 故选D .【点睛】本题考查了函数极值点的概念,抓住概念列不等式求解.11.已知抛物线y 2=2px (p >0)的焦点F 恰好是双曲线22221,(0,0)x y a b a b-=>>的右焦点,且两曲线的交点连线过点F ,则该双曲线的离心率为( )C. 1D. 1【答案】C 【解析】由题意可设两曲线的交点为(,)(,2)2p p c c ±∴±在双曲线22221x y a b-=上,即2222222222244122c c c b b ac c a ac a b b a-=⇒=⇒=⇒-=221011e e e e ⇒--=>∴=+ C.【此处有视频,请去附件查看】12.已知点(0,2)A ,抛物线C :2y ax =(0)a >的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若:FM MN =a 的值等于A. 4B.12C. 1D.14【答案】A 【解析】 【分析】根据抛物线的定义,可得出射线FA 的斜率,根据点斜式得出射线FA 的方程,令0y =求得焦点坐标,从而求得a 的值.【详解】根据抛物线的定义可知,FM 的值等于M 到准线的距离,故射线FA 的斜率为2=-,由于()0,2A ,故射线FA 的方程为22y x =-+,令0y =,解得1x =,故焦点坐标为()1,0F ,故1,44aa ==.所以选A. 【点睛】本小题主要考查抛物线定义,考查直线的方程以及抛物线标准方程的求法,属于中档题. 直线方程的常用形式有点斜式和斜截式,已知直线上一个点的坐标和直线的斜率,就可以求出直线的方程.抛物线的定义是动点到定点的距离等于到定直线的距离的点的轨迹,解有关抛物线的题目时,这个知识点是经常要利用上的. 二、填空题:(本大题共4小题,每小题5分.共20分) 13.函数2()ln f x x x =在点()1,0处的切线方程为___.【答案】10x y --= 【解析】 【分析】由题意,函数()f x 的导数为()f x ',得到()11k f '==,再由直线的点斜式方程,即可求解切线的方程.【详解】由题意,函数()2ln f x x x =的导数为()2ln f x x x x '=+,所以()11f '=,即函数()2ln f x x x =在点(1,0)处的切线的斜率为1k =,由直线的点斜式方程可知,切线的方程为1y x =-,即10x y --=.【点睛】本题主要考查了利用导数求解曲线在某点处的切线的方程,其中解答中根据导数四则运算的法则,正确求解函数的导数,得出曲线在某点处的切线的斜率,再利用点斜式求解切线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.14.已知函数()2sin f x x x =-,当[]0,1x ∈时,函数()y f x =的最大值为_______ . 【答案】2sin1- 【解析】 【分析】对函数进行求导,判断单调性,求出函数的最大值.【详解】因为'()2cos 0f x x =->,所以函数()2sin f x x x =-是R 上增函数,故当[]0,1x ∈时,函数()y f x =的最大值为(1)2sin1f =-.【点睛】本题考查了利用导数判断函数的单调性,求函数的最大值问题.15.若双曲线22221x y a b-=的一条渐近线方程为y =,则其离心率为_________.【解析】【分析】根据渐近线计算得到ba=,再计算离心率得到答案. 【详解】双曲线22221x y a b-=的一条渐近线方程为y =故b c e a a ===【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力.16.若圆C :22(1)x y n ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则nm=____. 【答案】8 【解析】211110(11)4,8.2nm n n m m-=∴=++=∴=∴= 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.斜率为1的直线l 经过抛物线2y x =的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长. 【答案】2 【解析】 【分析】先计算抛物线的焦点和直线方程,联立方程利用韦达定理得到1232x x +=,12116x x ⋅=,再计算AB 得到答案.【详解】解:抛物线2y x =的焦点坐标1,04F ⎛⎫ ⎪⎝⎭,直线l 的方程为14y x =-, 设()11,A x y ,()22,B x y ,214y x y x ⎧=-⎪⎨⎪=⎩可得2310216x x -+=,>0∆,1232x x +=,12116x x ⋅=,12122AB x x =++=. 【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力.18.设函数()365f x x x =-+,x ∈R ,求()f x 的单调区间和极值.【答案】单调增区间(,-∞,)+∞.单调减区间(.5y =极大值,5y =-极小值.【解析】 【分析】求导根据导数的正负得到单调区间,再计算极值得到答案.【详解】解:()2'36f x x =-,令()'0f x =得1x =2x =()'f x ,()f x 随x 的变化如下表:由上表知()y f x =的单调增区间(,-∞,)+∞.单调减区间(.(5y f ==极大值,5y f ==-极小值.【点睛】本题考查了利用导数求函数的单调区间和极值,属于常考题型,需要熟练掌握.19.已知椭圆()222210x y a b a b +=>>的离心率为2,且短轴长为2.(1)求椭圆的方程;(2)若直线l :y x m =+与椭圆交于A ,B 两点,O 为坐标原点,且23OA OB ⋅=,求ABO ∆的面积.【答案】(1)2212x y +=(2)23【解析】 【分析】(1)根据离心率和短轴长计算得到答案.(2)联立方程利用韦达定理得到21212422,33m m x x x x -+=-=,根据23OA OB ⋅=得到22m =,再计算1212AOB S m x x ∆=-得到答案. 【详解】(1)短轴长22b =,1b =,c e a ==,又222a b c =+,所以a =1c = 所以椭圆的方程为2212x y +=.(2)设()()1122,,,A x y B x y 联立方程2212x y y x m ⎧+=⎪⎨⎪=+⎩ 得到2234220x mx m ++-=故21212422,33m m x x x x -+=-=121223OA OB x x y y ⋅=+=,即234233m -=,即22m =.122132AOB S m x x ∆===-.【点睛】本题考查了椭圆方程,椭圆内面积问题,意在考查学生的计算能力和转化能力. 20.已知数列{}n a 是公差不为0的等差数列,首项11a =,且124,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足2n an n b a =+,求数列{}n b 的前n 项和n T【答案】(1)n a n =;(2)()11222n n n +++- 【解析】 【分析】(1)根据条件“124,,a a a 成等比数列”列关于公差的方程,解得结果,(2)根据分组求和法,将原数列的和分为等差与等比数列的和.【详解】(1)设数列{a n }的公差为d ,由已知得,a =a 1a 4, 即(1+d)2=1+3d ,解得d =0或d =1. 又d≠0,∴d=1,可得a n =n. (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n )=(1+2+3+…+n)+(2+22+23+…+2n )=()12n n ++2n +1-2.【点睛】本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和. 分组转化法求和的常见类型主要有分段型(如,2,n n n n a n ⎧=⎨⎩为奇数为偶数 ),符号型(如2(1)n n a n =- ),周期型 (如πsin3n n a = ) 21.已知函数()2x f x e x a =-+,x ∈R 的图像在点0x =处的切线为y bx =.(1)求函数()f x 的解析式;(2)当x ∈R 时,求证:()2f x x x ≥-+. 【答案】(1)()21x f x e x =--(2)见证明 【解析】【分析】(1)求导得到()2x f x e x a =-+,根据()()010'01f a f b ⎧=+=⎪⎨==⎪⎩解得答案. (2)令()()2g x f x x x =+-,求导得到()'10x g x e =-=,得到函数的单调区间,再计算()()min 00g x g ==得到证明.详解】(1)()2x f x e x a =-+,()'2xf x e x =-. 由已知()()010'01f a f b ⎧=+=⎪⎨==⎪⎩,解得11a b =-⎧⎨=⎩,故()21x f x e x =--. (2)令()()21xg x f x x x e x =+-=--,由()'10xg x e =-=得0x =. 当(),0x ∈-∞时,()'0g x <,()g x 单调递减;当()0,x ∈+∞时,()'0g x >,()g x 单调递增.∴()()min 00g x g ==,从而()2f x x x ≥-+. 【点睛】本题考查了根据切线求解析式,证明不等式,构造函数()()2g x f x x x =+-是解题的关键.22.已知函数()ln f x x x =.(1)求函数()y f x =的单调区间;(2)若函数()()g x f x ax =+在区间)2,e ⎡+∞⎣上为增函数,求实数a 的取值范围. 【答案】(1)见解析 (2)[)3,-+∞【解析】【分析】(1)求导得到()'ln 1f x x =+,根据导数的正负得到函数的单调区间.(2)求导()()''ln 1g x f x a x a =+=++单调递增,化简为1ln a x ≥--,设()ln 1h x x =--,求函数的最大值得到答案.【详解】(1)函数()y f x =的值域()0,x ∈+∞.()'ln 1f x x =+,令()'0f x =得1x e =, ()'f x ,()f x 随x 的变化情况如下表:故()y f x =的单调减区间为10,e ⎛⎫ ⎪⎝⎭,单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭ (2)()()''ln 1g x f x a x a =+=++.∵函数()g x 在区间)2,e ⎡+∞⎣上为增函数, ∴当)2,x e ⎡∈+∞⎣时,()'0g x ≥,即ln 10x a ++≥在)2,e ⎡+∞⎣上恒成立. ∴1ln a x ≥--.令()ln 1h x x =--,∴()max a h x ≥,当)2,x e ⎡∈+∞⎣时,[)ln 2,x ∈+∞,∴()(],3h x ∈-∞-,∴3a ≥-, 即实数a 的取值范围是[)3,-+∞.【点睛】本题考查了函数的单调区间,根据单调性求参数,化简得到1ln a x ≥--是解题的关键.1、在最软入的时候,你会想起谁。
吉林省吉林高二上期末数学试卷(文)(附答案解析)(2020届)
吉林省吉林高二(上)期末数学试卷(文科)一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!) 1.(5分)等差数列{a n }中,a 3=4,a 7=10,则a 6=( ) A .B .C .D .2.(5分)在△ABC 中,a=18,B=60°,C=75°,则b=( ) A .6B .9C .4D .93.(5分)不等式(x+5)(1﹣x )≥8的解集是( ) A .{x|x ≤1或x ≥﹣5} B .{x|x ≤﹣3或x ≥﹣1}C .{x|﹣5≤x <1}D .{x|﹣3≤x ≤﹣1}4.(5分)已知焦点在y 轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为( ) A .B .C .D .5.(5分)等比数列{a n }中,a 1a 2a 3=3,a 10a 11a 12=24,则a 13a 14a 15=( ) A .48 B .72 C .144 D .1926.(5分)在△ABC 中,sin 2A+sin 2B+sinAsinB=sin 2C ,则角C 等于( ) A .30°B .60°C .120°D .150°7.(5分)已知x >0,y >0,且+=2,则x+y 的最小值为( ) A .6B .7C .8D .98.(5分)已知两定点F 1(0,﹣5),F 2(0,5),平面内动点 P 到F 1、F 2的距离之差的绝对值是6,则点P 的轨迹方程为( ) A .B .C .D .9.(5分)在△ABC 中,A=60°,AB=4,S △ABC =2,则BC 边等于( )A .2B .2C .D .310.(5分)已知数列{a n }满足a 1=1,a n+1=a n +2n ,则a 10=( ) A .1024B .1023C .2048D .204711.(5分)函数f (x )=2x 2﹣4lnx 的单调减区间为( )A.(﹣1,1)B.(1,+∞)C.(0,1) D.[﹣1,0)12.(5分)抛物线y=x2+bx+c在点(1,2)处的切线n的倾斜角是135度,则过点(b,c)且与切线n垂直的直线方程为()A.x﹣y+3=0 B.x﹣y+7=0 C.x﹣y﹣1=0 D.x﹣y﹣3=0二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是.14.(5分)函数y=的定义域为R,则k的取值范围.15.(5分)已知点P到点F(0,1)的距离比它到直线y=﹣5的距离小4,若点P的轨迹与直线x﹣4y+2=0的交点为A、B,则线段AB的中点坐标为.16.(5分)函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是.三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.19.(12分)已知等差数列{an }中,a7=9,S7=42(1)求a15与S20(2)数列{cn }中cn=2n an,求数列{cn}的前n项和Tn.20.(12分)已知数列{an }的前n项和为Sn,若Sn=n2+5n.(1)证明数列{an}是等差数列;(2)求数列{}的前n项和Tn.21.(12分)已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.且斜率为1,交椭圆于A、B两点,求弦长|AB|.(2)若直线m椭圆左焦点F122.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).2019-2020学年吉林省吉林高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!) 1.(5分)等差数列{a n }中,a 3=4,a 7=10,则a 6=( ) A .B .C .D .【解答】解:∵等差数列{a n }中,a 3=4,a 7=10,∴,解得, ∴a 6=1+5×=.故选:C .2.(5分)在△ABC 中,a=18,B=60°,C=75°,则b=( ) A .6B .9C .4D .9【解答】解:∵在△ABC 中,a=18,B=60°,C=75°, ∴A=45°,由正弦定理=得:b===9,故选:C .3.(5分)不等式(x+5)(1﹣x )≥8的解集是( ) A .{x|x ≤1或x ≥﹣5} B .{x|x ≤﹣3或x ≥﹣1} C .{x|﹣5≤x <1} D .{x|﹣3≤x ≤﹣1}【解答】解:∵(x+5)(1﹣x )≥8, ∴(x+3)(x+1)≤0, 解得:﹣3≤x ≤﹣1, 故选:D .4.(5分)已知焦点在y 轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为( ) A .B .C .D .【解答】解:根据题意,要求椭圆的半短轴长为3,焦距为4, 即b=3,2c=4, 解可得b=3,c=2; 则a==,又由椭圆的焦点在y 轴上,则椭圆的方程为+=1;故选:D .5.(5分)等比数列{a n }中,a 1a 2a 3=3,a 10a 11a 12=24,则a 13a 14a 15=( ) A .48 B .72 C .144 D .192【解答】解:设等比数列{a n }的公比为q ,∵a 1a 2a 3=3,a 10a 11a 12=24,∴(q 9)3==8,解得:q 9=2.则a 13a 14a 15=q 36•a 1a 2a 3=24×3=48, 故选:A .6.(5分)在△ABC 中,sin 2A+sin 2B+sinAsinB=sin 2C ,则角C 等于( ) A .30°B .60°C .120°D .150°【解答】解:∵sin 2A+sin 2B+sinAsinB=sin 2C , 由正弦定理可得,a 2+b 2+ab=c 2,由余弦定理可得,cosC===﹣,∴由C ∈(0°,180°),可得:C=120°. 故选:C .7.(5分)已知x >0,y >0,且+=2,则x+y 的最小值为( ) A .6B .7C .8D .9【解答】解:∵x >0,y >0,且+=2,∴+=1,∴x+y=(x+y )(+)=5++≥5+2=5+3=8,当且仅当y=3x=6时取等号.故选:C .8.(5分)已知两定点F 1(0,﹣5),F 2(0,5),平面内动点 P 到F 1、F 2的距离之差的绝对值是6,则点P 的轨迹方程为( ) A .B .C .D .【解答】解:根据题意,两定点F 1(0,﹣5),F 2(0,5),则|F 1F 2|=10, 若动点 P 到F 1、F 2的距离之差的绝对值是6,则有6<10,则P 的轨迹是以F 1(0,﹣5),F 2(0,5)为焦点的双曲线,其中c=5,a=3, 则b==4,则双曲线的方程为:﹣=1;故选:C .9.(5分)在△ABC 中,A=60°,AB=4,S △ABC =2,则BC 边等于( )A .2B .2C .D .3【解答】解:∵A=60°,AB=4,S △ABC =2=AB•AC•sinA=,∴AC=2,∴由余弦定理可得:BC===2.故选:B .10.(5分)已知数列{a n }满足a 1=1,a n+1=a n +2n ,则a 10=( )A .1024B .1023C .2048D .2047【解答】解:∵数列{a n }满足a 1=1,a n+1=a n +2n , ∴a n =a 1+(a 2﹣a 1)+…+(a n ﹣a n ﹣1)=1+21+22+…+2n ﹣1==2n ﹣1.(n ∈N *).∴a 10=210﹣1=1023. 故选B .11.(5分)函数f (x )=2x 2﹣4lnx 的单调减区间为( ) A .(﹣1,1) B .(1,+∞) C .(0,1) D .[﹣1,0) 【解答】解:f (x )的定义域是(0,+∞), f′(x )=4x ﹣=,令f′(x )<0,解得:0<x <1, 故选:C .12.(5分)抛物线y=x 2+bx+c 在点(1,2)处的切线n 的倾斜角是135度,则过点(b ,c )且与切线n 垂直的直线方程为( )A .x ﹣y+3=0B .x ﹣y+7=0C .x ﹣y ﹣1=0D .x ﹣y ﹣3=0 【解答】解:令f (x )=x 2+bx+c ,则f′(x )=2x+b , ∴f (x )在(1,2)处的切线斜率为k=f′(1)=2+b , ∴2+b=tan135°=﹣1, ∴b=﹣3.又f (x )过点(1,2),∴1﹣3+c=2,即c=4. ∴过(﹣3,4)且与n 垂直的直线方程为: y ﹣4=x+3,即x ﹣y+7=0. 故选B .二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是﹣6 .【解答】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最小,此时z最小,由,解得,即A(3,﹣3),此时z=2×3+4×(﹣3)=﹣6,故答案为:﹣6.14.(5分)函数y=的定义域为R,则k的取值范围[0,2] .【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].15.(5分)已知点P 到点F (0,1)的距离比它到直线y=﹣5的距离小4,若点P 的轨迹与直线x ﹣4y+2=0的交点为A 、B ,则线段AB 的中点坐标为 (,) . 【解答】解:∵点P 到F (0,1)的距离比它到直线y=﹣5的距离小4, ∴点P 在直线l 的上方,点P 到F (0,1)的距离与它到直线y=﹣1的距离相等 ∴点M 的轨迹C 是以F 为焦点,y=﹣1为准线的抛物线, ∴曲线C 的方程为x 2=4y ,设A (x 1,y 1),B (x 2,y 2),AB 的中点为(x 0,y 0) 将直线x ﹣4y+2=0代入x 2=4y ,可得x 2=x+2, 解得x 1=2或x 2=﹣1, 则y 1=1或y 2=,∴x 0=(2﹣1)=,y 0=(1+)=, ∴AB 的中点为(,),故答案为:(,)16.(5分)函数f (x )=x 3﹣x 2﹣x+k 的图象与x 轴刚好有三个交点,则k 的取值范围是 (﹣,1) .【解答】解:f′(x )=3x 2﹣2x ﹣1, 令f′(x )=0得x=﹣或x=1,∴当x <﹣或x >1时,f′(x )>0,当﹣<x <1时,f′(x )<0,∴f (x )在(﹣∞,﹣)上单调递增,在(﹣,1)上单调递减,在(1,+∞)上单调递增, ∴当x=﹣时,f (x )取得极大值f (﹣)=+k ,当x=1时,f (x )取得极小值f (1)=k﹣1.∵f (x )的图象与x 轴刚好有三个交点,∴,解得:﹣<k<1.故答案为:(﹣,1).三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.【解答】解:(1)由b2﹣a2=c•(b﹣c)得:a2=b2+c2﹣bc根据余弦定理:a2=b2+c2﹣2bccosA得:又:△ABC中,0°<A<180°,则A=60,由正弦定理:结合解出:又:△ABC中,0°<B<180°﹣60°,则B=45,(2)由a=4,A=60°写出余弦定理:a2=b2+c2﹣2bccosA得:b2+c2﹣bc=16①再由面积公式:及已知得:bc=16②联立①②,且b>0,c>0解得:b=4,c=4.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.【解答】解:(1)化为:,由正弦定理,得:,又三角形中,sinA>0,化简,得:即:,又:△ABC中,0°<B<180°,得:B=60°;(2)把sinAcosB+cosAsinB=2sinA化为:sin(A+B)=2sinA,由三角形内角和定理A+B+C=180°,得:sin(A+B)=sinC=2sinA,根据正弦定理,得:c=2a,又,结合余弦定理:b2=a2+c2﹣2accosB,即为48=5a2﹣4a2•,解得:a=4,c=8,由面积公式:=×4×8×,得:.19.(12分)已知等差数列{an }中,a7=9,S7=42(1)求a15与S20(2)数列{cn }中cn=2n an,求数列{cn}的前n项和Tn.【解答】解:(1)设等差数列{an }的公差为d,则由a7=9,S7=42联立:,解得:,则数列的通项公式为:an=n+2∴.(2)由(1)知:,则:①∴②,①﹣②得:,,﹣﹣(n+2)•2n+1,整理得:.20.(12分)已知数列{a n }的前n 项和为S n ,若S n =n 2+5n .(1)证明数列{a n }是等差数列;(2)求数列{}的前n 项和T n .【解答】证明:(1)当n=1时,S 1=1+5=6=a 1当n ≥2时,化简,得:a n =2n+4检验,n=1时,代入上式符合. 则;解:(2)由题意知:=,=,解得:.21.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为,若抛物线y 2=4x 的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m 椭圆左焦点F 1且斜率为1,交椭圆于A 、B 两点,求弦长|AB|.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c ∵抛物线y 2=4x 的焦点为F (1,0),∴c=1,又离心率, 则: 再由b 2=a 2﹣c 2得:b 2=4;所求椭圆标准方程为:,(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1(2)由(1)知,左焦点为F1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=22.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).【解答】(1)解:,化为:,由于原函数定义域为(0,+∞).∴k≥0时,f'(x)>0恒成立,则原函数在定义域内为单调增函数.当k<0时,令f'(x)=0有正数解:;∴在区间上时,f'(x)<0,此时,原函数为减函数.在区间上时,f'(x)>0,此时,原函数为增函数.综上:k≥0时,原函数为增函数,增区间为(0,+∞),k<0时,原函数的增区间为:减区间为:.(2)证明:由(1)知,当k<0时,在时,原函数有极大值,且为最大值.要证明,只需证明:,作差:=,设:,则:,令:ϕ'(t)=0,解得:t=1,且t>1时,ϕ'(t)<0,原函数为减函数,t<1时,ϕ'(t)>0,原函数为增函数,则:ϕ(1)=ln1﹣1+1=0为函数最大值,∴,即.。
2020-2021宁波市高二数学上期末试卷(带答案)
2020-2021宁波市高二数学上期末试卷(带答案)一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为()(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯5.在长为10cm的线段AB上任取一点C,作一矩形,邻边长分別等于线段AC、CB的长,则该矩形面积小于216cm的概率为()A.23B.34C.25D.136.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度7.按照程序框图(如图所示)执行,第3 个输出的数是( )A .6B .5C .4D .38.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S =(单位:升),则输入的k =( )A .9B .10C .11D .129.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( ) A .38B .34C .35D .4510.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.511.执行如图的程序框图,若输出的4n =,则输入的整数p 的最小值是( )A .4B .5C .6D .1512.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.15.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。
2020学年高二上学期数学(文)期末考试卷(详解)(精编版)——精品文档
222y 223x 4932239492x 72y47272572020学年高二上学期数学(文)期末考试卷(精编版)一、选择题(每小题5分,共50分,把每小题的答案对应选项填涂在答题卡上) 1.已知数列{a n }是等比数列,若a 1·a 5 = 9,则a 3= ( )A .±3B .-3C .3D .32.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验。
I .随机抽样法;II .分层抽样法. 上述两问题和两方法配对正确的是( ) A .①配I ,②配IIB .①配II ,②配IC .①配Ⅰ,②配1D .①配11,②配II3.己知 - = l 的渐近线方程是 ( ) A .y = ± xB .y = ± xC .y =± xD .y =± x4.下列有关命题的说法错误的是( )A .命题:若x 2-3x +2=0则x =1的逆否命题为:若x ≠ l ,则x 2-3x +2≠0 B .x = 1是x 2-3x +2=0的充分不必要条件 C .若P ∧g 为假命题,则p,q 均为假命题D .对于命题p :要∃x ∈R,使得x 2+ x +1< 0,则-P :∀x ∈R,均有x 2+x +l≥05.已知圆x 2+y 2=1 则y -x 的最大值 ( ) A .1B .2C .2D .36.下图是2007年在广州举行的全国少数民族运动会上,七位评委 为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一 个最低分后,所剩数据的平均数和方差分别为( ) A .84,4.84B .84,1.6C .85,1.6D .85,47.F 1,F 2是椭圆 + =1的两个焦点,A 为椭圆上一点,且∠F 1AF 2= 90°,则⊿AF 1F 2的面积为 ( ) A .7B .C .D .212132y 214161201⎪⎭⎫⎝⎛1,21()2,1()2,28.“m = ”是“直线(m +2)x +3my +1= 0与直线(m -2)x + (m +2)y -3= 0相互垂直”的 ( )。
2020-2021学年湖北省高二(上)期末数学试卷(附答案详解)
2020-2021学年湖北省高二(上)期末数学试卷一、单选题(本大题共8小题,共40.0分)1.若直线l的斜率为−√3,则直线l的倾斜角为()A. 30°B. 60°C. 120°D. 150°2.若等差数列{a n}满足a1+a3=4,a5+a7=−4,则等差数列{a n}的公差d=()A. 2B. 1C. 0D. −13.已知a=20.3,b=0.32,c=log0.32,则()A. b<c<aB. b<a<cC. c<a<bD. c<b<a4.将全班50名同学排成一列,则甲在乙的前面,且丙在乙的后面的概率是()A. 12B. 16C. 13D. 3505.已知数列{a n}的前n项和为S n,若3S n=2a n−1,则a1a3a5=()A. 8B. −8C. 64D. −646.1766年,德国有一位名叫提丢斯的中学数学老师,把数列0,3,6,12,24,48,96,……经过一定的规律变化,得到新数列:0.4,0.7,1,1.6,2.8,5.2,10,……,科学家发现,新数列的各项恰好为太阳系行星与太阳的平均距离,并据此发现了“天王星”、“谷神星”等行星,这个新数列就是著名的“提丢斯−波得定则”.根据规律,新数列的第8项为()A. 14.8B. 19.2C. 19.6D. 20.47.已知抛物线C:x2=2py(p>0)的焦点是F,A,B,D是抛物线C上的点.若△ABD的重心是点(2,3),且|AF|+|BF|+|DF|=15,则p=()A. 4B. 6C. 8D. 128.已知圆M:x2+y2+2x=0,点P是曲线C:y=1x+1(x>−1)上的动点,过点P 作圆M的切线PA,PB,切点为A,B,当四边形PAMB的面积最小时,线段AB 的长为()A. √2B. √3C. 12D. 1二、多选题(本大题共4小题,共20.0分)9.已知直线l:x−ay+1=0(a∈R),则下列说法正确的是()A. 直线l过定点(−1,0)B. 直线l一定不与坐标轴垂直C. 直线l与直线l′:−x+ay+m=0(m∈R)一定平行D. 直线l与直线l′:ax+y+m=0(m∈R)一定垂直10.已知正数x,y满足x+y=2,则下列结论正确的是()A. xy的最大值是1B. 1x +1y的最小值是2C. x2+y2的最小值是4D. 1x +4y的最小值是9211.已知函数f(x)=|√3sin(2x−π6)|,则下列结论正确的是()A. 函数f(x)的最小正周期为πB. 函数f(x)的最大值为√3C. 函数f(x)的图象关于点(π12,0)对称D. 函数f(x)的图象关于直线x=7π12对称12.设数列{a n}、{b n}的前n项和分别为S n、T n,S1=1,S n+1=n+2n S n,且b n=a n+12a n a n+2,则下列结论正确的是()A. a2020=2020B. S n=n(n+1)2C. b n=1−1n(n+2)D. 13≤T n−n<34三、单空题(本大题共4小题,共20.0分)13.已知向量a⃗=(1,−1),b⃗ =(−2,t),若a⃗//b⃗ ,则a⃗⋅b⃗ =______ .14.若方程x2+y2+2ax−2√5y+12a−15=0表示圆,则实数a的取值范围是______ .15.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,直线l:y=x与双曲线C交于M,N两点,若|MN|=√2b,则e的值是______ .16.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36°按35计算,则棱长为6的正二十面体的外接球半径等于______ .四、解答题(本大题共6小题,共70.0分)17.①2bsinA=atanB;②a2+c2+bc−6b=2accosB;③sin2B−sin2C=sinB+sinC4,在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.在△ABC中,内角A,B,C的对边分别是a,b,c,若a=4,A=π6,且______,求△ABC的面积.18.已知正项数列{a n}的前n项和为S n.若a2=4,S n+1=S n+√a n+1+a n+√a n.(1)求证:数列{√a n}是等差数列;(2)设b n=a a,求数列{b n}的前n项和T n.19.已知α∈(0,π),a⃗=(−1,cos(π2−α)),b⃗ =(sin(3π2+α),1),且a⃗⋅b⃗ =15.(1)求sinα−cosα的值;(2)若β∈(π,2π),tan(α−β)=7,求β的值.20.已知直线l的斜率为−2,且与两坐标轴的正半轴围成的三角形的面积等于1.圆C的圆心在直线l上,且被x轴截得的弦长为4.(1)求直线l的方程;(2)若直线l′:x−2y−1=0与圆C相切,求圆C的方程.21.如图,在四棱锥S−ABCD中,平面SAD⊥平面ABCD,∠ASD=∠ADC=∠BCD=90°,AD.SA=SD且BC=DC=12(1)求证:SC⊥BD;(2)若点M是线段SD的中点,求二面角M−AB−D的余弦值.22.设曲线C:mx2+ny2=1(m>0,n>0)过M(2,3),N(2√2,√6)两点,直线l:y=k(x−2)与曲线C交于P,Q两点,与直线x=8交于点R.(1)求曲线C的方程;(2)记直线MP,MQ,MR的斜率分别为k1,k2,k3,求证:k1+k2=λk3,其中λ为定值.答案和解析1.【答案】C【解析】解:设直线l的倾斜角为α(0≤α<π),∵l的斜率为−√3,∴tanα=−√3,又∵0≤α<π,∴α=120°;故选:C.由直线l的倾斜角α与斜率k的关系:当α≠90°时,斜率k=tanα,当α=90°时,斜率k不存在,求出α的范围.本题考查了利用直线的斜率求倾斜角的问题,是基础题.2.【答案】D【解析】解:∵等差数列{a n}满足a1+a3=4,a5+a7=−4,∴(a5+a7)−(a1+a3)=(a1+a3+8d)−(a1+a3)=8d=−8,解得d=−1.故选:D.利用等差数列通项公式直接求解.本题考查等差数列的公差的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3.【答案】D【解析】【分析】本题考查三个数的大小的判断,考查对数函数、指数函数的单调性等基础知识,考查运算求解能力,是基础题.利用对数函数、指数函数的单调性直接求解.【解答】解:∵a=20.3>20=1,0<b=0.32<0.30=1,c=log0.32<log0.31=0,∴c<b<a.故选:D.4.【答案】B【解析】解:可以不考虑其他人,则甲、乙、丙三人的不同排法有:(甲,乙,丙),(甲,丙,乙),(乙,丙,甲),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共6种,其中甲在乙的前面,且丙在乙的后面的排法只有1种,.故甲在乙的前面,且丙在乙的后面的概率是p=16故选:B.可以不考虑其他人,利用列举法求出甲、乙、丙三人的不同排法有6种,其中甲在乙的前面,且丙在乙的后面的排法只有1种,由此能求出甲在乙的前面,且丙在乙的后面的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5.【答案】D【解析】解:当n=1时,3S1=3a1=2a1−1,解得a1=−1,当n≥2时,3S n=2a n−1,3S n−1=2a n−1−1,=−2,两式相减得3a n=2a n−2a n−1,即a na n−1∴a n=−(−2)n−1,a3=−4,a5=−16,∴a1a3a5=a33=−64,故选:D.利用数列的递推关系式求解首项,然后求解通项公式,即可求解a1a3a5.本题考查数列的递推关系式的应用,通项公式的求法,考查转化首项以及计算能力,是中档题.6.【答案】C【解析】解:观察两组数列0,3,6,12,24,48,96,……,0.4,0.7,1,1.6,2.8,5.2,10,……,发现规律是将原数列的每一项加4,再除以10,故第8项为(96×2+4)÷10=19.6.故选:C.利用两组数列,观察它们之间的关系,寻找到规律为将原数列的每一项加4,再除以10,求解即可.本题考查了推理的运用,解题的关键是寻找到两个数列之间的关系,属于基础题.7.【答案】A【解析】解:设A,B,D的坐标分别为(x1,y1),(x2,y2),(x3,y3),=3,由△ABD的重心是点(2,3)得y1+y2+y33p=15,解得p=4,由抛物线的定义可知|AF|+|BF|+|DF|=y1+y2+y3+32故选:A.设A,B,D的坐标分别为(x1,y1),(x2,y2),(x3,y3),利用重心坐标公式,结合抛物线的性质,求解p即可.本题考查抛物线的简单性质,三角形的重心坐标公式的应用,是基础题.8.【答案】A【解析】解:由x2+y2+2x=0,得(x+1)2+y2=1,则M(−1,0),半径为1,)(a>−1),则|PM|2=(a+1)2+设P(a,1a+11≥2,(a+1)2当且仅当(a+1)2=1,即a=0时上式取等号,∴S=|PA|⋅|AM|=|PA|=√|PM|2−|AM|2=√|PM|2−1≥1,四边形PAMB当且仅当|PM|=√2时取等号,此时P为(0,1),四边形PAMB是正方形,故|AB|=√2,故选:A.由题意画出图形,求出曲线C上的点到点M的最小值,写出四边形PAMB的面积,可知当四边形PAMB为正方形时,面积最小,由此求得线段AB的长.本题考查圆与圆锥曲线的综合,训练了利用基本不等式求最值,考查运算求解能力,是中档题.9.【答案】AD【解析】解:对于A:由于直线l:x−ay+1=0(a∈R),−1−a×0+1=0,故A 正确;对于B:当a=0时,直线l与x轴垂直,故B错误;对于C:当m=−1时,两直线重合,故C错误;对于D:因为1×a+1×(−a)=0,故直线l与直线l′一定垂直,故D正确.故选:AD.直接利用直线间的位置关系和直线平行和垂直的充要条件的应用判断A、B、C、D的结论.本题考查的知识要点:直线与直线的位置关系,直线平行的充要条件和垂直的充要条件的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.【答案】ABD【解析】解:由x+y=2,得2≥2√xy,所以xy≤1(当且仅当x=y=1时取等号),故A正确;1 x +1y=x+yxy=2xy≥2(当且仅当x=y=1时取等号)故B正确;∵2(x2+y2)≥(x+y)2=4,∴x2+y2≥2(当且仅当x=y=1时取等号),故C错误;1 x +4y=12(1x+4y)(x+y)=12(5+yx+4xy)≥92(当且仅当x=23,y=43时取等号),故D正确.故选:ABD.由基本不等式及其结论分别检验各选项即可判断.本题主要考查了基本不等式及相关结论的应用,解题的关键是公式的灵活利用,属于基础题.11.【答案】BD【解析】解:由题意,将g(x)=√3sin(2x −π6)在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数f(x)的图象,对于A :函数f(x)的最小正周期为:g(x)=√3sin(2x −π6)的周期的一半, 即函数g(x)的周期T =2π2=π的一半为π2,故A 错误;对于B :根据函数的性质,函数f(x)的最大值为√3,故B 正确;对于C :由于函数进行了翻折,函数f(x)的图象不是中心对称图形,故C 错误, 对于D :由于f(7π12)=0,得D 正确. 故选:BD .直接利用三角函数的性质和函数的关系式的应用判断A 、B 、C 、D 的结果.本题考查的知识要点:三角函数的关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.【答案】ABD【解析】解:由题意得,S n+1S n=n+2n,∴当n ≥2时,S n =S nSn−1⋅S n−1S n−2…S 2S 1⋅S 1=n+1n−1⋅n n−2 (31)⋅1=n⋅(n+1)2,当且当n =1时也成立, ∴S n =n(n+1)2,易得a n =n , ∴a 2020=2020, 故A ,B 正确;∴b n =(n+1)2n(n+2)=1+1n(n+2)=1+12(1n −1n+2),∴T n =n +12(1−13+12−14+13−15+⋯+1n−1−1n+1+1n −1n+2)=n +12(1+12−1n+1−1n+2)=n +34−12(1n+1+1n+2)<n +34, 又T n −n 随着n 的增加而增加,∴T n −n ≥T 1−1=13,∴13≤T n −n <34,C 错误,D 正确,故选:ABD .直接利用叠乘法的应用求出数列的通项公式,进一步利用裂项相消法的应用求出数列的和,进一步判断A 、B 、C 、D 的结论.本题考查的知识要点:数列的递推关系式,叠乘法的应用,裂项相消法在求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.13.【答案】−4【解析】解:由向量a ⃗ =(1,−1),b ⃗ =(−2,t),a ⃗ //b ⃗ 得t =2, 故a ⃗ ⋅b ⃗ =1×(−2)+(−1)×2=−4. 故答案为:−4.通过向量平行,求解t ,然后求解向量的数量积即可.本题考查平面向量的数量积的应用,平行的共线添加的应用,是基础题.14.【答案】(−∞,2)∪(10,+∞)【解析】解:由题意得,a 2−12a +20>0, 解得a <2或a >10.则实数a 的取值范围是:(−∞,2)∪(10,+∞). 故答案是:(−∞,2)∪(10,+∞).利用圆的一般式方程,D 2+E 2−4F >0即可求出a 的范围. 本题考查圆的一般式方程的应用,不等式的解法,考查计算能力.15.【答案】√6【解析】解:不妨设点M(x,y)在第一象限,联立{x 2a 2−y 2b 2=1y =x ,得x 2=y 2=a 2b 2b −a ,又|MN|=√2b ,∴x2+y2=b22,则2a2b2b2−a2=b22,整理得b2=5a2,所以e=√1+b2a2=√6.故答案为:√6.联立直线与双曲线方程,求解|MN|,然后推出椭圆的离心率即可.本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是基础题.16.【答案】18√1111【解析】解:由图,正二十面体的外接球即为上方正五棱锥的外接球,设其半径为R,正五边形的外接圆半径为r,则3r =sin360=35,得r=5,所以正五棱锥的顶点到底面的距离是√36−25=√11,所以R2=25+(R−√11)2,解得R=18√1111.故答案为:18√1111.根据条件得到3r =sin360=35,得r=5,进而求得球半径即可.本题考查球的半径的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.【答案】解:选择①:∵2bsinA=atanB,∴2bsinA=asinBcosB,由正弦定理可得2sinBsinA=sinAsinBcosB,∵sinA≠0,sinB≠0,∴cosB=12,∵B∈(0,π),∴B=π3,C=π2,∵asinA =bsinB,可得412=√32,解得b=4√3,∴S=12absinC=12×4×4√3×1=8√3.选择②:∵a2+c2+bc−6b=2accosB,∴a2+c2+bc−6b=2ac×a2+c2−b22ac,∴b+c=6,又∵a2=b2+c2−2bccosA,∴16=(b+c)2−2bc−√3bc,∴bc=20(2−√3),∴S=12bcsinA=12×20(2−√3)×12=5(2−√3).选择③:∵sin2B−sin2C=sinB+sinC4,∴sinB−sinC=14=12sinA,∴b−c=12a=2,又∵a2=b2+c2−2bccosA,∴16=(b−c)2+2bc−√3bc,∴bc=12(2+√3),∴S=12bcsinA=12×12(2+√3)×12=3(2+√3).【解析】选择①:利用同角三角函数基本关系式,正弦定理化简已知等式,结合sinA≠0,sinB≠0,可求cos B的值,结合B∈(0,π),可求B,C的值,利用正弦定理可求b的值,根据三角形的面积公式即可求解.选择②:由已知利用余弦定理可求bc的值,进而根据三角形的面积公式即可求解.选择③:利用正弦定理化简已知等式可得b−c=12a=2,进而根据余弦定理可求bc的值,根据三角形的面积公式即可计算得解.本题主要考查了同角三角函数基本关系式,正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(1)由题意得,S n+1−S n=√a n+1+a n+√a n,则a n+1−a n=√a n+1+√a n,∴√a n+1−√a n=1,由√a2=2可得√a1=1,∴数列{√a n}是首项为1,公差为1的等差数列.(2)由(1)可得√a n=n,∴a n=n2,依题意,b n =a a =2n(n+1)=2(1n −1n+1), ∴T n =2(1−12+12−13+⋯+1n−1n+1)=2(1−1n+1)=2nn+1.【解析】(1)利用数列的递推关系式推出√a n+1−√a n =1,然后判断数列{√a n }是首项为1,公差为1的等差数列.(2)化简b n =a a =2(1n −1n+1),利用裂项消项法,求解数列的和即可.本题考查数列的递推关系式的应用,通项公式的求法,数列求和的方法,考查综合化思想以及计算能力,是中档题.19.【答案】解:(1)由题意得,a ⃗ =(−1,sinα),b ⃗ =(−cosα,1),∴a ⃗ ⋅b ⃗ =sinα+cosα=15,∴1+2sinαcosα=125, ∴2sinαcosα=−2425<0,∴(sinα−cosα)2=1−2sinαcosα=4925, 又∵α∈(0,π), ∴sinα>0,cosα<0, ∴sinα−cosα=75;(2)联立{sinα+cosα=15sinα−cosα=75,解得{sinα=45cosα=−35,∴tanα=sinαcosα=−43, ∴tan(α−β)=tanα−tanβ1+tanαtanβ=7,即−43−tanβ1−43tanβ=7,解得tanβ=1, 又∵β∈(π,2π), ∴β=5π4.【解析】(1)由已知条件求得a ⃗ 、b ⃗ ,然后代入a⃗ ⋅b ⃗ =15求得2sinαcosα=−2425<0,再利用完全平方公式求得(sinα−cosα)2=1−2sinαcosα=4925,结合角的取值范围对所求的结果进行取舍即可;(2)联立方程组并解答求得{sinα=45cosα=−35,然后利用两角和与差的正切三角函数解答.本题考查两角和与差的三角函数,考查计算能力.20.【答案】解:(1)设所求的直线l 的方程为y =−2x +b(b >0),它与两坐标轴的正半轴的交点依次为(0,b),(b2,0),因为直线l 与两坐标轴的正半轴所围成的三角形的面积等于1, 所以12b ×b2=1,解得b =2,所以直线l 的方程是y =−2x +2,即2x +y −2=0. (2)由题意,可设圆C 的圆心为C(a,2−2a),半径为r , 所以圆心C 到直线l′:x −2y −1=0的距离,d =5=√5|a −1|=r ,又圆C 被x 轴截得的弦长等于4, 所以r 2−(2−2a)2=4, 所以5(a −1)2=4+(2−2a)2, 解得:a =−1或a =3,当a =−1时,圆心C(−1,4),r =2√5; 当a =3时,圆心C(3,−4),r =2√5;所以圆C 的方程是(x +1)2+(y −4)2=20或(x −3)2+(y +4)2=20.【解析】(1)设所求的直线l 的方程为y =−2x +b(b >0),由坐标与图形的性质和三角形的面积公式求得b 的值即可;(2)利用圆的圆心到直线的距离与半径相等,列出方程求解即可. 本题考查圆的切线方程,直线与圆的位置关系的应用,考查计算能力.21.【答案】(1)证明:过点S 作SO ⊥AD ,垂足为O ,连接OB ,OC .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,∴SO ⊥平面ABCD ,∴SO ⊥BD . ∵△SDA 是等腰三角形,∴OD =12AD =BC ,又OD//BC ,∠BCD =90°,∴四边形OBCD 是正方形,∴BD ⊥OC . 又OC ∩SO =O ,SO ⊂平面SOC ,CO ⊂平面SOC , ∴BD ⊥平面SOC ,SC ⊂平面SOC ,∴SC ⊥BD . (2)解:由(1)知,OS ,OA ,OB 两两垂直,以O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O −xyz .不妨设BC =1,则B(0,1,0),D(−1,0,0),S(0,0,1),A(1,0,0),M(−12,0,12),∴AB ⃗⃗⃗⃗⃗ =(−1,1,0),AM ⃗⃗⃗⃗⃗⃗ =(−32,0,12),设平面MAB 的法向量为m ⃗⃗⃗ =(x,y,z),则{m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−x +y =0−32x +12z =0,令x =1,得m⃗⃗⃗ =(1,1,3), 平面ABD 的一个法向量为n ⃗ =(0,0,1), ∴cos〈m ⃗⃗⃗ ,n ⃗ 〉=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=1×√1+1+32=3√1111,即二面角M −AB −D 的余弦值是3√1111.【解析】(1)过点S 作SO ⊥AD ,垂足为O ,连接OB ,OC.证明SO ⊥BD ,BD ⊥OC ,然后证明BD ⊥平面SOC ,推出SC ⊥BD .(2)OS ,OA ,OB 两两垂直,以O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O −xyz.求出平面MAB 的法向量,平面ABD 的一个法向量利用空间向量的数量积求解即可.本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力,转化思想以及计算能力,是中档题.22.【答案】解:(1)由已知得{4m +9n =18m +6n =1,解得{m =116n =112,所以曲线C 的方程为x 216+y 212=1; (2)令x =8,则R(8,6k),联立{x 216+y 212=1y =k(x −2),整理得(4k 2+3)x 2−16k 2x +16(k 2−3)=0,设P(x 1,y 1),Q(x 2,y 2), 则x 1+x 2=16k 24k 2+3,x 1x 2=16(k 2−3)4k 2+3,∴k 1+k 2=y 1−3x 1−2+y 2−3x 2−2=y 1x 1−2+y 2x 2−2−3(1x 1−2+1x 2−2) =2k −3×x 1+x 2−4x 1x 2−2(x 1+x 2)+4=2k −3×16k 24k 2+3−416(k 2−3)4k 2+3−32k 24k 2+3+4=2k −1,又k 3=6k−38−2=k −12,∴k 1+k 2=2k 3,∴λ等于定值2,得证.【解析】(1)通过点满足椭圆方程,然后求解m ,n ,得到椭圆方程.(2)令x =8,则R(8,6k),联立直线与椭圆方程,设P(x 1,y 1),Q(x 2,y 2),利用韦达定理,转化求解斜率的和,然后转化求解证明即可.本题考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题.。
2020-2021学年高二上学期期末考试数学试题及答案
2020-2021学年度第一学期期末质量检测高二数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,满分150分,考试时间100分钟. 答卷前,考生务必将自己的学校、姓名、准考证号涂写在答题卡和答题纸上. 答卷时,考生务必将Ⅰ卷答案涂在答题卡上,Ⅱ卷答案写在答题纸上,答在试卷上的无效. 祝各位考生考试顺利!第I 卷 选择题 (60分)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共12小题,每小题5分,共60分.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)直线320x y --=的倾斜角为( ) (A )30︒(B )60︒(C )120︒(D )150︒(2)经过()0,2A ,()10B ,两点的直线的方向向量为()1k ,,则k 的值是( )(A )1-(B )1 (C )2- (D )2(3)抛物线22x y =的焦点坐标为( ) (A )()1,0(B )()0,1(C )1,02⎛⎫⎪⎝⎭(D )10,2⎛⎫ ⎪⎝⎭(4)等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) (A )24 (B )48 (C )60(D )72(5)已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) (A )19(B )17(C )13(D )7(6)某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元他们第一天只得到10元,之后采取了积极措施,从第二天起每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为( ) (A )15天(B )16天(C )17天(D )18天(7)圆C x y 221:9+=与圆222:(1)(2)36C x y -++=的位置关系是( )(A )相交 (B )相离(C )内切 (D )内含(8)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为15,到y 轴的距离为12,则p 的值为( )(A )3 (B )6 (C )9 (D )12 (9)已知等差数列{}na 的前n 项和为n S ,110,a =公差 3.5,d =-n S 取得最大值时n 的值为( )(A )3 (B )4 (C )5 (D )6(10)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( ) (A )111333OA OB OC ++(B )111234OA OB OC ++ (C )111244OA OB OC ++(D )111446OA OB OC ++(11)已知2222:02x y C x y -+--=,直线:220l x y ++=,M 为直线l 上的动点,过点M 作C 的切线,MA MB ,切点为,A B ,当四边形MACB 的面积取最小值时,直线AB的方程为( )(A )210x y +-= (B )210x y ++= (C )210x y --= (D )2+10x y -=(12)已知1F 、2F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,且2122b F F a=,点P 为双曲线右支一点,I 为PF F12∆的内心,若1212IPF IPF IF F SSSλ=+△△△成立,给出下列结论:①当2PF x ⊥轴时,1230PF F ∠=︒②离心率152e +=③512λ-=④点I 的横坐标为定值a 上述结论正确的是( )(A )①② (B )②③ (C ) ①③④ (D )②③④第II 卷 (90分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共90分二. 填空题:本大题共8小题,每小题5分,共40分.(13)已知直线l 与平面α平行,直线l 的一个方向向量为()1,3,u z =,向量()4,2,1v =-与平面α垂直,则z =. (14)若直线3x =与圆2220x y x a +--=相切,则a = . (15)已知数列{}na 满足11a =,111+)nn a n N a *-=∈(,则4a =(16)已知方程22121x y m m -=++表示双曲线,则实数m 的取值范围为________.(17)在棱长为1的正方体1111ABCD A B C D -中,求点B 到直线1AC 的距离为________. (18)已知抛物线2:2(0)C y px p =>的焦点为F ,并且经过点(2,22)M -,经过焦点F 且斜率为1的直线l 与抛物线C 交于,A B 两点,则p = ,线段AB 的长为(19)已知数列{}n a 为等比数列,132a =,公比12q =,若n T 是数列{}n a 的前n 项积,则当n = 时,n T 有最大值为.(20)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(,0)F c ,点P 在椭圆C 上,线段PF 与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则椭圆C 的离心率为 .三. 解答题:本大题共4小题,共50分. 解答应写出文字说明,证明过程或演算步骤. (21)(本小题满分12分)已知圆C 的圆心在x 轴上,且经过点()30A -,,()1,2B -. (Ⅰ)求圆C 的标准方程;(Ⅱ)过点()0,2P 斜率为34的直线l 与圆C 相交于,M N 两点,求弦MN 的长.(22)(本小题满分12分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD DC =,F ,G 分别是PB ,AD 的中点.(Ⅰ)求证:GF ⊥平面PCB ;(Ⅱ)求平面PAB 与平面PCB 的夹角的大小;(III )在线段AP 上是否存在一点M ,使得DM 与平面ADF 所成角为30︒?若存在,求出M 点坐标,若不存在,请说明理由.(23)(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且4224,21,n n S S a a n N *==+∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若13n n b -=,令11=n n n n n c a b a a +⋅+⋅,求数列{}n c 的前n 项和nT .(24)(本小题满分13分)如图,在平面直角坐标系xoy 中,已知椭圆C :22221x y a b +=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(III )若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值.参考答案一. 选择题:本大题共12小题,每小题5分,共60分. 123456789101112A C DB B A D B AC BD 二. 填空题:本大题共8小题,每小题5分,共40分.(双空题答对一空得3分,答对两空得5分) 13 14 151617 18 19 20 2 35321m m <->-或 632,8p AB ==5n =或6,15232768=53三. 解答题:本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤. (21)(本小题满分12分)解:(Ⅰ)设AB 的中点为D ,则()2,1D -, 由圆的性质得CD AB ⊥,所以1CDABkk⨯=-,得1CDk=-,………………2分所以线段AB 的垂直平分线方程是1y x =--,………………3分设圆C 的标准方程为()222x a y r -+=,其中(),0C a ,半径为r (0r >), 由圆的性质,圆心(),0C a 在直线CD 上,化简得1a =-,………………5分所以圆心()1,0C -,2r CA ==,所以圆C 的标准方程为()2214x y ++=……6分 (Ⅱ)则直线l 的方程为324y x =+………………………8分 圆心()1,0C -到直线l 的距离为232-41314d ==+()………………10分所以,22224123MN r d =-=-=………………12分(22)(本小题满分12分)(Ⅰ)证明:以D 为原点,DA 、DC 、DP 分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则(2,0,0),(2,2,,0),(0,2,0),(0,0,2),(1,0,0),(1,1,1)A B C P G F ………………1分(0,1,1),(2,2,2),(0,2,2)GF PB PC ∴==-=-设平面PCB 的法向量为111(,,)m x y z =,则1111122200,2200x y z m PB y z m PC ⎧+-=⋅=⎧⎪⎨⎨-=⋅=⎩⎪⎩即 (3)分令1=1z ,则110,1x y ==,(0,1,1)m ∴=∴//GF m ,故GF ⊥平面PCB .………………4分(Ⅱ)解:由(Ⅰ)知,平面PCB 的法向量为(0,1,1)m =,(2,2,2),(2,0,2)PB PA =-=-设平面PAB 的法向量为222(,,)n x y z =,则2222222200,2200x y z n PB x z n PA ⎧+-=⋅=⎧⎪⎨⎨-=⋅=⎩⎪⎩即,令2=1z ,则221,0x y ==,所以平面PAB 的法向量(1,0,1)n =………………6分11cos ,222m n m n m n⋅∴<>===⨯⋅………………7分∴平面PAB 与平面PCB 的夹角大小为60.………………8分(III )解:假设线段AP 上存在一点M ,设AM AP λ=,[]01λ∈,,则(2202M λλ-,,),(2202DM λλ∴=-,,),设平面ADF 的法向量为333(,,)t x y z = (2,0,0),(1,1,1)DA DF ==由0,0DA t DF t ⋅=⋅=得到(0,1,1)t =-……………9分DM 与平面ADF 所成角为30︒ DM ∴与t 所成角为60︒,222,(22)42cos 60cos DM t t M tDM D λλλ⋅>==⋅-+∴︒=<,解得12λ=,……11分 故在线段AP 上存在一点M ,使得DM 与平面ADF 所成角为30︒,z点M 的坐标为101(,,)................12分 (23)(本小题满分13分)解: (Ⅰ)设等差数列{}n a 的公差为d ,则由4224,21,n n S S a a n N *==+∈可得11114684,(21)22(1) 1.a d a d a n d a n d +=+⎧⎨+-=+-+⎩……………………2分 解得11,2.a d =⎧⎨=⎩因此21()n a n n N *=-∈……………………4分 (Ⅱ)由(Ⅰ)及1=3n n b - ,知11(21)3(21)(21)n n c n n n -=-⋅+-+………………………5分数列{}nc 的前n 项和为n T ,121111=13+33+53+(2131335(21)(21)n n T n n n -⨯⨯⨯⋅⋅⋅+-⋅+++⋅⋅⋅+⨯⨯-+)..7分则令0121133353(21)3,11111(1)1335(21)(21)22121n n A n n B n n n n T A B-=⨯+⨯+⨯+⋅⋅⋅+-⋅=++⋅⋅⋅+=-=⨯⨯-+++=+…………8分 ()01211231133353(21)3,3133353233(21)3n n n A n A n n --=⨯+⨯+⨯+⋅⋅⋅+-⋅=⨯+⨯+⨯+⋅⋅⋅+-⋅+-⋅ (9)分两式相减得1231212(3333)(21)32(33)21+(21)33(22)213n nn n nA n A n n --=+⨯+++⋅⋅⋅+--⋅--=--⋅=⋅---………………10分 所以()131nA n =-⋅+……………………12分综合知()13121nn nT A B n n =+=-⋅+++……………………13分 (24)(本小题满分13分)解:(Ⅰ)因为椭圆C :22221x y a b +=0a b >>()的离心率1,2e =左顶点为(2,0)A -,所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22431x y +=;………………3分(Ⅱ)直线l 的方程为(2)y k x =+,由22431(2)x y y k x ⎧+=⎪⎨⎪=+⎩消元整理可得:22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k k y k k k -+=+=++,所以2228612(,)4343k k D k k -+++,………………5分 因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k k k k -++,………………6分 则3(0)4OP k k k =-≠,直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥, 则1OPEQ kk ⋅=-,即32()14n k km--⋅=-恒成立,所以(46)30m k n +-=,所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩, 所以定点Q 的坐标为3(,0)2-.………………8分 (III )因为//OM l ,所以OM 的方程可设为y kx =,和22431x y +=联立可得M 点的横坐标为22343x k =±+,………………9分由//OM l 可得:22249=343D AE A D A M M x x x x x x AD AEk OM x x k -+--++==+2216(43)22343k k =+++≥,………………11分当且仅当2264343k k +=+,即32k =±时取等号,………………12分 所以当32k =±时,AD AEOM +的最小值为22.………………13分。
甘肃省2020学年高二数学上学期期末考试试题理含解析
高二数学上学期期末考试试题 理(含解析)(时间120分钟,分值150分)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上) 1.设集合{}220M x x x =--,{}1|128x N x -=≤≤,则M N ⋂=( )A. (]2,4 B. []1,4C. (]1,4-D. [)4,+∞ 【答案】A 【解析】 【分析】集合M 与集合N 的公共元素构集合M ∩N ,由此利用集合M={x|x 2﹣x ﹣2>0}={x|x<﹣1或x>2},N={x|1x 4≤≤},能求出M ∩N.【详解】∵集合M={x|x 2﹣x ﹣2>0}={x|x<﹣1或x>2}, N={}1|128x x -≤≤={x|1x 4≤≤},∴M∩N={x|2<x 4≤}. 故选A【点睛】本题考查集合的交集及其运算,关键是将两集合的关系转化为元素间的关系,是基础题. 2.不等式1021x x -≤+的解集为 ( ) A. 1,12⎛⎤-⎥⎝⎦ B. 1,12⎡⎤-⎢⎥⎣⎦C. [)1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D. [)1,1,2⎛⎤-∞-+∞⎥⎝⎦【答案】A 【解析】试题分析:不等式1021x x -≤+等价于(1)(21)0{210x x x -+≤+≠解得112x -<≤,所以选A.考点:分式不等式的解法.3.命题甲:动点P 到两个定点,A B 的距离之和2(PA PB a +=常数0)a >;命题乙:P 点的轨迹是椭圆.则命题甲是命题乙的 A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既非充分也非必要条件 【答案】B 【解析】由题意得,当动点P 到两个定点,A B 的距离之和2(PA PB a AB +=> 常数0)a >时,点P 的轨迹为椭圆,所以甲是乙的必要不充分条件,故选B .4.记等差数列{}n a 的前n 项和为.n S 若141,20,2a S ==则6S = A. 16 B. 24C. 36D. 48【答案】D 【解析】本题考查数列求和公式的简单应用,直接代入即可 由得3d =,故.5.在ABC ∆中,23,22,45a b B ︒==∠=,则∠A 等于( ) A. 30°或150° B. 60°C. 60°或120°D. 30°【答案】C 【解析】 【分析】直接使用正弦定理,即可求得结果. 【详解】根据正弦定理a b sinA sinB=, 23245sin =︒,解得3sinA =A 为60°或120°; 又a b >,则A B >,显然两个结果都满足题意.故选:C.【点睛】本题考查正弦定理的直接使用,属基础题.6.一个等比数列{}n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A. 63 B. 108C. 75D. 83【答案】A 【解析】试题分析:因为在等比数列中,连续相同项的和依然成等比数列,即成等比数列,题中,根据等比中项性质有,则,故本题正确选项为A.考点:等比数列连续相同项和的性质及等比中项.7.已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ) A. 10 B. 9 C. 8 D. 5【答案】D 【解析】【详解】由题意知,23cos 2A+2cos 2A-1=0, 即cos 2A=125, 又因△ABC 为锐角三角形, 所以cosA=15. △ABC 中由余弦定理知72=b 2+62-2b×6×15, 即b 2-125b-13=0, 即b=5或b=-135(舍去),故选D.8.若抛物线22y x =上有两点,A B ,且AB 垂直于x 轴,若22AB =,则抛物线的焦点到直线AB 的距离为( )A.12B.14C.16D.18【答案】A 【解析】 【分析】设出两点的坐标,根据弦长求得两点的横坐标,即可求解. 【详解】因为AB 垂直于x 轴, 设()()11111,,,(0)A x y B x y y ->、因为AB =,故可得12y =1y =代入抛物线方程,可得11x =,又抛物线的焦点为1,?02⎛⎫ ⎪⎝⎭故抛物线的焦点到直线AB 的距离为11122-=. 故选:A.【点睛】本题考查求抛物线上的点的坐标,以及由抛物线方程求焦点坐标,属基础题. 9.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ) A. 55986只 B. 46656只 C. 216只 D. 36只【答案】B 【解析】 【分析】先由题得到{a n }是公比为6的等比数列,再利用等比数列的通项求出a 6得解. 【详解】设第n 天所有的蜜蜂都归巢后共有a n 只蜜蜂,则有a n +1=6a n ,a 1=6, 则{a n }是公比为6的等比数列,则a 6=a 1q 5=6×65=46656. 故答案为B【点睛】本题主要考查等比数列性质的判定和等比数列的通项,意在考查学生对这些知识的掌握水平和计算推理能力.10.已知F 为抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为 ( )A.34B. 1C.54D.74【答案】C 【解析】 【分析】抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,则可利用几何性质得到32MH =,故可得M 到y 轴的距离.【详解】抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,因为,A B 是该抛物线上的两点,故,AE AF BG BF ==, 所以3AE BG AF BF +=+=,又MH 为梯形的中位线,所以32MH =,故M 到y 轴的距离为315244-=,故选C. 【点睛】本题考查抛物线的几何性质,属于基础题.11.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 A. 2 B.32C. 3D. 2【答案】A 【解析】试题分析:由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.12.已知双曲线22221x y a b-=(0a >,0b >)的两条渐近线与抛物线22y px =(0p >)的准线分别交于A 、B 两点,O 为坐标原点,若223b a =,△AOB 3则p =( ) A. 1 B.32C. 2D. 3【答案】C 【解析】 【分析】求出双曲线的渐近线,利用三角形面积建立方程即可求解【详解】由2222333b bb a a a=⇒=⇒=3y x =,与抛物线的准线交于3322p p p p A ,,B ,⎛⎛-- ⎝⎭⎝⎭,所以AOB ∆的面积为()133022p,p ⨯=>, 解得2p = 故选C【点睛】本题考查抛物线,双曲线的几何性质,属于基础题型第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分.)13.命题若220x y +=,则,x y 都为零的逆否命题是_______.【答案】若,x y 不全为零,则220x y +≠.【解析】因为一个命题的逆否命题,是将原命题逆命题的条件与结论同时否定得到,所以“若220x y +=,则,x y 都为零”的逆否命题是“若,x y 不全为零,则220x y +≠”,故答案为若,x y 不全为零,则220x y +≠.14.已知各项均为正数的等比数列{}n a 中,3813lg()3a a a =,则115a a 的值为______________. 【答案】100 【解析】 【分析】根据等比数列的下标和性质,求得8a ,即可得115a a . 【详解】因为{}n a 是等比数列,故可得()338138a a a a =因为3813lg()3a a a =,故可得81lga =,解得810a =.故115a a ()28100a ==. 故答案为:100.【点睛】本题考查等比数列的下标和性质,属基础题.15.设集合S ={x ||2x -|3>},T ={8x a x a <<+},S ∪T =R ,则a 的取值范围是____________.【答案】()3,1-- 【解析】 【分析】求解绝对值不等式可得集合S ,再根据S ∪T =R ,即可得参数的范围. 【详解】对集合S :23x ->,解得集合()(),15,S =-∞-⋃+∞, 因为S ∪T =R ,故可得1,85a a -+ 解得()3,1a ∈--. 故答案为:()3,1--.【点睛】本题考查由集合之间的关系求参数范围的问题,涉及绝对值不等式的求解.16.过双曲线C :22221x y a b-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .【答案】2 【解析】【详解】双曲线22221x y a b -=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c +=,由2222a c a c+=,得2()410c c a a -+=,解之得2c a =+2c a =(舍去,因为离心率1ca>),故双曲线的离心率为2. 考点:1.双曲线的几何性质;2.直线方程.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在锐角ABC ∆中,,,a b c 分别是角,,A B C 2sin c A =. (1)求角C 的大小;(2)若c =ABC ∆,求+a b 的值. 【答案】(1)60;(2) 5. 【解析】 【分析】(1)由2sin c A =,利用正弦定理可得sin C =,结合C 是锐角可得结果;(2)由1sin 2ab C =6ab =,再利用余弦定理可得结果.【详解】(12sin c A =2sin sin A C A =,因为sin A 0≠,所以sin C =, 因为C 是锐角, 所以60C =.(2)由于1sin 2ab C =6ab ∴=, 又由于2222cos60c a b ab =+-()()227318a b ab a b =+-=+-,()225a b +=,所以5a b +=.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.求适合下列条件的曲线的标准方程. (1)经过点15,34⎛⎫⎪⎝⎭,且一条渐近线方程为430x y +=的双曲线; (2)两个焦点坐标分别为()()2,0,2,0-,并且经过点5322⎛⎫- ⎪⎝⎭,的椭圆. 【答案】(1)221916x y -=; (2)221106x y +=.【解析】 【分析】(1)根据渐近线方程,设出双曲线方程,待定系数即可求得; (2)根据椭圆的定义,以及已知条件,即可求得,,a b c .【详解】(1)因渐近线为4x +3y =0,故可设双曲线的方程为16x 2-9y 2=k ,将15,34⎛⎫⎪⎝⎭代入得,k =225-81=144. 代入①并整理得221916x y -=.故所求双曲线的标准方程为221916x y -=.(2)因为椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>.又因为椭圆过点5322⎛⎫- ⎪⎝⎭,,不妨设其为P ,则12PF PF +==由椭圆的定义知2a =a =又因为2c =,所以2226b ac =-=, 因此,所求椭圆标准方程为221106x y += .【点睛】本题考查已知双曲线渐近线求双曲线方程,以及已知椭圆上一点及焦点求椭圆方程. 19.已知正项等比数列{}n a ,112a =,2a 与4a 的等比中项为18. (1)求数列{}n a 的通项公式n a ;(2)令n n b na =,数列{}n b 的前n 项和为n S . 【答案】(1)12n n a =; (2)222nn +-. 【解析】 【分析】(1)根据基本量,列方程即可求得等比数列的公式,写出通项公式即可; (2)根据通项公式的特点,利用错位相减法求解数列的前n 项和.【详解】(1)因为正项等比数列{}n a ,所以0n a >,设公比为q ,则0q >. 又因为2a 与4a 的等比中项为18,所以318a =,即2118a q =,由112a =,得12q =,于是,数列{}n a 的通项公式为12n n a =.(2)由题可知,2n nn b =, 于是,231232222n n nS =++++… ① 2341112322222n n nS +=++++… ②由①-②,得23411111112222222n n nn S +=+++++-…111(1)221212n n n +-=--11122n n n +=--, 解得222n n n S +=-【点睛】本题考查由基本量计算等比数列的通项公式,以及利用错位相减法求解数列的前n 项和,属数列基础题.20.如图,港口B 在港口O 正东方120海里处,小岛C 在港口O 北偏东方向和港口B 北偏西方向上,一艘科学考察船从港口O 出发,沿北偏东的OA 方向以每小时20海里的速度驶离港口O ,一艘快艇从港口B 出发,以每小时60海里的速度驶向小岛C ,在C 岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间需要1小时,问快艇驶离港口B 后最少要经过多少时间才能和考察船相遇?【答案】3 【解析】试题分析:由图可知OB=120,BC=60.OC=3快艇从B 到C 需要1小时,然后装物资需要1小时,所以考察船已经走了两小时 设快艇从C 到A 需t 小时; 则OA="40+20t,CA=60t,"30AOC ∠=,由余弦定理可得:222(60)(4020)(603)2603(4020)cos30o t t t =++-⨯+1t =共3小时考点:本题考查余弦定理点评:将应用题的条件标出图上各个边长及角度,然后用余弦定理计算21.已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,(,0)A a ,(0,)B b ,(0,0)O ,OAB∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析. 【解析】 【分析】(Ⅰ)根据离心率为3,即3c a =,OAB 的面积为1,即,椭圆中列方程组进行求解;(Ⅱ)根据已知条件分别求出的值,求其乘积为定值.【详解】(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.【考点】椭圆方程、直线与椭圆的位置关系、运算求解能力.【名师点睛】解决定值、定点的方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元思想的运用可有效地简化运算.22.设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤恒成立,求a 的取值范围. 【答案】(1)[2,3]-;(2) ][(),62,-∞-⋃+∞. 【解析】【详解】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为|||2|4x a x ++-≥,再根据绝对值三角不等式得|||2|x a x ++-最小值,最后解不等式|2|4a +≥得a 的取值范围. 详解:(1)当1a =时,()24,1,2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于24x a x ++-≥.而22x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是][(),62,-∞-⋃+∞.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)
2020-2021学年天津市和平区高二(上)期末数学试卷一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=22.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣13.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.58.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是.11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m =.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是.三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.2020-2021学年天津市和平区高二(上)期末数学试卷参考答案与试题解析一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=2【解答】解:圆心为(1,﹣1),半径为2的圆的标准方程是:(x﹣1)2+(y+1)2=4.故选:C.2.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣1【解答】解:数列{a n},满足a n+1=,当a1=时,解得a2=2,当n=2,解得,当n=3时,解得,所以数列的周期为3.故.故选:A.3.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:根据题意,双曲线的焦点在x轴上,而直线x+2y=5与x轴交点为(5,0),则c=5,进而有9+a2=25,解可得a2=16,则双曲线的方程为:,其渐近线方程为:y=±x;故选:A.4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.【解答】解:已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,将点P(2,2)代入圆(x﹣1)2+y2=5恒成立,则点P在圆上.即过点P(2,2)的直线与圆(x﹣1)2+y2=5相切的切线只有一条,令过点P(2,2)的切线的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,由此切线与ax﹣y+1=0平行,两直线的斜率相等且y轴截距不等,可得k=a且﹣2k+2≠1;由圆心到切线的距离等于圆的半径,可得圆的半径r==,k=﹣,即a=﹣;故选:C.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.【解答】解:由等差数列的性质可得:====.故选:C.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±【解答】解:由题意a2、a4是方程2x2﹣11x+8=0的两根,故有a2a4=4又{a n}为等比数列∴a2a4=a32,∴a3=±2.故选:B.7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5【解答】解:依题意可知抛物线的准线方程为y=﹣1,∴点A到准线的距离为4+1=5,根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,∴点A与抛物线焦点的距离为5,故选:D.8.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.【解答】解:根据题意,圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0),则有,联立可得:y=,即两圆公共弦所在直线的方程为y=,圆C1:x2+y2=4,其圆心为(0,0),半径r=2,若公共弦的弦长为2,则圆C1的圆心C1到公共弦的距离d==,又由a>0,则有=,解可得a=,故选:A.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.【解答】解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选:D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是(﹣2,0).【解答】解:∵抛物线方程y2=﹣8x,∴焦点在x轴,p=4,∴焦点坐标为(﹣2,0)故答案为(﹣2,0).11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m=.【解答】解:直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,由l1⊥l2,得3m+(m﹣2)=0,即4m=2,解得m=.故答案为:.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取x=1,得=(1,1,2),∴点B到平面D1EC的距离:d===.故答案为:.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=2n﹣1.【解答】解:数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),所以,,…,,所以=,所以.故答案为:2n﹣1.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是[1﹣,3].【解答】解:如图所示:曲线y=3﹣,即y﹣3=﹣,平方可得(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+,或b=1﹣.结合图象可得1﹣≤b≤3,故答案为:[1﹣,3].三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.【解答】解:(1)设等差数列{a n}的公差为d,则,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,S n==n2.(2)b n===,∴数列{b n}的前n项和为T n=+…+==.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.【解答】解:(1)证明:连接AC,交BD于点O,连接OE,∵ABCD为正方形,∴O是AC的中点,∵E是PC的中点,∴OE∥P A,∵P A⊄平面BDE,OE⊂平面BDE,∴P A∥平面BDE.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,则B(2,2,0),D(0,0,0),E(0,1,1),C(0,2,0),=(2,2,0),=(0,1,1),设平面BDE的法向量=(x,y,z),则,设x=1,则=(1,﹣1,1),平面DEC的法向量=(1,0,0),设平面BDE与平面DEC的夹角为θ,则cosθ===,∴平面BDE与平面DEC的夹角的余弦值为.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.【解答】解:(Ⅰ)由e==,且a=2,则c=1,b==,故椭圆C的方程为+=1;(Ⅱ)F1(﹣1,0),F2(1,0),设经过右焦点F2的直线l的方程为x=my+1,与椭圆方程3x2+4y2=12联立,可得(4+3m2)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,由⊥,即AF1⊥BF1,k•k=•=﹣1,即有(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=(1+m2)•(﹣)+2m•(﹣)+4=0,解得m=±,则直线l的方程为x=±y+1,即为y=±(x﹣1).18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.【解答】解:(1)数列{a n}的前n项和S n=1﹣a n①.所以当n=1时,.当n≥2时,S n﹣1=1﹣a n﹣1②,①﹣②得:a n=S n﹣S n﹣1=a n﹣1﹣a n,整理得2a n=a n﹣1,故(常数),所以数列{a n}是以为首项,为公比的等比数列;所以,首项符合通项,所以.证明:(2)设,所以①,②,①﹣②得:=,所以.。
宁夏2020学年高二数学上学期期末考试试卷理含解析
高二上学期期末考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线的焦点坐标为()A. B. C. D.【答案】C【解析】双曲线中,且焦点在y轴上,所以,解得.所以双曲线的焦点坐标为.故选C.2.已知命题,,则命题的否定为()A. ,B. ,C. ,D. ,【答案】A【解析】【分析】根据全程命题的否定是特称命题,这一规则书写即可.【详解】全称命题“,”的否定为特称命题,故命题的否定为“,”.故答案为:A.【点睛】这个题目考查了全称命题的否定的写法,换量词否结论,不变条件.3.经过点的抛物线的标准方程为()A. B.C. 或D. 无法确定【解析】【分析】分情况设出抛物线的方程,代入已知点即可得到具体方程。
【详解】由题设知抛物线开口向右或开口向上,设其方程为或,将点代入可得或,所以所求抛物线的标准方程为或.故选.【点睛】这个题目考查了抛物线方程的求法,可成为待定系数法,较为基础.4.已知空间向量,,则“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据向量垂直的点积运算得到x的值,进而得到结果.【详解】,,或-3.故x=1是的充分不必要条件.故答案为:B.【点睛】这个题目考查了向量垂直的坐标表示,也考查了充分必要条件的判断,题目基础. 判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p 为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5.已知的周长为10,且,,则顶点的轨迹方程为()A. B.C. D.【答案】D【解析】根据椭圆定义可得到轨迹是椭圆,又因为三点不共线故去掉两个点.【详解】由题6>4,故点的轨迹为焦点在轴上的椭圆,,,故,故椭圆的方程为,又不共线,所以的轨迹方程为.故选.【点睛】求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.6.若命题是真命题,则实数的取值范围是()A. B.C. D.【答案】B【解析】【分析】根据题干得到需满足,解出不等式即可.【详解】命题是真命题,则需满足,解得或. 故选.【点睛】这个题目考查了已知命题的真假,求参的问题.涉及二次函数在R上有解的问题,开口向上,只需要判别式大于等于0即可.7.已知双曲线的一条渐近线方程为,,分别是双曲线的左,右焦点,点在双曲线上,且,则()A. 1B. 17C. 1或17D. 18【答案】B【解析】【分析】根据渐近线的斜率为得到a值,再由双曲线定义得到结果.【详解】依题意,有,所以.因为,所以点在双曲线的左支上,故有,解得.故选.【点睛】这个题目考查了双曲线的标准方程的应用和概念的应用,较为简单.8.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.【答案】C【解析】【分析】通过题干条件得到面的法向量,,求法向量和的夹角即可.【详解】由题知,为平面的一个法向量,又因为,所以.故答案为:C.【点睛】求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可。
吉林省2020学年高二上学期期末考试数学文试题Word版含答案
注参考公式:()()()1122211nniii ii i nniii i x x yyx y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:2p x ≤,:02q x ≤≤,则p 是q 的( )条件A .充要B .充分不必要C .必要不充分D .既不充分也不必要 2.用简单随机抽样的的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( ) A .1100 B .199 C .120 D .1503.已知命题:p 若a b >,则22a b >,命题:q 若24x =,则2x =,则下列命题中为真命题的是( )A .p q ∧B .p q ∨C .p ⌝D .q ⌝ 4.把“二进制”数()2101101化为“十进制”数是( ) A .45 B .44 C.43 D .425.天气预报说,在今后的三天中,每一天下雨的概率均为40%,现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每天个随机数作为一组,代表这三天的下雨情况,经随机模拟试验产生了如下20组随机数:据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.15 C.0.20 D .0.256.某班共有学生52名,学号分别为152~号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号的学生在样本中,那么样本中还有一名学生的学号是( )A .10B .16 C.53 D .32 7.阅读下图的程序框图,则输出的S =( )A .14B .20 C.30 D .558.已知函数()y f x =,其导函数()'y f x =的图象如图所示,则()y f x =( )A .在() 0-∞,上为减函数 B .在0x =处取极小值 C.在()4 +∞,上为减函数 D .在2x =处取极大值 9.双曲线()22216103x y p p-=>的左焦点在抛物线22y px =的准线上,则p =( )A .14 B .12C.2 D .4 10.曲线3ln 2y x x =++在点0P 处切线方程为410x y --=,则点0P 的坐标是( )A .()0 1,B .()1 1-, C.()1 3, D .()1 0, 11.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .恰有1件次品与恰有2件正品 C.至少有1件次品与至少有1件正品 D .至少有1件次品与都是正品 12.圆柱的表面积为S ,当圆柱的体积最大时,圆柱的底面半径为( )A D .3 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.用辗转相除法求108和45的最大公约数为 .14.在区间[]1 5,和[]2 4,上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率是 .15.已知一个多项式()765432765432f x x x x x x x x =++++++,用秦九韶算法求3x =时的函数值时,3v = . 16.下列命题中:①命题:p “0x R ∃∈,20010x x -->”的否定p ⌝“x R ∀∈,210x x --≤”; ②汽车的重量和汽车每消耗1升汽油所行驶的平均路程成正相关关系; ③命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ④概率是随机的,在试验前不能确定. 正确的有 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)一个盒子中装有5个编号依次为1,2,3,4,5的球,这5个球除号码外完全相同,有放回地连续抽取两次,每次任意地取出一个球. (1)用列举法列出所有可能的结果;(2)求事件A =“取出球的号码之和不小于6的概率”. 18. (本小题满分12分)甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下: 甲:78 76 74 90 82 乙:90 70 75 85 80 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由. 19. (本小题满分12分)在某化学反应的中间阶段,压力保持不变,温度从1︒变化到5︒,反应结果如下表所示(x 代表温度,y 代表结果):(1)求化学反应的结果y 对温度x 的线性回归方程y bx a =+;(2)判断变量x 与y 之间是正相关还是负相关,并预测当温度达到10︒时反应结果为多少? 20. (本小题满分12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的眇数是5.(1)求第四小组的频率和参加这次测试的学生人数; (2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?21. (本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,两焦点分别为12 F F ,,过1F 的直线交椭圆C 于 M N ,两点,且2MF N △的周长为8. (1)求椭圆C 的方程;(2)过点() 0P m ,作圆221x y +=的切线l 交椭圆C 于 A B ,两点,求弦长AB 的最大值. 22. (本小题满分12分)函数()22ln f x ax x x =-+,a 为常数. (1)当12a =时,求()f x 的最大值; (2)若函数()f x 在区间[]1 2,上为单调函数,求a 的取值范围.2016-2017学年度上学期高二年级数学(文)学科期末试题答案一、选择题1-5:CCBAD 6-10:BCCCDC 11、12:BC 二、填空题 13.9 14.1215.262 16.()()13 三、解答题17.解:(1)所有可能结果为25.列举如下:()()()()()1 1 1 2 1 3 1 4 1 5,,,,,,,,,; ()()()()()2 1 2 2 2 3 2 4 2 5,,,,,,,,,; ()()()()()3 1 3 2 3 3 3 4 3 5,,,,,,,,,; ()()()()()4 1 4 2 4 3 4 4 4 5,,,,,,,,,; ()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,. (2)取出球的号码之和不小于6的是()()()()()()1 5 2 4 2 5 3 3 3 4 3 5,,,,,,,,,,,,()()4 2 4 3,,,,()()4 4 4 5,,,,()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,,共15种, 所以()153255P A ==. 18.解:(1)用茎叶图表示如下:………………3分 (2)80x =甲,80x =乙.………………7分而()()()()()222222178807680748090808280325s ⎡⎤=-+-+-+-+-=⎣⎦甲,()()()()()222222190807080758085808080505s ⎡⎤=-+-+-+-+-=⎣⎦乙,因为x x =甲乙,22s s <甲乙,所以在平均数一样的条件下,甲的水平更为稳定,所以我认为应该派甲去.19.附:线性回归方程y bx a =+中,1221ni ii nii x ynxyb xnx==-=-∑∑,a y bx =-.解:(1)由题意:5n =,51135i i x x ===∑,5117.25i i y y ===∑,又5221155559105i i x x =-=-⨯=∑,515129537.221i i i x y xy =-=-⨯⨯=∑. ∴1221212.110ni ii nii x ynxy b xnx==-===-∑∑,7.2 2.130.9a y bx =-=-⨯=. 故所求的回归方程为 2.10.9y x =+. 因为第一小组的频数为5,其频率为0.1.所以参加这次测试的学生人数为50.150+=(人). (2)0.350 1.5⨯=,0.45020⨯=,0.25010⨯=,则第一、第二、第三、第四小组的频数分别为5,15,20,10. 所以学生跳绳次数的中位数落在第三小组内. (3)跳绳成绩的优秀率为()0.40.2100%60%+⨯=. 21.解:(1)由题得:c a =,48a =,所以2a =,c ,又222b a c =-,所以1b =. 即椭圆C 的方程为2214x y +=.(2)由题意知,1m >,设切线l 的方程为()()y k x m k o =-≠,由()2244y k x m x y ⎧=-⎪⎨+=⎪⎩, 得()22222148440k x k mx k m +-+-=,设()11 A x y ,,()22 B x y ,. 则2480k ∆=>,2122814k m x x k +=+,221224414k m x x k -=+,由过点()() 01P m m ≠±,的直线l 与圆221x y +=相切得1d ==,即2211k m =-,所以2 ABmm ====≤+,当且仅当m=2AB=,所以AB的最大值为2.22.解:(1)当12a=时,()2lnf x x x x=-+,则()f x的定义域为()0 +∞,,∴()()()2111'12x xf x xx x-+-=-+=,由()'0f x>,得01x<<,由()'0f x<,得1x>;∴()f x在()0 1,上是增函数,在()1 +∞,上是减函数,∴()f x的最大值为()10f=.(2)∵()1'22f x a xx=-+,若函数()f x在区间[]1 2,上为单调函数,则()'0f x≥或()'0f x≤在区间[]1 2,上恒成立,∴1220a xx-+≥或1220a xx-+≤在区间[]1 2,上恒成立.即122a xx≥-或122a xx≤-在区间[]1 2,上恒成立.设()12h x xx=-,∵()21'20h xx=+>,∴()12h x xx=-在区间[]1 2,上为增函数,∴()()max722h x h==,()()min11h x h==,∴只需722a≥或21a≤.。
2020-2021学年高二上学期期末考试数学试卷(含解析)
2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
山东省济南市2020_2021学年高二数学上学期期末考试试题含解析
对于B:正方体 中,AC⊥BD,又 ,且BD∩DF=D,所以 ,所以点F在 上,即F的轨迹为线段 ,故B错误;
对于C:在平面 内,
到直线 的距离为 当点 , 落在 上时, ;故C正确;
对于D:
建立如图示的坐标系,则
山东省济南市2020-2021学年高二数学上学期期末考试试题(含解析)
本试卷共4页,22题,全卷满分150分.考试用时120分钟.
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 直线 的斜率为( )
A. B. C. D.
————C
分析:
所以 .
点拨:(1)等差(比)数列问题解决 基本方法:基本量代换;
(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.
19. 在平面直角坐标系中,已知抛物线 的准线方程为 .
(1)求 的值;
(2)直线 交抛物线于 , 两点, 为坐标原点,且 ,求线段 的长度.
————(1) ;(2) .
————A
分析:
作出异面直线 和 所成的角,然后解三角形求出两条异面直线所成角的余弦值.
解答:设 分别是 的中点,由于 分别是 的中点,结合正方体的性质可知 ,
所以 是异面直线 和 所成的角或其补角,
设异面直线 和 所成的角为 ,设正方体的棱长为 ,
, ,
则 .
故选:A.
点拨:思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:
解答:圆的方程为 ,圆心 ,
2020-2021年人教版高二上册数学期末数学试卷带答案
2020-2021学年高二(上)期末数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分))1. 复数z 1,z 2在复平面内对应的点关于直线y =x 对称,且z 1=3+2i ,则z 2=________.2. 复数a−2i 1+2i (i 是虚数单位)是纯虚数,则实数a 的值为________.3. 抛物线x 2=16y 的准线方程是________.4. 已知复数z =2+4i ,其中i 是虚数单位,,则|ω|=________.5. 设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,若AC ⊥BD ,则四边形EFGH 的形状是________.6. 直线l 与抛物线y 2=4x 交于两点A(x 1, y 1),B(x 2, y 2),O 为坐标原点,若,则x 1x 2=________.7. 已知点F 1,F 2分别是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.8. 设F 1,F 2是双曲线x 25−y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于________9. 已知矩形ABCD 的边AB =a ,BC =2,PA ⊥平面ABCD ,PA =2,现有以下五个数据:(1)a =12;(2)a =1;(3)a =√3;(4)a =2;(5)a =4. 当在BC 边上存在点Q ,使PQ ⊥QD 时,则a 可以取________.(填上一个正确的数据序号即可)10. 在所有经过正方体ABCD −A 1B 1C 1D 1的任意两个顶点的直线中任取k 条,求这k 条直线恰是两两异面,则k 的最大值为________.11. 在平面几何里,有勾股点了“设△ABC的两边AC,AB互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,若三棱锥A−BCD的三个侧面ABC,ACD,ADB两类互相垂直,则有________.=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:12. 过双曲线x2−y215(x−4)2+y2=1作切线,切点分别为M,N,则|PM|2−|PN|2的最小值为________.二、选择题(本大题共4小题,满分20分,每题5分))13. “a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件14. 已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,却不一定存在直线与m垂直15. 正方体ABCD−A1B1C1D1中,E,F,G,H分别为CC1,BC,CD,BB1的中点,则下列结论正确的是()A.B1G // EFB.A1H⊥EFC.B1G与AE相交D.平面AEF∩平面AA1D1D=AD116. 已知直线l:x+y+2=0与椭圆Γ:=1交于A,B两点,直线l1与椭圆T交于M,N两点,有下列直线l1:①x−y−2=0;②x+y−2=0;③x+y−2=0;④x−y+2=0,其中满足△OAB与△OMN的面积相等的直线l1可以是()A.①②③B.①③④C.②③④D.①②③④三、解答题(本大题共5小题,满分35分))17. 已知复数z1,z2是实系数一元二次方程ax2+bx+c=0的两根,且复数z1在复平面内对应的点在第一象限,若z1+2z2=12−3i,其中i是虚数单位.(1)求复数z1,z2;(2)若复数z满足|z|=1,求|z−z1|的最大值和最小值.18. 唐代诗人李顾的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点A(3, 0)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营孙在区域即为回到军营.(1)若军营所在区域为Ω:x2+y2≤2,求“将军饮马”的最短总路程;(2)若军营所在区域为Ω:|x|+2|y|≤2,求“将军饮马”的最短总路程.19. 如图,已知正方体ABCD−A1B1C1D1的边长为1,点P在底面ABCD(含边界)内运动.(1)证明:BD⊥平面AA1C1C;(2)若A1P和A1B与平面ABCD所成的角相等,求点P的轨迹长度.20. 已知直线l:x=my+1过椭圆的右焦点F,且直线l交椭圆C于A,B两点,点A,F,B在直线l′:x=4上的射影依次为点D,K,E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当m变化时,探究λ1+λ2的值是否为定值?若是,求出λ1+λ2的值;否则,说明理由;(3)连接AE,BD,试探究当m变化时,直线AE与BD是否相交于顶点?若是,请求出定点的坐标,并给予证明;否则,说明理由.21. 已知平面内到定点A(1, 0)的距离与到定直线x=−1的距离之和为3的动点M的轨迹是Γ,(1)求曲线Γ与x轴的交点P的坐标;(2)求曲线Γ的方程;(3)设B(a, 1)(a为常数),求|MA|+|MB|的最小值d(a).参考答案与试题解析一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分)1.【答案】2+3i【解析】直接利用对称知识求出复数的代数形式即可.2.【答案】4【解析】化简复数为a +bi(a, b ∈R),然后由复数的实部等于零且虚部不等于0求出实数a 的值. 3.【答案】y =−4【解析】利用抛物线方程直接求解准线方程即可.4.【答案】【解析】求出,求出ω,从而求出|ω|的值即可.5.【答案】矩形【解析】利用三角形中位线定理可得四边形EFGH 是平行四边形.根据AC ⊥BD ,可得EF ⊥EH .即可判断出四边形EFGH 的形状是矩形.6.【答案】4【解析】把点的坐标代入方程,结合向量的数量积化简求解即可.7.【答案】2【解析】求出椭圆的a ,b ,运用中点的向量表示,得到|PF 1→+PF 2→|=2|PO →|,再设P(x, y),运用椭圆方程,以及二次函数的值域即可得到最小值.【答案】12【解析】先由双曲线的方程求出|F 1F 2|=6,再由|PF 1|:|PF 2|=2:1,求出|PF 1|,|PF 2|,由此转化求出△PF 1F 2的面积.9.【答案】(1)或(2)【解析】根据三垂线定理结合PQ ⊥QD ,可得PQ 在底面的射影AQ 也与QD 垂直,由此可得平面ABCD 内满足条件的Q 点应在以AD 为直径的圆上,得出a ≤1即可选出正确选项. 10.【答案】4个【解析】根据异面直线的判断方法,结合正方体的结构特征即可判断.11.【答案】S △ABC 2+S △ACD 2+S △ABD 2=S △BCD 2【解析】由边对应着面,边长对应着面积,由类比可得结果.12.【答案】13【解析】求得两圆的圆心和半径,设双曲线x 2−y 215=1的左右焦点为F 1(−4, 0),F 2(4, 0),连接PF 1,PF 2,F 1M ,F 2N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.二、选择题(本大题共4小题,满分20分,每题5分)13.【答案】C【解析】直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案. 14.【答案】C【解析】作两个相交平面,交线为n ,使直线m ⊥α,然后利用反证法说明,假设β内一定存在直线a 与m 平行,根据面面垂直的判定定理证明α⊥β,这与平面α与平面β相交不一定垂直矛盾,然后根据线面垂直的性质说明β内必存在直线与m 垂直,从而证得结论. 15.【答案】【解析】如图所示,建立空间直角坐标系,不妨取AD=2.A.B1G与EF为异面直线,即可判断出正误;B.计算•与0比较,即可判断出正误;C.根据GE // DC1,DC1 // AB1,可得四边形AB1EG为梯形,即可判断出正误;D.连接BC1,可得BC1 // EF,于是EF // AD1,即可判断出正误.16.【答案】B【解析】根据于椭圆具有轴对称和中心对称的性质,经过平移和旋转即可求出直线l1的方程.三、解答题(本大题共5小题,满分35分)17.【答案】设z1=a+bi,则z2=a−bi(a>5, b>0),由z1+5z2=12−3i,得(a+bi)+4(a−bi)=3a−bi=12−3i,∴3a=12,b=3,b=3.∴z8=4+3i,z7=4−3i;满足|z|=5的复数z在以原点为圆心,以1为半径的圆上,而,∴|z−z1|的最大值为4,最小值为4.【解析】(1)设z1=a+bi,则z2=a−bi(a>0, b>0),代入z1+2z2=12−3i,整理后利用复数相等的条件列式求得a与b的值,则z1,z2可求;(2)满足|z|=1的复数z在以原点为圆心,以1为半径的圆上,求出|z1|,则|z−z1|的最大值和最小值即可.18.【答案】若军营所在区域为Ω:x2+y4≤2,作图如下:设将军饮马点为P,到达营区点为B,则总路程|PB|+|PA|=|PB|+|PA′|,要使得路程最短,只需要|PB|+|PA′|最短,即点A′到军营的距离最短,即点A′到x2+y5≤2的最短距离,为|OA′|−=-若军营所在区域为Ω:|x|+2|y|≤2,作图如下:联立,解得x=4,即B(2,所以点A′到区域Ω最短距离|A′B|==,【解析】设点A(3, 0)关于直线x+y=4的对称点为A′(a, b),由对称性,解得A′(4, 1),作出可行域,结合图形,即可解得答案.19.【答案】证明:连接AC,由正方体的几何特征,得AC⊥BD,AA1⊥平面ABCD,BD⊂平面ABCD,所以AA1⊥BD,又AA3∩AC=A,所以BD⊥平面AA1C1C.A7B与平面ABCD所成的角为∠A1BA,A1P与平面ABCD所成的角为∠A2PA,所以tan∠A1BA=tan∠A1PA,即=,所以AB=AP,所以点P的轨迹为,以A为圆心AB为半径的圆的,所以点P的轨迹长度为×7π×1=.【解析】(1)连接AC,结合正方体的几何特征,得AC⊥BD,AA1⊥平面ABCD,再由线面垂直的判定定理可得BD⊥平面AA1C1C.(2)连接A1P,根据题意可得tan∠A1BA=tan∠A1PA,推出AB=AP,点P的轨迹为,以A为圆心AB为半径的圆的,进而可得点P的轨迹长度.20.【答案】易知椭圆的右焦点为F(1, 0),所以c=3,抛物线x2=4的焦点坐标为(0,),所以b=,a2=b2+c2=3+1=5,所以椭圆C的方程为+=1.易知,m≠7,-),设直线l交椭圆于A(x1, y2),B(x2, y2),由,得(5m2+4)y7+6my−9=7,所以△=(6m)2+36(8m2+4)=144(m3+1)>0,所以y2+y2=-,y5y2=-,又由=λ4,所以(x1,y1+)=λ1(1−x7, −y1),所以λ1=−4−,同理λ2=−1−,所以λ1+λ2=−7−(+),因为+==-)=,所以λ4+λ2=−2−(+)=−2−•,所以λ1+λ3的值为-.由(2)知A(x8, y1),B(x2, y3)所以D(4, y1),E(6, y2),所以直线AE方程为:y−y2=(x−4),当x=时,y=y2+(-====6,所以点N(,5)在直线AE上,同理可证,点N(,所以m变化时,直线AE与直线BD相交于定点(.【解析】(1)根据题意可得c=1,有抛物线x2=4的焦点坐标得b,计算出a2=b2+c2=4,进而可得椭圆C的方程为.(2)根据题意可得l与y轴的交点为M(0,-),设A(x1, y1),B(x2, y2),联立直线l与椭圆的方程,得关于x的一元二次方程,结合韦达定理可得y1+y2,y1y2,用坐标表示=λ1,得λ1=−1−,同理λ2=−1−,再计算化简λ1+λ2即可得出答案.(3)由(2)知A(x1, y1),B(x2, y2),进而可得D(4, y1),E(4, y2),写出直线AE方程,再把x=代入,得y=0,推出点N(,0)在直线AE上,同理可证,点N(,0)也在直线BD上,进而得出结论.21.【答案】设点M坐标为(x, y),因为动点M到定点A(1, 0)的距离到定直线x=−1的距离之和为3,所以√(x−1)2+y2+√(x+1)2=3,当y=0时,代入求得x=±32,所以曲线Γ与x轴的交点P的坐标(±32, 0);由(1)知曲线Γ方程为√(x−1)2+y2+√(x+1)2=3,当x<−4时,因为|x+1|>3,无轨迹,当−4≤x≤−1时,化为√(x−1)2+y2=x+4,化为y2=10x+15(−32≤x≤−1),当x>−1时,化为为√(x−1)2+y2=2−x,化为y2=−2x+3(−1<x≤32),综上可得,曲线方程为y2=10x+15(−32≤x≤−1),或y2=−2x+3(−1<x≤32),当−32≤x≤−1时,曲线Γ化为y2=10x+15,当−1<x≤32时,曲线Γ化为y2=−2x+3,令y=1则10x+15=1或−2x+3=1,解得x=−1.4或x=1,①当a≤1.4或a≥1时,MB+MA≥BA,所以d(a)=|AB|=√(a−1)2+1=√a2−2a+2,②当−1<a<1时,当直线y=1与y2=−2x+3(−1<x≤32)相交时,交点M满足MB+MA取得最小值,因为抛物线准线方程为x=2,所以直线y=1与准线交点坐标为(2, 1),此时d(a)=2−a ,③当−1.4<a ≤−1时,当直线y =1与y 2=10x +15(−32≤x ≤−1)相交时, 交点M 满足MB +MA 取得最小值,此时抛物线准线的方程为形,所以y =1与准线交点坐标为(−4, 1),此时d(a)=a +4,综上所述d(a)={√a 2−2a +2,a ≤−1.4或a ≥1a +4,−1.4<a ≤−12−a,−1<a <1. 【解析】(1)设点M 坐标为(x, y),根据题意可得√(x −1)2+y 2+√(x +1)2=3,令y =0,求得x ,即可得出答案.(2)分类当x <−4时,当−4≤x ≤−1时,当x >−1时,讨论曲线Γ方程.(3)通过分类讨论,在不同范围内,由曲线方程的意义求得最小值.。
天津市2020学年高二数学上学期期末考试试题(含解析) (4)
高二数学上学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( ) A. (4,1,0)-B. (4,1,4)--C. (4,1,0)-D.(4,1,4)--【答案】C 【解析】 【分析】由111(,,)m x y z =,222(,,)n x y z =,则122212(,,)m n x x x y z z -=---,代入运算即可得解.【详解】解:因为向量(2,0,1)a =-,向量(0,1,2)b =-, 则2(4,0,2)a=-,则2a b -=(4,1,0)-, 故选:C.【点睛】本题考查了向量减法的坐标运算,属基础题.2.设P 是椭圆22221x y a b+=(0)a b >>上的一动点,则P 到该椭圆的两个焦点的距离之和为( ) A. 2b B. 2a C. bD. a【答案】B 【解析】 【分析】由椭圆的定义122PF PF a +=即可得解.【详解】解:设椭圆的两个焦点为12,F F ,点P 为椭圆上的点, 由椭圆的定义有:122PF PF a +=, 故选:B.【点睛】本题考查了椭圆的定义,属基础题.3.抛物线214x y =的准线方程是( ) A. 116x = B. 116x =-C. 2x =-D. 1x =-【答案】D 【解析】 【分析】先将抛物线方程化为标准方程,再求抛物线的准线方程即可. 【详解】解:由抛物线的方程为214x y =, 化为标准式可得24y x =,即抛物线24y x =的准线方程是:1x =-,故选:D.【点睛】本题考查了抛物线的标准方程,重点考查了抛物线的准线方程,属基础题. 4.中心在坐标原心、焦点在x 轴,且长轴长为18、焦距为12的椭圆的标准方程为( )A. 22x y 18172+=B. 22x y 1819+=C. 22x y 18145+=D.22x y 18136+= 【答案】A 【解析】 【分析】根据条件,求得a 、b 、c 的值,进而可得椭圆的标准方程. 【详解】由题可得218a =,26c =,故281a =,272b =,又焦点在x 轴上,所以所求椭圆的标准方程为2218172x y+=,故选A .【点睛】本题考查了椭圆标准方程的求法,注意焦点的位置,属于基础题.5.如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a AA c BC b ===,则BM可表示为( )A. 1122a b c -++ B.1122a b c ++ C. 1122a b c --+D. 1122a b c -+【答案】A 【解析】111111()()2222BM BB B M c BA BC c a b a b c =+=++=+-+=-++,故本题正确答案为.A6.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 A. 2833x y =B. 233x y =C. 28x y =D.216x y =【答案】D 【解析】由e=c a =2得4=22c a =1+22b a,∴22b a=3.∴双曲线的渐近线方程为x,抛物线x 2=2py 的焦点是(0,2p), 它到直线x 的距离d=2=22p±=4p,∴p=8.∴抛物线方程为x 2=16y. 故选D.7.若两个向量()()1,2,3,3,2,1AB AC ==,则平面ABC 的一个法向量为( ) A. ()1,2,1-- B. ()1,2,1C. ()1,2,1-D. ()1,2,1-【答案】A 【解析】 【分析】设平面ABC 的法向量为(,,)n x y z =,根据数量积等于0,列出方程组,即可求解. 【详解】设平面ABC 的法向量为(,,)n x y z =,则00n AB n AC ⎧⋅=⎨⋅=⎩,即230320x y z x y z ++=⎧⎨++=⎩,令1x =-,则2,1y z ==-,即平面ABC 的一个法向量为(1,2,1)n =--,故选A.【点睛】本题主要考查了平面的法向量的求解,其中解答中根据法向量与平面内的两个不共线的向量垂直,列出关于,,x y z 的方程组求解是解答的关键,着重考查了推理与计算能力,属于基础题.8.已知抛物线2:8C x y =的焦点为F ,O 为原点,点P 是抛物线C 的准线上的一动点,点A 在抛物线C 上,且4AF =,则PA PO +的最小值为( )A.B.C.D.【答案】B 【解析】 【分析】求出A 点坐标,作O 关于准线的对称点M ,利用连点之间相对最短得出AM 为PA PO +的最小值.【详解】解:抛物线的准线方程为2y =-,∵4AF =,∴A 到准线的距离为4,故A 点纵坐标为2, 把2y =代入抛物线方程可得4x =±. 不妨设A 在第一象限,则()4,2A ,点O 关于准线2y =-的对称点为()0,4M -,连接AM , 则PO PM =,于是PA PO PA PM AM +=+≥ 故PA PO +的最小值为2246213AM =+=.故选B .【点睛】本题考查了抛物线的简单性质,属于基础题.9.设12F F 、分别为双曲线22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,12F F 、为直径的圆交双曲线某条渐近线于M N 、两点,且满足120MAN ︒∠=,则双曲线的离心率为( ) A.3321 C.23D.103【答案】B 【解析】【分析】先求出双曲线的渐近线方程,然后求出(,),(,)M a b N a b --,再利用向量数量积运算即可得解.【详解】解:由双曲线方程为22221x y a b-=,则其渐近线方程为by x a=±, 联立222222x y c b y x a c a b⎧+=⎪⎪=⎨⎪=+⎪⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,即(,),(,)M a b N a b --, 又(,0)A a -,则(2,)AM a b =,(0,)AN b =-, 则21()2AM AN b ⋅=-=-,解得2234b a =,即2223()4c a a -=, 即2237c a =, 即3c e a ==, 故选:B.【点睛】本题考查了双曲线渐近线方程的求法,重点考查了双曲线的离心率,属中档题. 二.填空题:本大题共6小题,每小题5分,多空题只答对一空得3分,共30分. 10.若向量(,1,3)a x =-,向量(2,,6)b y =,且//a b ,则x =_____,y =_____. 【答案】 (1). 1 (2). -2 【解析】 【分析】由题意可得1326x y -==,再求解即可.【详解】解:由向量(,1,3)a x =-,向量(2,,6)b y =,且//a b , 则1326x y -==, 解得:x 1,y 2==-, 故答案为:1,-2.【点睛】本题考查了空间向量共线的坐标运算,属基础题.11.若双曲线221916x y -=上一点P 到左焦点的距离为4,则点P 到右焦点的距离是 .【答案】10 【解析】试题分析:由双曲线方程可知293,26a a a =∴==,由定义122PF PF a -=得210PF =考点:双曲线定义点评:双曲线上的点到两焦点距离之差的绝对值等于2a12.若方程22151x y m m +=--表示焦点在y 轴的椭圆,则实数m 的取值范围是_____.【答案】(3,5) 【解析】 【分析】由椭圆的几何性质可得501015m m m m ->⎧⎪->⎨⎪->-⎩,再解不等式组即可得解.【详解】解:由方程22151x y m m +=--表示焦点在y 轴的椭圆,则501015m m m m->⎧⎪->⎨⎪->-⎩,解得:513m m m <⎧⎪>⎨⎪>⎩,即35m <<,故答案为:(3,5).【点睛】本题考查了椭圆的几何性质,属基础题.13.在空间直角坐标系O xyz -中,(1,2,1)A -,(1,1,1)B ,(0,1,2)C ,则异面直线OA 与BC 所成角的余弦值为______.【解析】 【分析】先求出向量OA 与BC 所成角的余弦值,再求异面直线OA 与BC 所成角的余弦值即可. 【详解】解:由(1,2,1)A -,(1,1,1)B ,(0,1,2)C , 则(1,2,1)OA =-,(1,0,1)BC=-,则向量OA 与BC所成角的余弦值为36OA BC OA BC⋅==-, 则异面直线OA与BC 【点睛】本题考查了空间向量的坐标运算,重点考查了空间向量的应用,属基础题. 14.已知过点M (1,0)的直线AB 与抛物线y 2=2x 交于A ,B 两点,O 为坐标原点,若OA ,OB 的斜率之和为1,则直线AB 方程为______. 【答案】2x +y -2=0 【解析】 【分析】设直线AB 的方程并代入抛物线方程,根据韦达定理以及斜率公式,可得t 的值,进而得到直线的方程.【详解】依题意可设直线AB 的方程为:x=ty+1,代入y 2=2x 得2220y ty --=, 设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2,y 1+y 2=2t , 所以12121212122()22422OA OB y y y y tk k t x x y y y y ++=+=+===--,∴21t -=,解得12t =-,∴直线AB 的方程为:x=12y -+1,即2x+y-2=0. 故答案为2x+y-2=0.【点睛】本题考查了直线与抛物线的位置关系的应用,以及直线方程的求解,其中设出直线的方程,代入抛物线的方程,利用韦达定理以及斜率公式求解是解答的关键,着重考查了运算与求解能力,属于中档试题.15.在空间直角坐标系O xyz -中,(2,2,2)a x y =--,(3,2,3)b x y x =-,且12a b ⋅=,则222m x y x =++的最小值是________,最大值是__________.【答案】 (1). 0 (2). 8 【解析】 【分析】先利用空间向量数量积运算可得22143x y +=,再利用椭圆的参数方程求最值即可得解.【详解】解:因为(2,2,2)a x y =--,(3,2,3)b x y x =-,且12a b ⋅=, 所以2223(2)(2)(2)(3)3412x x y x x y -++-⨯-=+=,即22143x y +=,设2cos ,x y θθ==,则22222224cos 3sin 4cos cos 4cos 3(cos 2)1m x y x θθθθθθ=++=++=++=+-,又[]cos 1,1θ∈-, 则min0m =,max 8m =故答案为:0,8.【点睛】本题考查了空间向量数量积运算,重点考查了椭圆的参数方程,属中档题. 三.解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点M.(1)求双曲线C的方程;(2)求双曲线C的实轴长,离心率,焦点到渐近线的距离.【答案】(1)2212yx-=;(2)实轴长2【解析】【分析】(1)由共渐近线双曲线方程的求法求解即可;(2)由双曲线方程及点到直线的距离求解即可. 【详解】解:(1)解:在双曲线22142-=y x中,2a'=,b'=,则渐近线方程为ayxb''=±=,∵双曲线2222:1x yCa b-=与双曲线22142-=y x有相同的渐近线,ba∴=,∴方程可化为222212x ya a-=,又双曲线C经过点M,代入方程,222212a a∴-=,解得1a=,b=∴双曲线C的方程为2212yx-=.(2)解;由(1)知双曲线22:12yC x-=中,1a=,b=c=,∴实轴长22a=,离心率为==cea,设双曲线C的一个焦点为(,一条渐近线方程为y=,|32|221d -⨯∴==+, 即焦点到渐近线的距离为2.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.17.如图,四棱锥P ABCD -的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点.(1)证明://PA 平面BDE ;(2)求二面角B DE C --的余弦值;(3)若点F 在线段PB (不包含端点)上,且直线PB ⊥平面DEF ,求线段DF 的长.【答案】(1)证明见解析(233)263【解析】【分析】(1)建立以D 为坐标原点,分别以DA DC DP 、、所在直线为x 轴、y 轴、z 轴的空间直角坐标系,再标出点的坐标,利用空间向量的应用即可得证;(2)求出平面BDE 的一个法向量,平面DEC 的一个法向量,再利用数量积公式求解即可;(3)假设棱PB 上存在点F ,使PB ⊥平面DEF ,由0PB DF ⋅=求解即可.【详解】证明:(1)以D 为坐标原点,分别以DA DC DP 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设2PD DC ==,则(2,0,0)A ,(0,0,2)P ,(2,2,0)B ,则(2,0,2)PA =-,(0,1,1)DE =,(2,2,0)DB =,设1(,,)n x y z =是平面BDE 的一个法向量,则由1100n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩,得0220y z x y +=⎧⎨+=⎩,取1y =-,得1(1,1,1)n =-. 1220PA n ⋅=-=,1PA n ∴⊥,又PA ⊄平面BDE ,//PA ∴平面BDE .(2)解:由(1)知1(1,1,1)n =-是平面BDE 的一个法向量,又2(2,0,0)n DA ==是平面DEC 的一个法向量.设二面角B DE C --的平面角为θ,由图可知12,n n θ=<>,1122123cos cos ,3n n n n n n θ⋅∴=<>==⋅, 故二面角B DE C --(3)假设棱PB 上存在点F ,使PB ⊥平面DEF ,设(01)PF PB λλ=<<,(,,)F x y z则(,,2)(2,2,2)x y z λ-=-,(2,2,22)F λλλ∴-,(2,2,22)DF λλλ=-,(2,2,2)PB =-, 由0PB DF ⋅=得442(22)0λλλ+--=,解得13λ=,224,,333F ⎛⎫∴ ⎪⎝⎭, 则2||3DF ⎛== .【点睛】本题考查了空间向量的综合应用,重点考查了运算能力,属中档题.18.已知点A(0,-2),椭圆E:22221x ya b+= (a>b>0)的离心率为32,F是椭圆E的右焦点,直线AF的斜率为33,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.【答案】(1)2214xy+=(2)72y x=-【解析】试题分析:设出F,由直线AF的斜率为233求得c,结合离心率求得a,再由隐含条件求得b,即可求椭圆方程;(2)点l x⊥轴时,不合题意;当直线l斜率存在时,设直线:2l y kx=-,联立直线方程和椭圆方程,由判别式大于零求得k的范围,再由弦长公式求得PQ,由点到直线的距离公式求得O到l的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF()0,2A -所以23c =,c =又2222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=. (2)解:设()()1122,,,P x y Q x y由题意可设直线l 的方程为:2y kx =-, 联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k +==++. 所以PQ ===点O 到直线l 的距离d =所以12OPQ S d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k > 所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.1、在最软入的时候,你会想起谁。
浙江省温州市2020学年十校联合体高二上期末数学试卷((有答案))
2019-2020学年浙江省温州市十校联合体高二(上)期末数学试卷、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1. (4分)准线方程是y=- 2的抛物线标准方程是(A. x 2=8yB. x 2=- 8y C, y 2= - 8x D, y 2=8x(4分)已知直线1I : x-y+1=0和l2: x-y+3=0,则1I 与l 2之间距离是(2V2B .乎 C. 6 D. 2(4分)正方体 ABCD- A 1B 1C 1D 1中,二面角 A-BD 1-B I 的大小是(y 22=1,则AOAB (O 为坐标原点)的面积为(A. JT9. (4分)已知在△ ABC 中,/ACB F ,AB=2BC 现将△ ABC 绕BC 所在直线旋转到△ PBC, 设二面角P- BC- A 大小为9, PB 与平面ABC 所成角为a, PC 与平面PAB 所成角为就若0V 9<九,则( )2. A.3. (4分)设三棱柱ABC- A 1B 1C 1体积为V, E, F, G 分别是AA, AB, AC 的中点,则三棱锥E 一AFG 体积是(A. — 口B. —yC. — vD.12 16 4. (4分)若直线x+y+m=0与圆x 2+y 2=m 相切,则 A. 0 或 2 B. 2 C.匹 D. &或 2m 的值是(5. (4分)在四面体 ABCD 中( )命题①:AD± BC 且 AC ,BDWJAB ,CD命题②:AC=AD 且 BC=BDIU AB± CD.A.命题①②都正确B.命题①②都不正确C.命题①正确,命题②不正确D.命题①不正确, 命题②正确 6. (4分)设m 、n 是两条不同的直线,命题是( )a 、 B 是两个不同的平面.考查下列命题,其中正确的 A. m± a,n? B, m± n? a± p B. // & m± a, n// ? m±n C. a± p, m± a, n // ? m ± n D. a± p, A B=m n±m? n,B7. A. JU y B. 7T 工C. D. 8. (4分)过点(0, -2)的直线交抛物线y 2=16x 于A (x 1, y 1),B (x 2, y 2)两点,且y 12- C.A.立且看in0 B・立《一■且win F〈“零~J J 心3C s《m且B " D.且& 36 310.(4分)如图,Fi, F2是椭圆Ci与双曲线C2的公共焦点,点A是Ci, C2的公共点.设Ci, Q的离心率分别是ei, e2, Z FiAF2=2 9,则()12.(6分)某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V=cm3,俯视图13.(4分)已知抛物线y2=4x的焦点为F,准线与x轴的交点为M, N为抛物线上的一点,则满足|即|二号慌川,则/町F=.14.(6分)已知直线li: y=mx+1和l2: x=-my+1相交于点P, O为坐标原点,则P点横坐标是(用m表示),I而I的最大值是.15.(6分)四面体ABCD中,已知AB=AC=BC=BD=CD=1则该四面体体积的最大值是表面积的最大值是.2216.(4分)过双曲线G:弓三二1 (a>0, b>0)的右顶点A作斜率为1的直线m,分别与两渐近线交于B, C两点,若|AB|二2|AC,则双曲线G的离心率为.17.(4分)在棱长为1的正方体ABCA A i B i C i D i中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|十| PD尸m的点P的个数为n,则n的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知抛物线C: y2=4x,直线l: y=-x+b与抛物线交于A, B两点.(I )若| AB| =8,求b的值;(H)若以AB为直径的圆与x轴相切,求该圆的方程.19.(15分)在四棱锥E— ABCD中,底面ABCD是正方形,AC与BD交于点O, EC1底面ABCD F为BE的中点.(I )求证:DE//平面ACF(II )求证:BD,AE;(田)若AB=岳CE在线段EO上是否存在点G,使CG,平面BDR若存在,求出毁的值,若不存在,请说明理由.20.(15 分)如图,四棱锥P- ABCD PA1底面ABCD AB//CD, AB± AD, AB=AD=PA=2 CD=4E, F分别是PC PD的中点.(I ) 证明:EF//平面PAB(II )求直线AC与平面ABEF所成角的正弦值.21.(15分)已知点C (XO, y0)是椭圆装―+y2=1上的动点,以C为圆心的圆过点F (1, 0).(I )若圆C与y轴相切,求实数X0的值;(H)若圆C与y轴交于A, B两点,求|FA?| FB的取值范围.2 222.(15分)已知椭圆C的方程是[一*9二],直线l:y=kx+m与椭圆C有且仅有一个公共点, 4 3若F i M^l, F2N,l, M, N分别为不足.(I )证明:丽1n| + |F 刈>2小(II )求四边形F1MNF2面积S的最大值.2019-2020学年浙江省温州市十校联合体高二(上)期末数学试卷AFG =^ S AABC , AE^AAp 参考答案与试题解析、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1. (4分)准线方程是y=- 2的抛物线标准方程是(A. x 2=8yB. x 2=- 8y C, y 2= - 8x D. y 2=8x【解答】解:由题意可知抛物线的焦点在 y 轴的正半轴, 设抛物线标准方程为:x 2=2py (p>0), ••・抛物线的准线方程为y=- 2, ・..L=2,2 ,故选C.3. (4分)设三棱柱ABC- A 1B 1C 1体积为V, E, F, G 分别是AA i, AB, AC 的中点,则三棱锥E 一AFG 体积是(【解答】解:.「三棱柱ABC- A 1B 1C 1体积为V, ・..V=Sx AB C ?AA 1 ,. E, F, G 分别是AA 1, AB, AC 的中点,•.p=4,••.抛物线的标准方x 2=8y.故选A.2. (4分)已知直线11: x - y+1=0和12: x- y+3=0,贝^ 11与12之间距离是(A. D. 2【解答】解::已知平行直线1I : x-y+1=0与l2: x- y+3=0,;1I 与l2间的距离d 1^U72 W2,A T yB 五怆正皿 12「•三棱锥E— AFG体积:V EAFG=y X s6. X * S^BC)X*N)=^S ABCPAA》]故选:D.a G4.(4分)若直线x+y+m=0与圆x2+y2=m相切,则m的值是()A. 0 或2B. 2C. &D. &或2【解答】解:二,圆x2+y2=m的圆心为原点,半径「二6若直线x+y+m=0与圆x2+y2=m相切,得圆心到直线的距离d=-^-=/r ,解之得m=2 (舍去0)故选B.5.(4分)在四面体ABCD中()命题①:AD± BC且AC, BDWJABL CD命题②:AC=AD且BC=BD0fj AB± CD.A.命题①②都正确B.命题①②都不正确C.命题①正确,命题②不正确D.命题①不正确,命题②正确【解答】解:对于①作AEL面BCD于E,连接DE,可得A已BC,同理可得AEE± BD,证得E 是垂心,则可得出AE± CD,进而可证得CDX面AEB,即可证出AB± CD,故①正确;对于②,取CD的中点O,连接AO, BO,则CD±AO, CD± BO,. AOnBO=Q.-.CD±面ABO,,. AB?面ABO,.-.CD± AB,故②正确.故选A.6. (4分)设m 、n 是两条不同的直线,a 、B 是两个不同的平面.考查下列命题,其中正确的 命题是( )A. m± a, n? B, m±n? a± 0B. all & m± a, n// ? m±nC. a± p, m± a, n // ? m± nD. a± p, aA p =m n±m? n± p【解答】解:设m 、n 是两条不同的直线,a 、B 是两个不同的平面,则:m ± a, n? B, m ,n 时,a 、B 可能平行,也可能相交,不一定垂直,故 A 不正确all 3 m ± a, n // B 时,m 与n 一定垂直,故B 正确a± p, m± a, n// B 时,m 与n 可能平行、相交或异面,不一定垂直,故 C 错误a± 3 aA B =m 寸,若n ,m, n? a,则n,机但题目中无条件n? a,故D 也不一定成立, 故选B.7. (4分)正方体 ABCD- AiBiCiDi 中,二面角A-BDi-Bi 的大小是(【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 为z 轴,建立空间直角坐标系, 设正方体ABCD- AiBiCiDi 中棱长为i,则 A (i, 0, 0), B (i, i, 0), Bi (i, i, i), Di (0,0, i), 尾(0, - i, 0),西=(-i, — i, i),西二(0, 0, i),设平面ABDi 的法向量n= (x, y, z),n-BA=-y=O 一 ,一则卜-- ,取y ,行n=S, 1, n ・ BDi = -K-y4-7=0L 从 设平面BBiDi 的法向量ir = (a, b, c),nrBB [二 c 二。
天津市2020学年高二数学上学期期末考试试题(含解析) (2)
高二数学上学期期末考试试题(含解析)一、选择题(本大题共8小题)1.命题“x R ∀∈,22340x x -+≥”的否定为 () A. x R ∀∈,22340x x -+< B. x R ∀∈,22340x x -+≤ C. x R ∃∈,22340x x -+< D. x R ∃∈,22340x x -+≤【答案】C 【解析】 【分析】根据全称命题的否定为特称命题解答.【详解】解:根据全称命题的否定为特称命题,故命题“x R ∀∈,22340x x -+≥”的否定为x R ∃∈,22340x x -+<. 故选:C .【点睛】本题考查含有一个量词的命题的否定,属于基础题. 2.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】直线与双曲线相切,则直线与双曲线只有一个公共点,反之当直线与双曲线只有一个公共点时除了直线与双曲线相切,还有就是直线和双曲线的渐近线平行的时候;故是充分不必要条件. 故答案为A .3.椭圆22143y x +=的焦点坐标为() A. ()1,0-,()1,0 B. ()2,0-,()2,0 C. ()0,2-,()0,2 D. ()0,1-,()0,1【答案】D【解析】 【分析】利用椭圆的方程求出a ,b ,得到c 即可求解结果.【详解】解:椭圆22143y x +=,焦点在y 轴上,可得2a =,b =1c =,所以椭圆的焦点坐标()0,1±. 故选:D .【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查,属于基础题. 4.抛物线24y x =-的焦点坐标是()A. ()10,B. ()10-,C. ()20,D. ()20-,【答案】B 【解析】根据抛物线的标准方程为24y x =-画出图像可得准线方程为:1,x =故焦点坐标为()10-,. 故答案为B .5.已知△ABC 的顶点B 、C 在椭圆23x +y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )B. 6D. 12【答案】C 【解析】 【分析】根据椭圆定义,椭圆上的点到两焦点距离之和为长轴长即可得解. 【详解】设另一焦点为F ,由题F 在BC 边上,所以ABC ∆的周长l AB BC CA AB BF CF CA =++=+++==故选:C【点睛】此题考查椭圆的几何意义,椭圆上的点到两焦点距离之和为定值,求解中要多观察图形的几何特征,将所求问题进行转化,简化计算.6.已知双曲线C :22221x y a b-=的一条渐近线的倾斜角为60︒,且与椭圆2215x y +=有相等的焦距,则C 的方程为 ()A. 2213x y -=B. 22193x y -=C. 2213y x -=D.22139x y -= 【答案】C 【解析】 【分析】根据题意,由双曲线的方程分析可得其渐近线方程,分析可得有ba=b =,求出椭圆的半焦距,分析可得224a b +=,解可得2a 、2b 的值,将2a 、2b 的值代入双曲线的方程,即可得答案.【详解】解:根据题意,双曲线C :22221x y a b-=的焦点在x 轴上,其渐近线方程为b y x a =±,若其一条渐近线的倾斜角为60︒,则该渐近线的方程为y =,则有ba=b =, 椭圆2215x y +=中,2514c =-=,若双曲线与椭圆有相等的焦距,则有224a b +=, 解可得21a =,23b =,则双曲线的方程为2213y x -=;故选:C .【点睛】本题考查双曲线、椭圆的几何性质,注意分析双曲线的焦点位置,属于基础题.7.已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A. (B. (C. ()33-D.( 【答案】A 【解析】由题知12(F F ,220012x y -=,所以12MF MF ⋅=0000(,),)x y x y -⋅-=2220003310x y y +-=-<,解得033y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 【此处有视频,请去附件查看】8.已知双曲线22221(0,0)x y a b a b-=>>与抛物线24y x =有一个公共的焦点F ,且两曲线的一个交点为P .若52PF =,则双曲线的渐近线方程为( )A. 12y x =±B. 2y x =±C. y =D.y x = 【答案】C 【解析】 【分析】首先由题意确定点P 的坐标,然后列方程确定a,b 的值即可确定渐近线方程. 【详解】∵抛物线24y x =的焦点坐标F(1,0),p=2, 抛物线的焦点和双曲线的焦点相同, ∴p=2c ,即c=1,设P(m,n),由抛物线定义知:53||1,222p PF m m m =+=+=∴=. ∴P点的坐标为3,2⎛⎝. 222219614a b a b ⎧+=⎪∴⎨-=⎪⎩,解得:122a b ⎧=⎪⎪⎨⎪=⎪⎩.则渐近线方程为by x a=±=. 故选C.【点睛】本题主要考查双曲线的渐近线方程的求解,抛物线的几何性质等知识,意在考查学生的转化能力和计算求解能力. 二、填空题(本大题共6小题)9.命题:“2,10x R x ax ∃∈-+<”的否定为____. 【答案】2,10x R x ax ∀∈-+≥ 【解析】 【分析】直接利用特称命题的否定是全称命题写出结果即可.【详解】写命题否定时,除结论要否定外,存在量词与全称量词要互换,因此命题“210x R x ax ∃∈-+<,”的否定是“210x R x ax ∀∈-+≥,”. 故答案为∀x ∈R ,x 2﹣ax +1≥0【点睛】本题考查命题的否定及特称命题与全称命题的关系,属于基本知识的考查. 10.对于常数m 、n ,“0mn >”是方程“221mx ny +=的曲线是椭圆”的__________.【答案】必要不充分条件 【解析】因为0m n =>时,221mx ny +=表示圆,所以“方程“221mx ny +=曲线是椭圆””推不出方程“方程“221mx ny +=的曲线是椭圆”,当方程“221mx ny +=的曲线是椭圆”时,能推出0mn >,所以应该填必要不充分条件.11.已知椭圆G 的中心在坐标原点,焦距为4,且椭圆上一点到椭圆焦点的最小距离为6,则椭圆的离心率为______. 【答案】14【解析】 【分析】利用已知条件列出方程组,求解a 、c ,得到椭圆的离心率.【详解】解:椭圆G 的中心在坐标原点,焦距为4,且椭圆上一点到椭圆焦点的最小距离为6,246c a c =⎧⎨-=⎩,解得8a =,2c =, 所以椭圆的离心率为:14c e a ==. 故答案为:14. 【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查,属于基础题.12.已知点(32)M ,,F 为抛物线22y x =的焦点,点P 在该抛物线上移动,当PM PF +取最小值时,点P 的坐标为_______. 【答案】()2,2 【解析】 【分析】设点M 在准线上的射影为D ,由抛物线的定义把问题转化为求|PM |+|PD |的最小值,同时可推断出当D ,P ,M 三点共线时|PM |+|PD |最小,答案可得.【详解】设点M 在准线上的射影为D ,由抛物线的定义可知|PF |=|PD | ∴要求|PM |+|PF |的最小值,即求|PM |+|PD |的最小值,只有当D ,P ,M 三点共线时|PM |+|PD |最小,此时P 纵坐标为2,则横坐标为2 故答案为:()2,2【点睛】本题考查抛物线的简单性质,涉及与抛物线有关的最值问题,属中档题. 13.已知倾斜角为α的直线l 经过抛物线24y x =的焦点交抛物线于A 、B 两点,并且4AF BF =,则cos α=______.【答案】35± 【解析】 【分析】考虑角α为锐角,设A 、B 两点在准线上的射影分别为C 、.D 过B 作BM AC ⊥于.M 则有AC AF =,BD BF =.设44AF BF m ==,则3.AM m =,35AM cos AB α==,同理由α为钝角得出3cos 5α=-,综上可得出答案.【详解】解:若角α锐角,如图,设A 、B 两点在准线上的射影分别为C 、D .过B 作BM AC ⊥于.M 则有AC AF =,BD BF = 设44AF BF m ==,则3AM m =.则35AM cos AB α==. 若角α为钝角,由对称性可知3cos 5α=-. 因此,3cos 5α=±. 故答案为:35±. 【点睛】本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了转化思想,属于中档题.14.已知抛物线C :24y x =的焦点为F ,准线与x 轴的交点为H ,点P 在C 上,且PH =,则PFH ∆的面积为______.【答案】4±【解析】 【分析】设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±即可求解.【详解】解:由抛物线C :24y x =,得焦点()1,0F ,准线方程为 1.x =-过P 作PM 垂直准线于M ,设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,22214t PH t ⎛⎫=++ ⎪⎝⎭由52PH =,可得2840t t -+=, 解得423t =±. 则PFH ∆的面积为124232t ⨯⨯=± 故答案为:423±【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.三、解答题(本大题共5小题)15.(1)已知椭圆的焦点在x 轴上,长轴长为4,焦距为2,求该椭圆的标准方程; (2)已知抛物线顶点在原点,对称轴是y 轴,并且焦点到准线的距离为5,求该抛物线方程.【答案】(1)22143x y +=(2)210x y =或210x y =-【解析】【分析】(1)设出椭圆的方程为()222210x y a b a b+=>>,由题意可得a ,c ,求得b ,可得所求方程;(2)设抛物线的方程为2x ty =,0t ≠,由焦点到准线的距离解得t ,可得所求方程.【详解】解:(1)设椭圆的方程为()222210x y a b a b+=>>,由题意可得24a =,即2a =,22c =,即1c =,b ==则椭圆的标准方程为22143x y +=;(2)设抛物线的方程为2x ty =,0t ≠, 焦点到准线的距离为5,可得152t =,即10t =±, 则抛物线的标准方程为210x y =或210x y =-.【点睛】本题考查椭圆和抛物线的方程和性质,考查方程思想和运算能力,属于基础题.16.已知椭圆C :222210x y a b a b+=>>()形面积为 (1)求椭圆C 的方程;(2)过点1,1M ()的直线l 与椭圆C 交于A ,B 两点,且点M 恰为线段AB 的中点,求直线l的方程.【答案】(1)22132x y +=(2)直线l 的方程为2350x y +-=【解析】 【分析】(1)根据椭圆的几何性质求得a =b =(2)联立直线与椭圆,由根与系数关系得到两根之和,再根据中点公式列式可求得斜率k ,从而求得直线l 方程.【详解】解:(1)椭圆C c a ∴=,223a c =222222a b c b c =+∴=,即b =椭圆C 的两个顶点和两个焦点构成的四边形面积为bc ∴=2=1c ∴=,从而得a =b =∴椭圆C 的方程为22132x y +=;(2)显然,直线l 的斜率存在,设该斜率k , 直线l 的方程为()11y k x -=-,即1y kx k =+-, 直线l 的方程与椭圆C 的方程联立,消去y 得:()()()22232613160k x k k x k ++-+--=且该方程显然有二不等根,记A ,B 两点的坐标依次为()11,x y ,()22,x y ,1212x x +=,即122x x +=, ()261232k k k -∴=+,解得23k =-, ∴所求直线l 的方程为2350x y +-=.【点睛】本题考查了直线与椭圆的综合,属中档题.17.已知抛物线C :22y px =经过点2,2P (),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA OB ⊥,求AOB 面积的最小值.【答案】(1)抛物线C 的方程为22y x =.焦点坐标为1,02(),准线方程为12x =-(2)面积的最小值为4 【解析】 【分析】(1)根据题意,将P 的坐标代入抛物线的方程,可得p 的值,即可得抛物线的标准方程,分析即可得答案;(2)直线AB 的方程为x ty a =+,与抛物线的方程联立,可得2220y ty a --=,设()11,A x y ,()22,B x y ,结合OA OB ⊥,结合根与系数的关系分析可得22121204y y y y +=,进而可得AOB 面积的表达式,分析可得答案.【详解】解:(1)由抛物线C :22y px =经过点()2,2P 知44p =,解得1p =.则抛物线C 的方程为22y x =.抛物线C 的焦点坐标为1,02⎛⎫ ⎪⎝⎭,准线方程为12x =-;(2)由题知,直线AB 不与y 轴垂直,设直线AB :x ty a =+, 由22x ty a y x=+⎧⎨=⎩消去x ,得2220y ty a --=. 设()11,A x y ,()22,B x y ,则122y y t +=,122y y a =-.因为OA OB ⊥,所以12120x x y y +=,即22121204y y y y +=,解得120y y =(舍去)或124y y =-. 所以2 4.a -=-解得2a =. 所以直线AB :2x ty =+.所以直线AB 过定点2,0().121242AOBSy y =⨯⨯-==≥=. 当且仅当12y =,22y =-或12y =-,22y =时,等号成立. 所以AOB ∆面积的最小值为4.【点睛】本题考查抛物线的与直线的位置关系,关键是求出抛物线的标准方程,属于中档题.18.已知椭圆2222:1(0)x y C a b a b +=>>经过点(1,)2,一个焦点为.(1)求椭圆C 的方程;(2)若直线(1)(0)y k x k =-≠与x 轴交于点P ,与椭圆C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点Q ,求AB PQ的取值范围.【答案】(1)椭圆C 的方程是2214x y +=;(2)AB PQ的取值范围为(4,. 【解析】【详解】试题分析:(1)求椭圆C 的方程,已知椭圆2222:1(0)x y C a b a b +=>>经过点(1,2,一个焦点为,故可用待定系数法,利用焦点为可得c =,可得221314a b+=,再由222a b c =+,即可解出,a b ,从而得椭圆C 的方程;(2)求AB PQ 的取值范围,由弦长公式可求得线段AB 的长,因此可设1122(,),(,)A x y B x y ,由22(1),{1,4y k x x y =-+=得,2222(14)8440k x k x k +-+-=,则12,x x 是方程的两根,有根与系数关系,得2122814k x x k +=+,21224414k x x k-=+,由弦长公式求得线段AB 的长,求PQ 的长,需求出,P Q 的坐标,直线(1)(0)y k x k =-≠与x 轴交于点P ,可得(1,0)P ,线段AB 的垂直平分线与x 轴交于点Q ,故先求出线段AB 的中点坐标,写出线段AB 的垂直平分线方程,令0y =,既得Q 点的坐标,从而得PQ 的长,这样就得AB PQ的取值范围.试题解析:(1)由题意得2222=3,{131,4a b a b -+=解得=2a ,1b =. 所以椭圆C 的方程是2214x y +=.(2)由22(1),{1,4y k x x y =-+=得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y Bx y ,则有2122814k x x k +=+,21224414k x x k -=+, 121222(2)14k y y k x x k -+=+-=+.所以线段AB 的中点坐标为2224(,)1414k kk k-++, 所以线段AB 的垂直平分线方程为.于是,线段AB 的垂直平分线与x 轴的交点Q 223(,0)14kk+,又点(1,0)P , 所以22223111414k k PQ k k +=-=++.又222222844(1)[()4]1414k k AB k k k -=+-⋅++224(1)(13)k k ++=.于是,22222224(1)(13)1321444311114k k AB k k k PQ k k k ++++===-++++. 因为0k ≠,所以221331k<-<+.所以AB PQ 的取值范围为(4,43). 考点:求椭圆的方程,直线与椭圆位置关系,二次曲线范围问题.19.已知椭圆22221(0)x y a b a b +=>>的离心率为3,其短轴的端点分别为,,||2A B AB =,且直线,AM BM 分别与椭圆C 交于,E F 两点,其中点1,2M m ⎛⎫⎪⎝⎭,满足0m ≠,且3m ≠±. (Ⅰ)求椭圆C 的方程;(Ⅱ)若BME 面积是AMF 面积的5倍,求m 的值.【答案】(Ⅰ)2214x y +=;(Ⅱ)1m =±. 【解析】 【分析】(Ⅰ)由题意得到关于a,b,c 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)由题意得到直线AM,BM 的方程,联立直线方程与椭圆方程,求得点E,F 的坐标结合题意即可得到关于m 的方程,解方程即可确定m 的值.【详解】(Ⅰ)由题意可得:22222c e a AB b a b c ⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得:222413a b c ⎧=⎪=⎨⎪=⎩,椭圆的方程为2214x y += .(Ⅱ)()()10,1,0,1,,2A B M m ⎛⎫- ⎪⎝⎭且0m ≠, ∴直线AM 的斜率为112k m =-,直线BM 的斜率为232k m=, ∴直线AM 的方程为112y x m =-+,直线BM 的方程为312y x m =-,由221,411,2x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩得()22140m x mx +-=, ∴240,1mx x m ==+,∴22241,11m m E m m ⎛⎫- ⎪++⎝⎭. 由221,431,2x y y x m ⎧+=⎪⎪⎨⎪=-⎪⎩得()229120m x mx +-=, ∴2120,9mx x m ==+,∴222129,99m m F m m ⎛⎫- ⎪++⎝⎭.∵11sin sin 22AMF BME S MA MF AMF S MB ME BME ∆∆=∠=∠,,AMF BME ∠=∠, 5AMFBMESS=,∴5MA MF MB ME =,∴5MA MB MEMF=∴22541219m m m mm m m m =--++ ∵0m ≠,且m ≠∴整理方程得21m =, ∴1m =±为所求.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1、在最软入的时候,你会想起谁。
2020-2021学年辽宁省大连市高二上学期期末考试数学试题及答案
绝密★启用前大连市2020~2021学年度第一学期期末考试试卷高二数学注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单项选择题1.抛物线28y x =的焦点到准线的距离为( ) A .8B .6C .4D .22.若直线1l ,2l 的方向向量分别为()1,2,2a =-,()2,3,2b =-,则( ) A .12l l ∥B .12l l ⊥C .1l ,2l 相交但不垂直D .不能确定3.已知G 是正方形ABCD 的中心,点P 为正方形ABCD 所在平面外一点,则PA PB PC PD +++=( ) A .PGB .2PGC .3PGD .4PG4.()52x y -的展开式中23x y 的系数为( ) A .80B .-80C .40D .-405.已知直线l 的方程为34x y b -=,圆C 的方程为222210x y x y +-++=,则“2b =”是“l 与C 相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程各至少选一门,则不同的选法共有( ) A .3种B .6种C .9种D .18种7.已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为()1,0F c -,()2,0F c (其中0c >),过焦点1F 向双曲线的一条渐近线作垂线,交双曲线C 的右支于点P ,若122PF F π∠=,则双曲线C 的渐近线方程为( )A .0x y ±=B .20x y ±=C .20x y ±=D .0x ±=8.在直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,设点M 是棱11AC 的中点,点P 在底面ABC 所在平面内,若平面1B MP 分别与平面11AAC C 和平面ABC 所成的锐二面角相等,则点P 到点B 的最短距离是( )A B .C .1D 二、多项选择题9.方程221104x y m m +=--表示的曲线可能是( ) A .圆B .椭圆C .抛物线D .双曲线10.已知抛物线24y x =焦点为F ,点()1,3A ,点P 在抛物线上,则下列结论正确的是( ) A .PA PF +的最小值为3 B .PA PF +的最大值为7 C .PA PF -的最小值为-2D .PA PF -的最大值为311.关于20201)及其展开式,下列说法正确的有( )A .该二项展开式中第六项为610072020C xB .该二项展开式中非常数项的系数和为-1C .该二项展开式中不含有理项D .20209除以100的余数是112.如图所示,已知平面四边形ABCD ,3AB BC ==,1AD =,CD =2ADC π∠=.沿直线AC将ABC △翻折成AB C '△,下列说法正确的是( )A .2B D AC '⋅=- B .1B C AD '⋅=C .直线AC 与BD '成角余弦的最大值为6 D .点C 到平面AB D '的距离的最大值为7第Ⅱ卷(非选择题)三、填空题13.024444C C C ++=______.14.在四棱锥P ABCD -中,()4,2,4AB =-,()4,1,0AD =-,()6,2,8AP =--,则这个四棱锥的高h =______.15.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢龙和马,乙同学喜欢牛、兔、马和羊,丙同学这十二个吉祥物都喜欢,如果让三位同学都能选到自己喜欢的礼物,那么不同的选法有______种.16.已知1F ,2F 是双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点,过1F 的直线l 与双曲线C 的左支交于点A ,与右支交于点B ,若12AF a =,1223F AF π∠=,则221AF F ABF S S =△△______,双曲线C 的离心率为______. 四、解答题17.已知圆()22:19C x y -+=内有一点()2,2P ,过点P 作直线l 交圆C 于A 、B 两点.(Ⅰ)当l 经过圆心C 时,求直线l 的方程;(Ⅱ)求弦长AB 的最小值,以及此时直线l 的方程. 18.在①4OA OB ⋅=-,②3MAMB=,③以AB 为直径的圆与准线相切,这三个条件中任选一个,补充到下面的问题中,求出直线l 的一般方程.问题:已知抛物线2:4C y x =,过x 轴正半轴上一点M ,倾斜角为3π的直线l 交抛物线C 于A ,B 两点,____________,求直线l 的一般方程.注:如果选择多个条件分别解答,按第一个解答计分.19.在直三棱柱111ABC A B C -中,13AA AB BC ===,2AC =,D 是AC 的中点.(Ⅰ)求证:1B C ∥平面1A BD ;(Ⅱ)求直线11A B 与平面1A BD 成角的正弦值.20.在平面直角坐标系xOy 中,O 为坐标原点,已知()0,0A x ,()00B y ,两点分别在x 轴和y 轴上运动,且1AB =,若动点(),P x y 满足52OP OA OB =+.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)已知点()0,2D ,斜率为k 的直线l 交曲线C 于M ,N 两点.如果DMN △的重心恰好在x 轴上,求k 的取值范围.21.如图,正方形ABCD 边长为1,ED ⊥平面ABCD ,FB ⊥平面ABCD ,且1ED FB ==(E ,F 在平面ABCD 同侧),G 为线段EC 上的动点.(Ⅰ)求证:AG DF ⊥;(Ⅱ)求22AG BG +的最小值,并求取得最小值时二面角B AG C --的余弦值.22.已知椭圆2222:1x y E a b+=(0a b >>)的左、右焦点为1F ,2F ,且122F F =,左、右顶点为M ,N .(Ⅰ)若椭圆E 的离心率12e =,设点()4,P n -(0n ≠),直线PN 交椭圆E 于点Q ﹐且直线MP ,MQ 的斜率分别为1k ,2k ,求证:12k k 为定值;(Ⅱ)斜率为k 的直线l 过2F ,且与曲线E 交于A ,B 两点,当k 变化时,1ABF △的内切圆面积有最大值,求椭圆E 的离心率e 的取值范围.2020~2021学年第一学期期末考试试卷高二数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、单项选择题:1.C ,2.B ,3.D ,4.D ,5.A ,6.C ,7.B ,8.A . 二、多项选择题:9.ABD ,10.ACD ,11.BD ,12.AC .第Ⅱ卷(非选择题)三、填空题13.8;14;15.70;16.12. 四、解答题17.解:(Ⅰ)圆()22:19C x y -+=的圆心C 坐标为()1,0,又直线过点()2,2P ,所以直线的斜率20221k -==-, 所以直线方程为()021y x -=-,即220x y --=.(Ⅱ)设圆心C 到直线l 的距离为d ,则2292AB d ⎛⎫+= ⎪⎝⎭.所以d 越大,弦长AB 越小,故当d 取得最大值时,弦长AB 取得最小值.而过点()2,2P 的直线l ,当其与直线CP 垂直时,d 取得最大值,此时弦长AB 取得最小值.直线CP 的斜率为:20221-=-,故直线l 的斜率为12-, 所以直线l 的方程为()1222y x -=--,即260x y +-=.18.解:若选①设(),0M m (0m >),则直线):l y x m =-,设()11,A x y ,()22,B x y .则由)24y xy x m ⎧=⎪⎨=-⎪⎩20y y --=,有()121214044y y y y m⎧∆=-⨯⨯>⎪⎪⎪⎨+=⎪⎪=-⎪⎩ 因为()22121212124416y y OA OB x x y y y y m m ⋅=+=+=-=-,即()220m -=,所以2m =,满足题意.所以,直线):2l y x =-0y --=.若选②设(),0M m (0m >),则直线):l y x m =-,设()11,A x y ,()22,B x y .则由)24y xy x m ⎧=⎪⎨=-⎪⎩20y y --=,有()12121404y y y y m⎧∆=-⨯>⎪⎪⎪⎨+=⎪⎪=-⎪⎩ 因为3MAMB=,结合题意,有3AM MB =,即()()1122,3,m x y x m y --=-, 则有123y y =-,又因为12y y +=,所以有12y y ⎧=⎪⎪⎨⎪=⎪⎩,4m ⎛⨯=- ⎝,即1m =.满足题意.所以,直线):1l y x =-0y --=. 若选③设()11,A x y ,()22,B x y由题可知,抛物线2:4C y x =的焦点()1,0F ,因为以AB 为直径的圆与准线相切,所以12122122x x AB x x +⎛⎫=+=++ ⎪⎝⎭,又因为11AF x =+,21BF x =+,所以AB AF BF =+,可得直线l 过焦点()1,0F ,所以,直线):1l y x =-0y --=.19.(Ⅰ)证明:连接1AB 交1A B 于E ,连接DE . ∵四边形11ABB A 是矩形,∴E 是1AB 的中点,又∵D 是AC 的中点,∴1DE B C ∥,又∵1B C ⊄平面1A BD ,DE ⊂平面1A BD ,∴1B C ∥平面1A BD .(Ⅱ)解:(法一)取11AC 中点1D ,连接1DD . 又∵D 为AC 中点,∴11D D A A ∥.在三棱柱111ABC A B C -中,∵1AA ⊥平面ABC ,∴1DD ⊥平面ABC .在ABC △中,AB BC =,AD DC =,∴BD AC ⊥.以D 为坐标原点,以DC ,DB ,1DD 的方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系.∴()0,0,0D,()B,()1B ,()11,0,3A -,()11A B =,()11,3,0DA =-,(),00DB =.设平面1A BD 的一个法向量为()n x y z =,,所以300x z -+=⎧⎪⎨=⎪⎩,∴0y =,令1z =,则3x =,则平面1A BD 的一个法向量为()301n =,,, 设直线11A B 与平面1A BD 成角为θ,则111111sin cos ,310A B n A B n AB n θ⋅====⨯所以,直线11A B 与平面1A BD (法二)在平面11ACC A 内作1AH A D ⊥于H ,连接BH .∵11A B AB ∥,所以AB 与平面1A BD 成角即为11A B 与平面1A BD 成角. ∵1A A ⊥平面ABC ,BD ⊂平面ABC ,∴1A A BD ⊥, 在ABC △中,∵AB BC =,D 是AC 的中点,∴BD AC ⊥,∵1A A ,AC ⊂平面11ACC A ,1A A AC A ⋂=,∴BD ⊥平面11ACC A .∵AH ⊂平面11ACC A ,∴AH BD ⊥,又∵1AH A D ⊥,1BD A D D ⋂=,1A D ⊂平面1A BD ,BD ⊂平面1A BD ,∴AH ⊥平面1A BD ,∴直线AB 与平面1A BD 成角为ABH ∠.在1A AD △中,1AD =,13AA =,190A AD ∠=︒,由等面积法,可得AH =, 在Rt ABH △中,sin A A H AB BH ==∠. 所以,直线11A B 与平面1A BD成角的正弦值为10. 20.解:(Ⅰ)由动点(),P x y 满足52OP OA OB =+,得())()00,,020,x y x y =+,即0012x x y y ⎧=⎪⎪⎨⎪=⎪⎩, 1=,所以22154x y +=. (Ⅱ)(法一)设()11,M x y ,()22,N x y ,直线l 的斜率为k ,则2211222215414x y x y s⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②得()()2222121211054x x y y -+-= 整理得:121245x x k y y +=-⋅+, 设DMN △的重心坐标为()3,0x ,有1231203203x x x y y ++⎧=⎪⎪⎨++⎪=⎪⎩,即1231232x x x y y +=⎧⎨+=-⎩,所以365k x =,又弦MN 中点3312,x ⎛⎫- ⎪⎝⎭一定在椭圆内部,所以()232312154x ⎛⎫⎪-+⎭<⎝,即333x -<<,所以k << (法二)设直线l 的方程为y kx m =+,联立方程22154y kx mx y =+⎧⎪⎨+=⎪⎩得()22245105200kxkmx m +++-=,有()2280540k m ∆=-+>,即22540k m -+>1221045kmx x k +=-+,212252045m x x k -=+ 所以()212121221022245k my y kx m kx m k x x m m k +=+++=++=-+=-+ 即2454k m +=-,又22540k m -+>,所以222545404k k ⎛⎫++--> ⎪⎝⎭,即422540480k k --<, 所以2125k <,即k <<. 21.(法一)(Ⅰ)证明:分别作AM ⊥平面ABCD ,CN ⊥平面ABCD ,取1AM CN ==,顺次连接E ,M ,F ,N ,如图可知,几何体ABCD MFNE -为正方体,连接BD ,∴BD AC ⊥, ∵FB ⊥平面ABCD ,AC ⊂平面ABCD , ∴FB AC ⊥,又∵FB BD B ⋂=,FB ⊂平面BDEF ,BD ⊂平面BDEF ,∴AC ⊥平面BDEF ,又DF ⊂平面BDEF ,∴AC DF ⊥,同理可证AE DF ⊥, 又∵AC AE A ⋂=,AC ⊂平面ACE ,AE ⊂平面ACE , ∴DF ⊥平面ACE ,∵AG ⊂平面ACE ,∴AG DF ⊥.(Ⅱ)∵ED ⊥平面ABCD ,AD CD ⊥,故以D 为原点,DA ,DC ,DE 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,由题意得,各点坐标为()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,1E ,()1,1,1F , ∵G 在CE 上,∴设CG CE λ=(01λ≤≤),则有()()()1,1,00,1,11,1,AG AC CG AC CE λλλλ=+=+=-+-=--, ()()()1,0,00,1,11,,BG BC CG BC CE λλλλ=+=+=-+-=--,()22222222111AG BG AG BG λλλλ+=+=+-++++22111423444λλλ⎛⎫=-+=-+ ⎪⎝⎭当且仅当14λ=时,22AG BG +取得最小值114, 此时在平面ACG 中,()1,1,0AC =-,()0,1,1CE =-,设平面ACG 的一个法向量为()111,,m x y z =,则有0m AC m CE ⎧⋅=⎪⎨⋅=⎪⎩,即111100x y y z -+=⎧⎨-+=⎩,设11x =,得11y =,11z =,()1,1,1m =,此时在平面ABG 中,()0,1,0AB =,311,,44AG ⎛⎫=- ⎪⎝⎭,设平面ABG 的一个法向量为()222,,n x y z =,则有00n AB n AG ⎧⋅=⎪⎨⋅=⎪⎩,即2222031044y x y z '=⎧⎪⎨-++=⎪⎩, 设21x =,得20y =,24z =,()1,0,4n =, 设二面角B AG C --大小为θ,则1cos 11nn mm θ⋅+===+由题意可知,θ为锐角,所以cos 51θ=. (法二)(Ⅰ)∵ED ⊥平面ABCD ,AD CD ⊥,故以D 为原点,DA ,DC ,DE 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,由题意得,各点坐标为()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,1E ,()1,1,1F , ∵G 在CE 上,∴设CG CE λ=(01λ≤≤),则有()()()1,1,00,1,11,1,AG AC CG AC CE λλλλ=+=+=-+-=--, ()1,1,1DF =,∵()()1,1,1,1,1110AG DF λλλλ⋅=--⋅=-+-+=, ∴AG DF ⊥. (Ⅱ)由(Ⅰ)得:()()()1,0,00,1,11,,BG BC CG BC CE λλλλ=+=+=-+-=--,()22222222111AG BG AG BG λλλλ+=+=+-++++22111423444λλλ⎛⎫=-+=-+ ⎪⎝⎭当且仅当14λ=时,22AG BG +取得最小值114, 此时在平面ACG 中,()1,1,0AC =-,()0,1,1CE =-,设平面ACG 的一个法向量为()111,,m x y z =,则有00m AC m CE ⎧⋅=⎪⎨⋅=⎪⎩,即11110x y y z -+=⎧⎨-+=⎩,设11x =,得11y =,11z =,()1,1,1m =,此时在平面ABG 中,()0,1,0AB =,311,,44AG ⎛⎫=- ⎪⎝⎭,设平面ABG 的一个法向量为()222,,n x y z =,则有00n AB n AG ⎧⋅=⎪⎨⋅=⎪⎩,即2222031044y x y z '=⎧⎪⎨-++=⎪⎩, 设21x =,得20y =,24z =,()1,0,4n =, 设二面角B AG C --大小为θ,则1cos 5111nnm m θ⋅+===+由题意可知,θ为锐角,所以cos 51θ=.22.解:(Ⅰ)∵122F F =,12e =,∴1c =,2a =,b == 所以椭圆方程为22143x y +=, 所以()2,0M -,()2,0N ,设点()00,Q x y ,直线PN 方程为:()26ny x =--,与椭圆E 方程联立:()2214326x y n y x ⎧+=⎪⎪⎨⎪=-⎪-⎩,得()222227441080n x n x n +-+-=,∵点N 在E 上,∴2是方程的一个根,∴20225427n x n -=+,202225418262727n n ny n n ⎛⎫-=-= ⎪-++⎝⎭, ∴直线MP ,MQ 的斜率分别为1422n n k ==--+,2222189272542227nn k n nn +==+++, 故1299224n k k n =-⋅=-;(Ⅱ)如图可知,1ABF △的周长为4a ,故当斜率k 变化时,1ABF △的内切圆面积有最大值,只需1ABF △的面积有最大值,∵直线l 的斜率为k ,且过点2F ,∴l 的方程为()1y k x =-,0k ≠,设()11,A x y ,()22,B x y ,联立()222211x y a b y k x ⎧+=⎪⎨⎪=-⎩,得()222222222220b a k x a k a k a x b +-+-=,有0∆>,22122222a k x x b a k+=+,222212222a k a b x x b a k -=+,112121212ABF S F F y y k x x k =-=-=△22abab===22ab ab ab=≤=,当且仅当()4222211b k k k k +=+,等号成立,若面积有最大值, 只需22221111k b k k ==++成立,∵20k >,∴201b <<,故离心率2c e a ⎛⎫=== ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选教育类应用文档,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!祝同学们期末考出好成绩!欢迎同学们下载,希望能帮助到你们!2020年高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C)A.⌝p:∃x∈R,sinx≥1B.⌝p:∀x∈R,sinx≥1C.⌝p:∃x∈R,sinx>1 D.⌝p:∀x∈R,sinx>12.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B).A.160 B.180 C.200 D.2203.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=60°,则c的值等于( C ).A.5 B.13 C.13D.374.若双曲线x2a 2-y2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D)A.73B.54C.43D.535.在△ABC中,能使sinA>32成立的充分不必要条件是( C)A.A∈⎝⎛⎭⎪⎫0,π3B.A∈⎝⎛⎭⎪⎫π3,2π3C.A∈⎝⎛⎭⎪⎫π3,π2D.A∈⎝⎛⎭⎪⎫π2,5π66.△ABC中,如果Aatan=Bbtan=Cctan,那么△ABC是( B).A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形7. 如图,PA⊥平面ABCD,四边形ABCD为正方形,E是CD的中点,F是AD上一点,当BF⊥PE 时,AF∶FD的值为( B)A.1∶2 B.1∶1 C.3∶1 D.2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线A B1夹角的余弦值为( A)A.55B. 53C.255 D. 359.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( D ). A .(-∞,2] B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =kx +34分为面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A. ⎝ ⎛⎭⎪⎪⎫0,22B. ⎝ ⎛⎭⎪⎪⎫0,33C. ⎝ ⎛⎭⎪⎪⎫0,55D.⎝ ⎛⎭⎪⎪⎫0,66解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫0,33。
第Ⅱ卷(选择题 共90分)二、填空题:本大题共5小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知某抛物线的准线方程为y =1,则该抛物线的标准方程为________。
x 2=-4y 14.若a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是______75__。
15.过椭圆221164x y +=内一点M(2,1)引一条弦,使弦被点M 平分,则这条弦所在直线 的斜率等于________ -1216.已知函数f (x )=x α的图象过点(4,2),令 an =1f n +1+f n,n ∈N *。
记数列{a n }的前n 项和为S n ,则S 2 016=________。
2 017-1三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.17.(12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C 。
(1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积。
解 (1)由sin 2B =2sin A sin C 及正弦定理,得b 2=2ac ,∵a =b ,∴a =2c 。
由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+14a 2-a 22a ×12a=14。
(2)由(1)得b 2=2ac 。
∵B =90°,a =2,∴a 2+c 2=2ac ,∴a =c =2,∴S △ABC =12ac =1。
18.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0。
(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围。
解 (1)由x 2-4ax +3a 2<0,得:(x -3a )(x -a )<0, 当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3。
由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0。
解得:2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3。
若p 且q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3。
(2)p 是q 的必要不充分条件,即q 推出p ,且p 推不出q ,设集合A ={x |p (x )};集合B ={x |q (x )},则集合B 是集合A 的真子集, 又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a )。
所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2,当a <0时,显然A ∩B =∅,不合题意,19.(本小题满分12分)已知动圆经过点F (2,0),并且与直线x =-2相切。
(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB |。
解 (1)设动圆圆心P (x ,y )。
因为动圆经过点F (2,0),并且与直线x =-2相切,所以点P 到定点F (2,0)的距离与到定直线x =-2的距离相等, 故点P 的轨迹是一条抛物线,其焦点为F ,准线为x =-2,设轨迹方程为y 2=2px (p >0),则p2=2,所以轨迹M 的方程为y 2=8x 。
(2)轨迹M 的焦点(2,0),直线l 的斜率k =tan 135°=-1,于是其方程为y =-(x -2)。
由⎩⎪⎨⎪⎧y =-x -2,y 2=8x ,消去y 得x 2-12x +4=0。
设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,于是|AB|=x1+x2+p=12+4=16。
20.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC是直角三角形,且PA=AB=AC。
又平面QBC垂直于底面ABC。
(1)求证:PA∥平面QBC;(2)若PQ⊥平面QBC,求锐二面角Q-PB-A的余弦值。
解(1)证明:过点Q作QD⊥BC交BC于点D,因为平面QBC⊥平面ABC。
所以QD⊥平面ABC。
又PA⊥平面ABC,所以QD∥PA。
而QD⊂平面QBC,PA⊄平面QBC,所以PA∥平面QBC。
(2)因为PQ⊥平面QBC,所以∠PQB=∠PQC=90°。
又PB=PC,PQ=PQ,所以△PQB≌△PQC,所以BQ=CQ。
所以点D是BC的中点,连接AD,则AD⊥BC,因此AD⊥平面QBC,故四边形PADQ是矩形。
分别以AC,AB,AP所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系。
设PA=2a,则Q(a,a,2a),B(0,2a,0),P(0,0,2a)。
设平面QPB的法向量为n=(x,y,z),因为PQ→=(a,a,0),PB→=(0,2a,-2a),所以⎩⎪⎨⎪⎧ax+ay=0,2ay-2az=0,取n=(1,-1,-1)。
又平面PAB的一个法向量为m=(1,0,0),设锐二面角Q-PB-A的大小为θ,则cosθ=|cos〈m,n〉|=m·n|m||n|=33,即锐二面角Q-PB-A的余弦值等于33。
21.(本小题满分12分)若{}na的前n项和为nS,点),(nSn均在函数y=xx21232-的图像上。
(Ⅰ)求数列{}na的通项公式;na=3n-2(Ⅱ)13+=nnn aab,nT是数列{}nb的前n项和,(1) 点),(nSn均在函数y=xx21232-的图像上,∴nS=nn21232-,故=-1nS)1(21)1(232---nn)2(≥n,…从而当2≥nn S -1-n S =3n-2,即n a =3n-2,又当n=1时,111==S a ,满足上式∴n a =3n-2(2) 13+=n n n a a b ,n a =3n-2,∴)13)(23(3+-=n n b n =131231+--n n ∴++-+-+-=...101717141411n T 131231+--n n =.1331311+=+-n nn22.(本小题满分12分)已知椭圆x 2+2y 2=a 2(a >0)的一个顶点和两个焦点构成的三角形的面积为4。
(1)求椭圆C 的方程;(2)已知直线y =k (x -1)与椭圆C 交于A ,B 两点,是否存在x 轴上的点M (m,0),使得对任意的k ∈R ,MA →·MB →为定值?若存在,求出点M 的坐标;若不存在,说明理由。
解 (1)设椭圆的短半轴为b ,半焦距为c , 则b 2=a 22,由c 2=a 2-b 2,得c 2=a 2-a 22=a 22,由12×b ×2c =4解得a 2=8,b 2=4,则椭圆方程为 x 28+y 24=1。
(2)由⎩⎪⎨⎪⎧y =k x -1,x 2+2y 2=8,得(2k 2+1)x 2-4k 2x +2k 2-8=0, 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-82k 2+1,则MA →·MB →=(x 1-m ,y 1)·(x 2-m ,y 2) =x 1x 2-m (x 1+x 2)+m 2+k 2(x 1-1)(x 2-1) =(k 2+1)x 1x 2-(m +k 2)·(x 1+x 2)+k 2+m 2 =(k 2+1)2k 2-82k 2+1-(m +k 2)4k 22k 2+1+k 2+m 2=-5+4m k 2+82k 2+1+m 2, 当5+4m =16,即m =114时,MA →·MB →=-716为定值,故存在点M ⎝ ⎛⎭⎪⎫114,0,使得MA →·MB →为定值。