一元二次方程核心知识结构图及教学难点设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程核心知识结构图及教学难点设计

一、方程解的含义

(1)一元二次方程的解(根)的意义:

能使一元二次方程左右两边相等的未知数的值是一元二次方程的解。一元二次方程的解也称为一元二次方程的根(只有一个未知数的方程的解也叫做这个方程的根)。

(2)一元二次方程一定且最多有两个解,但不一定有两个实数解。

二、方程一般式

一般地,任何一个关于x的一元二次方程经过整理,都能化成如ax2+bx+c=0 (a≠0,a,b,c是常数)的形式,这种形式叫一元二次方程的一般形式。一次项系数b和常数项c可取任意实数,而二次项系数a必须是不等于0的实数。要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式。注:a≠0这个条件十分重要.

五、方程的解法

1公式法

步骤

用求根公式解一元二次方程的方法叫做求根公式法。

用求根公式法解一元二次方程的一般步骤为:

①把方程化成一般形式,进而确定a,b,c的值(注意符号);

②求出判别式的值,判断根的情况;

③在的前提下,把a、b、c的值代入公式进行计算,求出方程的根。

推导过程

一元二次方程的求根公式导出过程如下:

(为了配方,两边各加)

(化简得)。

2配方法

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤如果右边是非负数,即可进一步通过直接开平方法求出它的解,如果右边是一个负数,则判定此方程无实数解。

配方法的理论依据是完全平方公式a²+b²±2ab=(a±b)²

配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。

3因式分解

①移项,使方程的右边化为零;

②将方程的左边分解为两个一次因式的乘积;

③令每个因式分别为零,得到两个一元一次方程;

④解这两个一元一次方程,它们的解就都是原方程的解。

相关文档
最新文档