定积分典型例题新

合集下载

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.假设对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 此题也可直接用换元法求解.令1x -=sin t 〔22t ππ-≤≤〕,则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 〔1〕假设22()x t xf x e dt -=⎰,则()f x '=___;〔2〕假设0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 〔1〕()f x '=422x x xe e ---;〔2〕 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5函数1()(3(0)x F x dt x =->⎰的单调递减开区间为_________.解()3F x '=-,令()0F x '<3>,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()x t g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得20(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''==.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-, 由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的〔 〕.A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x →→⋅=+2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 此题只需要注意到定积分()baf x dx ⎰是常数〔,a b 为常数〕.解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例16 计算12ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, 〔1〕而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, 〔2〕将〔2〕式代入〔1〕式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰ 21142π=-⎰. 〔1〕 令sin x t =,则21⎰22sin t π=⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰ 201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. 〔2〕 将〔2〕式代入〔1〕式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

(完整版)定积分练习题

(完整版)定积分练习题

一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例 1 求 Iim 42(3n τ 32n^ JH 3n 3).n厂n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限•解 将区间[0, 1] n 等分,则每个小区间长为.* ,然后把1的一个因子-乘n n n nn入和式中各项•于是将所求极限转化为求定积分•即Iim A (V n 4 5+⅛2n 2切|+卅)=1计气卩弋F + 山 +;F )=[坏dx=3 •n -r ,n n n I n∖ n 042 -----------------2例 2 [J 2x —xdx= ______________•2 ry解法1由定积分的几何意义知, 0J 2x —X 2dx 等于上半圆周(x —1)2+y 2=1 ( y ≥0)与X 轴所围成的图形的面积.故$ 2χ 一χ2d χ= •■■02解法2本题也可直接用换元法求解.令x_1 = Sint (丄兰t ≤三),则2 2这是求变限函数导数的问题,禾U 用下面的公式即可d V(X)— f (t)dt = f[v(x)]v(x) - f[u(x)]u (X) • dxU(X )丄2-e;可得.Xf (X) = 0f (t)dt Xf(X) •X 3丄解 对等式;f(t)dt =x 两边关于X 求导得3 2f (x -1) 3x =1,4_..1 —sin 2tcostdt =2 :、1 —sin 2tcostdt2522例3(1)若f (x) e 丄Xdt ,则 f (X) =— ; (2)若 f(x)=Xxf (t)dt ,求 f (X )=— •■:'≡. 2 -= 2 02COs tdt=- 分析(2) 由于在被积函数中 X 不是积分变量,故可提到积分号外即Xf (X)=X Of (t)dt ,则V(X) 例4设f (x)连续,且X 3 -1O f (t)dt =X ,贝U f(26)=------ 2-XdX =例7已知两曲线y =f (X)与y =g(χ)在点(0,0)处的切线相同,其中arcs inx 十2g(x) = 0e dt , X [-1,1],试求该切线的方程并求极限Iim nf (-3). n 性 n分析 两曲线y =f(χ)与y =g(χ)在点(0,0)处的切线相同,隐含条件 f (0^g (0).解由已知条件得12X 2= (2) Iim =0 .x-⅛ Si nx注此处利用等价无穷小替换和多次应用洛必达法则.故 f(x 3-1)=13X 2 3 1,令X 46得x=3 ,所以f(26)冷1例5函数F(x) = j (3 _4)dt (x >0)的单调递减开区间为F(X)= 31 1 1x ,令F(X z O 得X 3 ,解之得。

最新定积分典型例题

最新定积分典型例题
例3比较«Skip Record If...»,«Skip Record If...»,«Skip Record If...».
分析对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.
解法1在«Skip Record If...»上,有«Skip Record If...».而令«Skip Record If...»,则«Skip Record If...».当«Skip Record If...»时,«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上单调递增,从而«Skip Record If...»,可知在«Skip Record If...»上,有«Skip Record If...».又
解法2本题也可直接用换元法求解.令«Skip Record If...»=«Skip Record If...»(«Skip Record If...»),则
«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»
«Skip Record If...»«Skip Record If...»«Skip Record If...».
由于«Skip Record If...»,故
«Skip Record If...»=«Skip Record If...».
例6求«Skip Record If...»,«Skip Record If...»为自然数.
当«Skip Record If...»时,«Skip Record If...»,而«Skip Record If...»,故

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。

2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。

f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。

最新定积分及其应用练习-带详细答案

最新定积分及其应用练习-带详细答案

求由抛物线 y2 8x( y 0) 与直线 x y 6 及 y 0 所围成图形的面积.
答案: 40 . 3
详解:
作出 y2 8x( y 0) 及 x y 6 的图形如右:
解方程组
y2
8x
x y 6 0

x y
2 4
解方程组
x
y
y 0
6
0

x y
6 0
所求图形的面积 s
(2)取特殊情况,在(1)的条件下,导函数 f′(x)=3cos3x+6π,求得 Aπ9,0, B51π8,-3,C49π,0,故△ABC 的面积为 S△ABC=12×39π×3=π2,曲线段与 x 轴所 围成的区域的面积 S=- fx 49π9π=-sin43π+π6+sin39π+π6=2,所以该点在△
精品文档
A.1/2 答案:D. 详解:
B.1
由题意图象与 x 轴所围成图形的面积为
1
0
(x 1)dx 0
cos xdx
2
C.2
(
1 2
x2
x)
|10
sin
x
|0 2
1 1 2
3. 2
故选 D.
D.3/2
题四 题面:
(导数与积分结合,二星)设函数 f (x) xm ax 的导函数为 f (x) 2x 1 ,则
(1)若 φ=π6,点 P 的坐标为0,3 2 3,则 ω=________;
(2)若在曲线段 ABC 与 x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为
________.
精品文档
精品文档
[解析] (1)函数 f(x)=sin(ωx+φ)求导得,f′(x)=ωcos(ωx+φ),把 φ=π6和点0,32 3代 入得 ωcos0+π6=3 2 3解得 ω=3.

定积分练习题

定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。

2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。

3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。

4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。

5. 计算 $\int_{0}^{\pi} \sin x \, dx$。

二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。

7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。

8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。

9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。

三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。

11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。

12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。

13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。

14. 计算 $\int_{0}^{2} |x 1| \, dx$。

四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。

最新定积分的几何应用例题与习题(学生用)

最新定积分的几何应用例题与习题(学生用)

定积分的几何应用例题与习题1曲线】的极坐标方程T=「COSR(0),求该曲线在所对应的点处的切线L的2 4直角坐标方程,并求曲线〕、切线L与x轴所围图形的面积。

2、设直线y=ax与抛物线y=x2所围成的面积为S n它们与直线x =1所围成的面积为务并且a <1(1)试确定a的值,使S ' S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。

3、设xoy平面上有正方形D = {(x, y) 0兰x乞1,0兰y兰1}及直线L:x+y = t(t^O)x若S(t)表示正方形D位于直线I左下部分的面积,试求S(t)dt(x _0)4、求由曲线y =e»J sinx|(x Z0)与x轴所围图形绕x轴旋转所得旋转体的体积乂35、求由曲线^aC0S3t(a -0^n<-)与直线y=x及y轴所围成的图形[y=asi n3t 4 2绕x轴旋转所得立体的全表面积。

X _x6. 曲线y = e e—与直线x = 0, x =t(t • 0)及y = 0围成一曲边梯形,该曲边梯2形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x = t处的底面积为F(t)(1) 求的值;(2)计算极限limV(t) t-和F(t)泄2伽抄 (1)V(t) -::F(t)7、求由摆线x=a(t -sint),y= a(1-cost)的一拱(0辽t辽2二)与横轴所围成的平面图形的面积, 及该平面图形分别绕x轴、y轴旋转而成的旋转体的体积。

(1)A=3二a2 , (2)V x =5二2a3 , (3)V y =6二3a38、设平面图形A由x2y2 -2x及y-x所确定,求图形A绕直线x=2旋转一周所得旋转体的体积。

兀2 2V 二2 39设函数f (x), g(x)可微,且f (x)二g(x), g (x)二f (x), f (0) = 0, g(x) = 0.求:1)F(x)二丄©;(2)作出函数曲线y二F(x)的图形;(3)计算由曲线y = F(x)及直线g(x)x=0,x二b(b 0)和y =1围成的面积•(1) F(x)=1—飞^.e +1(2) 当XA0时,F"(x)c0,曲线上凸;当xc0时,F"(x)>0,曲线下凹,所以(0,0)为拐点,且y二_1为其水平渐近线•b b 2(3) S= °(1-F(x))dx= °孑”dx = 2b I n2-ln( 2b 1).10. 已知曲线y=a.x,(a 0)与曲线y = In ■■、x在点(x0, y0)处有公共切线,求(1常数a及切点(x0, y0);(2)两曲线与x轴围成的平面图形的面积;(3)两曲线与x轴围成的平面图形绕x轴旋转一周所得旋转体的体积V(1 a =1 ,切点(e2,1) RjsJe2—1(3)V x :e 6 2 2x11. 对于指数曲线y =e2(1)试在原点与x(x 0)之间找一点.-v x (0 ::: x :: 1),使这点左右两边有阴影部分的面积相等,并写出 v的表达式(2)求lim v -?x T十x xt xe" -2e2 2lim J xj •2_ xx(e2 -1)12、抛物线y=ax2・bx,c通过点(0,0),且当0_x_1时,y_0,它和直线x = 1及y=0所围的图形的面积是4,问这个图形绕x轴旋转而成的旋转体的体积为最小值时,a,b与c的9值应为多少?5a ,b = 2,c = 0313、过点P(1,0)作抛物线y x-2的切线,该切线与上述抛物线及x轴围成一平面图形(如图),求此图形绕x轴旋转所成旋转体的体积。

(完整word版)定积分典型例题20例答案

(完整word版)定积分典型例题20例答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

高考数学新课标定积分应用例题、习题及详解

高考数学新课标定积分应用例题、习题及详解

图3定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为: dx x f x f S ba ⎰-=)]()([下上.③连续曲线()(()0),x y y c y d φφ=≥==及y 及y轴所围成的平面图形面积为()d cA y dy φ=⎰④由方程1()x y φ=与2()x y φ=以及,y c y d==所围成的平面图形面积为12[()()]dcA y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =与2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为31)3132()(103102=-=-=⎰x x x dx x x S .一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限. (2) 写出积分公式. (3) 计算定积分.例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,与x = 2所围成平面区域(如图2)的面积 。

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。

(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。

4.设1,211,12xx x x xf ,求20dx x f 。

5.1lim22xdtarctgt xx 。

6.设其它,00,sin 21xx xf ,求x dt t f x。

7.设时当时当0,110,11xex xxf x,求201dx xf 。

8.2221limnn nnn。

9.求nk nknknnen e 12lim 。

10.设x f 是连续函数,且12dt t f x x f ,求x f 。

11.若2ln 261xtedt ,求x 。

12.证明:212121222dxeex。

13.已知axxx dx ex axa x 224lim,求常数a 。

定积分习题及答案

定积分习题及答案

(A层次)1. 4.7. 兀f 。

2 s in x cos3 xdx ; r xdx -1✓5-4x ,e 2dx f 1 x ✓l +I n x ;10. f 一冗九x 4s in 汕; 冗13. f f-�dx; 4 Sill X 冗16. f 。

2产co sx dx ;冗第五章定积分2. f 。

a x 2✓a 2—x 2dx; 5.「I✓x dx +l ;8. f -o 2 x 2 + d 2xx + 2 ; 冗11. f� 冗4c os 4xdx ;14. 17. 2f14 Jn X`dx ;f 。

兀(xsinx)2dx ;冗19. f� ✓cosx-cos 3 xdx;20. f 。

4 smx dx · 1 + S lll . X , 22. 4If 0 2 xln l +x dx ; l -x25. f +00dx0 (1 + x 2 XI + xa \ (B层次)23. f +oo l +x 2 dx · -oo 1 +X 4' 心(a�o )。

3. 6.9. 厂dx1 X 飞l +x2 r dx`3 斤言-1;f。

冗✓1+ c os2xdx;3· 212 fs x sm xdx · ·-5 x 4 + 2x 2 + 1' 15. f 。

1 xa rct gxdx ; 18. {es in(lnx 雇21. 24. f 。

冗xs mx dx .1 +C OS 2X 冗f 。

2 ln sin x dx ;d y 1. 求由f 。

:e r dt+f x costd t=O所确定的隐函数对x 的导数odx 2. 当x 为何值时,函数I(x)= f x t e -t 2dt有极值?。

3.d厂cos矿t。

dx si n x(}Ix+l, x�14. 设八x )�{归,X > 1'求l。

勹(x )dx 。

2f x(a rc tg t) 2d t5. lirn 。

定积分典型例题59385

定积分典型例题59385

2与x 轴所围成的图形的面积.故 「2x x 2dx = _2sin 2tcostdt=22J sin 2tcostdt=2[coftdt^对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分 值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.2定积分典型例题例 1求 lim —(需1 2 &2n 2 L Vn 3) nn分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函 数难以想到,可采取如下方法:先对区间[0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0, 1] n 等分,则每个小区间长为 X i 1,然后把丄n n 1 1 丄-的一个因子n n 入和式中各项•于是将所求极限转化为求定积分•即 lim n和畅L 贰)=n im 睥瓷L晋)=0 ~x 2 dx = ________ .解法1由定积分的几何意义知,(x 1)20)解法 2本题也可直接用换元法求解.令x 1 = si nt (— t 22),则x 22e dx ,12(1 x)dx .dx =分析 解法1 2在[1,2]上,有 e x e x .而令 f(x) e xx(x 1),则 f (x) e 1.当0时, f (x) 0 ,f (x)在(0,)上单调递增,从而 f (x)f (0),可知在[1,2]上, 有e xx .又12f(x)dx21 f (x)dx ,从而有1 2(1 1 x)dx 2e xdx1 2 e x dx .2解法在[1,2]上,有e x.由泰勒中值定理x2 /e 1 x x 得 e2!注意到12 f (x)dx21 f (x)dx .因此1 2(1 x)dx1x2e dxx 22e dx .例4估计定积分x2exdx 的值.分析要估计定积分的值,关键在于确定被积函数在积分区间上的最大值与最小值.2欢迎下载 3n psin x dx, nx分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.沁,显然f(x)在[n,n p ]上连续,由积分中值定理得psinx sin dxx解法2利用积分不等式 因为0,所以从而所以解设f (x)x 2 x x 2 xe ,因为f (x) e (2xf(0)e 01,f(2)1e"f(x) 2e 20 2x e 2设f (x) , g(x)在[a, b]上连续,11),令f (x)0 ,求得驻点x 丄,而21f(b e 1 , 2[0,2],dxdx g(x)2e 2 , 12e" 0 , f(x)0 .求 limnag(x) n f (x)dx .由于f(x)在[a,b ]上连续,则f(x)在[a,b ]上有最大值M 和最小值 m .由 f(x)0 知由于lim n mn0 .又 g(x) 0 ,则n — b nm a g(x)dxlim n M 1,故lim nb ag(x)n f(x)dxnM a g (x)dx .ba g(x)n f(x)dx =b a g(x)dx .alim np, n 为自然数.解法 1利用积分中值定理设 f (x)[n,n p],limnpsinx dx x sin limp 0.n psin x ,------ d x n xpsin xdxp1 n p dx In x n这是求变限函数导数的问题,禾U 用下面的公式即可d v(x)—u(x ) f(t)dt f[v(x)]v(x) f[u(x)]u (x) • dx u (x )42(1) f (x) = 2xe xe x;解法解法 于是可得 又由于 因此 limnpsinx ,dx x1 nI 、 1x 求 lim dx • n 01 x 由积分中值定理 a f (x)g(x)dxf(bag(x)dx 可知1_x0厂 lim n— dx= x1°x n dx limnlimn因为0x1,故有1nx dx,1 xdxnx1 -dxx1x n dx•1x n dx - 0 n0(n)•lim n 101 -dx = 0 • x存在一点 ,使 f (c) 0 • 分析 由条件和结论容易想到应用罗尔定理,只需再找出条件f( ) f(0)即可. 证明 由题设f(x)在[0,1]上连续,由积分中值定理, 1f (0) 4 f (x)dx 4f ( )(1 4可得 3)f(), 4 其中 [-,1] [0,1] •于是由罗尔定理,存在 c (0,) 4(0,1),使得 f (c) 0 •证毕. (1)若 f (x) x 2t 2e xdt ,则 f (x) =____ ; ( 2)x若 f (x) 0 xf (t)dt ,求 f (x)=分析f (0)g (0).解由已知条件得f(0) g(0)pdt 0 ,且由两曲线在(0,0)处切线斜率相同知f (0)g(0)e (arcsin x)21J 1 x 2 x 0故所求切线方程为 y x .而xf (x) x 0 f (t)dt ,则可得xf (x)= 0 f(t)dt xf(x).x 3 1例 10 设 f(x)连续,且f(t)dt x ,贝y f (26)=x 3 1解 对等式0 f(t)dt x 两边关于x 求导得32f(x 1) 3x 1,11故 f(x 31) 2,令 x 3126 得 x 3,所以 f (26)3x 227例11函数F(x) ;(3于)dt (x 0)的单调递减开区间为 _____________________ . 解 F (x)31,令F (x)0得13,解之得0 x -,即(0,-)为所求.J xVx9 9x例 12 求 f (x) 0 (1 t)arctantdt 的极值点.解 由题意先求驻点.于是 f (x)= (1 x)arctan x .令f (x) = 0 ,得x 1 , x 0 .列表如下:故x 1为f (x)的极大值例13已知两曲线yf (x)与y g(x)在点(0,0)处的切线相同,其中arcs in x 上2g(x) 0 e dt , X [1,1],试求该切线的方程并求极限lim nf (3).分析两曲线y f(x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0)g(0),(2)由于在被积函数x 不是积分变量,故可提到积分号外即点,x 0为极小值点.3 f( ) f(0)—3 3f (0) 3 .-0nx 22sin tdt 例 14 求 limx 0x t(t si nt)dt分析 该极限属于型未定式,可用洛必达法则. 0nim代)Iim3 n解lim 」x 0 0t(t x \X 2■ 2 -sin tdt2x(sin x 2)2= lim =( 2) limsint)dt x 0( 1) x (x sinx) i 7 x 0 2 2(x) x4x 3=(2) lim sinxx1 cosx12x 1 2=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b ,使等式lim1乂一『dt x 0x bsinx 0 J a t 21成立.分析 易见该极限属于 0型的未定式,可用洛必达法则.2xliq ------- 1 ----- 0 . t 2dt = lim _— = lim 一 . 1 匸x 0 x bsinx 0 a t 2 x 01bcosx xlim x 01 bcosx由此可知必有lim(1x 01x 2lima x 01 bcosxbcosx) 0 ,得 b 1 .又由得a 4 .即a 4 , 1 x 2ima x 01 cosxab 1为所求.例16设f (x) sinx234si nt dt , g(x) x x ,则当0 时,f (x)是 g(x)的( ). A .等价无穷小. 解法1由于x 叫B .同阶但非等价的无穷小.2f (x)叶 sin(sin x) cosx g(x)'叫3x 2 4x 3mo Hxcosx 3 4xmo Hx2sin (sin x)C .高阶无穷小.D .低阶无穷小.f(x)sin x 2[t 21 2 33!(t) L]dt^siriS 丄 sin 7x L 3 42分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.ccc 2222x 0 x 25解 1|x|dx =1( x)dx 0xdx = [ ―] 1[―]0 =-.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如31 1 11冷dx [ -]32丄,则是错误的.错误的原因则是由于被积函数 —在x 0处间断且在被 2 x x 6 x积区间内无界•2 2例 19 计算 0 max{x ,x}dx .分析被积函数在积分区间上实际是分段函数f(x)x 2 1 x 2 x 0 x13114sin x( sin x L ) lim 型 lim3 42x 0g(x) x1 14sin x Llim 3__42 x 0 1 x例17证明:若函数 f(x)在区间[a,b]上连续且单调增加,则有bab bxf (x)dxf (x)dx . a2 a证法 1 令 F(x)= tf(t)dta x xf(t)dt ,当 t 2 a[a,x]时,f(t) f (x),则1 F (x) = xf (x)-xaf(t )dt宁 f(x)=^f(x) 2 2-"f(t)dt 2 ax a 〒f(x)1 X f (x)dt =2 a x a 〒f (x)x a〒f(x)故F(x)单调增加•即 F(x)F(a),又 F(a) 0,所以F(x) 0 ,其中x [a, b] •从而F(b) =bxf (x)dxab f (x)dx 0 .证毕.a证法2由于f(x)单调增加,有(xb a(x护[f(x )—)[f(x) 2 a b f( — )]dxb f (丁)] 0,从而b a(x¥)f(x)dxb a(xa b 、 )dx=f(—) b (x 卫 b )dx=0.2182计算 Jx | dx .b xf (x)dxab f(x)dx .a故由上可知所以 2 21 2解 0 max{x ,x}dx 0xdx 1例20设f(x)是连续函数,且 分析本题只需要注意到定积分 因f (x)连续,f (x)必可积, 从而a21 的连续性. 分析 f(x) x 3 21 7 17[]1 32 3 6 1 x 3 0 f (t)dt ,则 f(x) 2x 2dxbf (x)dx 是常数(a, b 为常数). a从而 f (x) x 3a ,且 1一,所以 f (x) x 4设 f(x) 3/,5 2x,1 0f(t) dt 是常数,记 10 f (t)dt a ,则 10(x3a)dx 1 [2x由于f(x)是分段函数 (1 )求F(x)的表达式. F(x)的定义域为[0,2] 当 x (1,2]时,[0, x] 1F(x)3ax]0 3a a , F(x) x 0 f(t)dt , 0x ,故对F(x)也要分段讨论. •当 x [0,1]时,[0,x] [0,1],因此 x 2 3t 2dt 0[0,1]U[1,x],因此匕,贝U x F(x) 0f(t)dt 2x3tdt1(52t)dt = [t 3]0F(x) 5x x 2,求F(x),并讨论F(x)3 [X 3[t ]o x 2. x [5t t ]1= 35x(2) F(x)在[0,1)及(1,2]上连续, 2lim F (x) lim( 3 5x x ) x 1x 11, 1处,由于 3lim F(x) lim x X 1 x 11, F(1)因此,F(x)在x 1处连续,从而F(x)在[0,2]上连续. 错误解答 (1)求F(x)的表达式, 当 x [0,1)时,x23 x3t 2dt [t 3]x当x [1,2]时,有x F(x) 0 f(t)dtxo (5 2t)dt =5x3x , F(x)5x0 x 1 x 2,1x 23e"1灵 x L ln x(1 ln x)分析 被积函数中含有1及In x ,考虑凑微分.x(2) F(x)在[0,1)及(1,2]上连续,在 x 1处,由于 2lim F (x) lim(5 x x ) 4 , lim F (x)x 1 3 lim x 1, F(1) 1 . x 1 因此, F (x)在 x 错解分析 为当x [1,2]时,F(x) x0 f(t)dt 才正确.计算 1 0 f (t)dt 1处不连续,从而F(x)在[0,2]上不连续. 上述解法虽然注意到了 f(x)是分段函数,但(1)中的解法是错误的,因 x F(x) o f (t)dt 中的积分变量t 的取值范围是[0,2] , f(t)是分段函数, x 1 f(t)dt 例22 I2x 2 II 1 x——dx . —2x 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.… c 2 1 2x x ----- dx = 1 1 x 2 1 2x 2 1 x ------ dx 1 . 1 x 2 =dx •由于 2 x一2x 一是偶函数,而 1 . 1 x 2 --- 是奇 11 x 2旦古函数, 11 1 x . =dx ~2x 0,于是 I 2x 2 x ----- : ------ dx = 4 II 1 x 2 2 x 01 1 x 2 dx = 41x 2(1 C )0 1 dx = 4 dx 0 4 .1 x 2dx 0 由定积分的几何意义可知 .1 x 2dxI2x 2 II1 x=dx 2x14 0dx例24计算 07_sin^dx . 01 si nx4tan 2xdxdx 例23计算 33e 4dx 占 d (ln x)1 ------------—= ― ------- —駅 X 」nx(1 In x) e In x(1 ln x)3 e"3 41 _® . In x , 1 d(l nx) (In x)2e 42d(、l nx)1e 24dc (osx4(sec x 1)dxcos x 01 _=[]o [tanx x]o = 2 . 2 . cosx4注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试. 2a25 计算 x 2ax x dx ,其中 a 0 .0 、2a ______________ 2ao x 2ax x dx = o x a (x a) dx , sin t)cos 2tdt又令t所以,dx1=_[ 0 2 2 x a x 2sint2sin t costdt cost 1 "2s;n^dt]=2 0dt =7dxr"2 T , x - a x 杂,由此可看出定积分与不定积分的差别之一.如果先计算不定积分 再利用牛顿莱布尼兹公式求解 ,则比较复a a si nt ,贝U= 2a 3 0cos :,tdt 0 = —a 3 2若定积分中的被积函数含有 .a 2般令 x as int 或 x a cost .adx26 计算 --------- = 0 : 2x . a解法1 令x a si nt ,=,其中ax 则adx .•—22x . a xsint cost2 (sint cost) (cost sint)sint costdt解法2 02[1(sint cost) sint cost]dt2令 x a si nt ,则t In | sintcost I 2 =—4a dxx .a 2x 22亠sint cost2sintcost dt =cost2 0sin u sin u du.cosu例27计算0n5*dx .分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.导,而应先换元.例29 分析 3xsin xdx .被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.计算;xsin xdxQ3xd( cosx) [x ( cosx)]3Q3( cosx)dx例30 3cos xdx —3 —6 0 26计算 0101—dx .0 (3 x)分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.2ln(u 1),ln5e x0 _e xdx = 2(u 20〒1)u T 2u~2~ u1du 2u 20厂4du 2:Vdu2du1~~2~udu4例28计算— dx0tf (X 2t 2)dt ,其中f (x)连续.分析 要求积分上限函数的导数, 但被积函数中含有 x ,因此不能直接求导,必须先换元使被积函数中不含,然后再求导.由于Xtf(x 2x0 f(x 2 t 2)dt 2 .故令x 2 t 2当 t 0时 x 02u x■ 2 tf (x ;当t t 2)dt = dx2、. d 10tf (x t )dt =[— dx 0dx 2 dx2 dx0 tf (x 2t 2)dt xf (xt 2)dt = - 2x 时 u 0 ,而 dt 2- 2 0x2f(u)(1du)= 2du ,所以x 2f (u)du ,1 2f (u)du] =- f(x ). 22x= xf (x ).2x ) xf(0).错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x) dx a中要求被积函数 f (t)中不含有变限函数的自变量x ,而f (X’t 2)含有x ,因此不能直接求u ,x 20 错误解答例31 分析(2)03dx= 0l n(10 (3 x)2 0 '1=In 22lln 22计算2 e x sin xdx .x)d(3 x—) = [-^ ln(13 x1E)dx1x)]o1dx(3 x) (1 x)被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.由于2 e x sin xdx0 2 sin xde x[e x sin x]22e cosxdx式代入(32 计算分析e2注cosxdx1)式可得2e‘0^ cos xdx ,[e x cosx]o e x ( sin x)dx(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分典型例题例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩.解 232122212010011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数). 解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记10()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =.因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连xu例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解21-⎰=211--+⎰⎰.由于2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故21104444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解 3412e e⎰34e 3412e e⎰=⎰=3412e e =6π. 例24 计算40sin 1sin xdx xπ+⎰. 解 40sin 1sin x dx xπ+⎰=420sin (1sin )1sin x x dx x π--⎰=244200sin tan cos x dx xdx x ππ-⎰⎰ =24420cos (sec 1)cos d x x dx x ππ---⎰⎰ =44001[][tan ]cos x x x ππ--=24π-例26 计算0a ⎰0a >. 解法1 令sin x a t =,则[]201ln |sin cos |2t t t π=++=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰. 分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u ,2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 22201284du du u =-=+⎰⎰4π-. 例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解 30sin x xdx π⎰30(cos )xd x π=-⎰3300[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-.例30 计算12ln(1)(3)x dx x +-⎰. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰ 11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰2200[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2) 将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-.,例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x 的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.例36 计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +∞++⎰=20lim43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37 计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰. 例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰=34lim bb -→⎰=34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t =,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得 5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有1arctan )22π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =222)2y dy -⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是 12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+. 由于dA dc =2164c c-+=24(4)c c --, 令0dA dc =,解得驻点4c =.当4c <时0dAdc<,而当4c >时0dA dc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =下半圆周的方程为1y b =-图5-5则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;图5-6计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. 例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x2=. 于是所求体积为 V =20()A x dx ⎰=20⎰=。

相关文档
最新文档