半导体物理之名词解释

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.迁移率 参考答案: 单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。迁移率的表达式为:*

q m τ

μ=

可见,有效质量和弛豫时间(散射)是影响迁移率的因素。 影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

n p

neu peu σ=+

2.过剩载流子 参考答案:

在非平衡状态下,载流子的分布函数和浓度将与热平衡时的情形不同。非平衡状态下的载流子称为非平衡载流子。将非平衡载流子浓度超过热平衡时浓度的部分,称为过剩载流子。 非平衡过剩载流子浓度:00,n n n p p p ∆=-∆=-,且满足电中性条件:n p ∆=∆。可以产生过剩载流子的外界影响包括光照(光注入)、外加电压(电注入)等。

对于注入情形,通过光照或外加电压(如碰撞电离)产生过剩载流子:2

i np n >,对于抽取情形,通过外加电压使得载流子浓度减小:2

i np n <。 3. n 型半导体、p 型半导体

N 型半导体:也称为电子型半导体.N 型半导体即自由电子浓度远大于空穴浓度的杂质半导体.在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体.在N 型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电.自由电子主要由杂质原子提供,空穴由热激发形成.掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强.

P 型半导体:也称为空穴型半导体.P 型半导体即空穴浓度远大于自由电子浓度的杂质半导体.在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P 型半导体.在P 型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电.空穴主要由杂质原子提供,自由电子由热激发形成.掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强. 4. 能带

当N 个原子处于孤立状态时,相距较远时,它们的能级是简并的,当N 个原子相接近形成晶体时发生原子轨道的交叠并产生能级分裂现象。当N 很大时,分裂能级可看作是准连续的,

形成能带。

5.能带理论

这是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。能带理论就是认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动;结果得到:共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。

6.有效质量

7.回旋共振

8. 空穴

空穴是未被电子占据的空量子态,代表价带顶附近的电子激发到导带后留下的价带空状态,是一种为讨论方便而假设的粒子。

9.深能级

半导体中的深能级杂质原子对其价电子的束缚比较紧,则其产生的能级在半导体能带中位于禁带较深处(即比较靠近禁带中央),故称为深能级杂质。杂质电离能大,施主能级远离导带底,受主能级远离价带顶。深能级杂质有三个基本特点:

一、是不容易电离,对载流子浓度影响不大。

二、是一般会产生多重能级,甚至既产生施主能级也产生受主能级。

三、是能起到复合中心作用,使少数载流子寿命降低

四、是深能级杂质电离后变为带电中心,对载流子起散射作用,使载流子迁移率减小,

导电性能下降。

10. 激子

在半导体中,如果一个电子从满的价带激发到空的导带上去,则在价带内产生一个空穴,而在导带内产生一个电子,从而形成一个电子-空穴对。空穴带正电,电子带负电,它们之间的库仑吸引互作用在一定的条件下会使它们在空间上束缚在一起,这样形成的复合体称为激子。

11.有效能态密度

对导带中不同能级上所有的电子,看作是处于导带底Ec,密度为Nc的能级上。这里的Nc 就是电子有效能态密度,对于价带中的空穴同理。

12.费米能级

费米能级标志电子填充能级的水平。费米能级位于禁带之中(即位于价带之上,导带之下),费米能级是量子态是否被电子占据的分界线。在热力学温度0K时,能量高于费米能级的量子态基本是空的,能量低于费米能级的量子态基本上全部被电子所占据。

对于N型半导体费米能级在禁带中央以上;掺杂浓度越大,费米能级离禁带中央越远,越靠近导带底部

对于P 型半导体费米能级在禁带中央以下;掺杂浓度越大,费米能级离禁带中央越远,越靠近价带顶部

13.费米分布 费米分布:1()1

F E E KT

f E e

-=

+表示能量为E 的能级被电子占据的几率,而1()f E -表示能级被空

穴占据的几率。

14.声学波、光学波 声学波:基元的整体运动。

光学波:非共价键性化合物基元中原子的相对运动。 声学波:频率较低,接近声波频率。 光学波:1频率较高,与红外光频率相近。

2有偶极矩,可与光波相互作用。

15.散射机制

(1)载流子散射的原因:只要是破坏晶格周期性势场,(即能够产生附加势场的因素),

就都是散射载流子的根源。 (2)散射分为:

晶格振动散射,杂质电离散射,还有等能谷散射,中性杂质散射,位错散射等。 (3)杂质电离散射

半导体电离的施主或受主杂质是带电的离子,在他们周围有库伦势场,当载流子从离子周围通过时,由于库伦势场的作用,载流子会被散射。

电离杂质散射

32

p NT -

∝( N 是电离杂质浓度),随着温度升高,散射几率变小。

(4)使用条件:低温时比较重要 (5)晶格振动散射

横声学波和横光学波不起作用。 只有长波起作用

长声学纵波:因为纵长声学波会使晶体产生体变——原子分布发生疏密变化,则将导致禁带宽度随之发生变化,即能带极值在晶体中出现波动,从而使得载流子的势能发生了改变,即产生了周期性势场之外的附加势场——称为形变势,所以就将散射载流子。

3*

2

1

ac

P m T τ=

长光学纵波:对于极性晶体(如砷化镓)中的载流子,纵长光学波散射作用较大,因为这种格波在晶体中会产生局部的极化电场——附加势场。

相关文档
最新文档