消元解二元一次方程组课件
合集下载
人教版七年级下册数学《消元―解二元一次方程组》说课教学复习课件(第2课时加减法)
![人教版七年级下册数学《消元―解二元一次方程组》说课教学复习课件(第2课时加减法)](https://img.taocdn.com/s3/m/e37546031fd9ad51f01dc281e53a580216fc50f9.png)
①左边 + ② 左边 = ① 右边 + ②右边 3x+5y +2x - 5y=10
5x=10
新课进行时
3x 5y 21 ① 解方程组2x 5y 11 ②
解:由①+②得: 5x=10 x=2.
将x=2代入①得:6+5y=21 y=3 x=2
所以原方程组的解是 y=3
你学会了吗?
新课进行时
3x +10 y=2.8 ① 例1:解方程组
2x 5y 7 2x 3y 1
解:由②-①得:8y 8.
方程①、②中未知数x 的系数相等,可以利用 两个方程相减消去未知 数x.
解得:y 1.
注意:要检验哦!
把 y 1 代入①,得:2x 5 7.
解得:x 1. x 1,
所以方程组的解为 y 1. 3x+2y=23 ①
超越自我 解方程组 5x+2y=33 ②
除代入消元, 还有其他方法吗?
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
人教版数学七年级下册
第二部分
新课目 标
新课目标
1. 进一步理解“消元”思想,从具体解方程组过程中体会化归思 想。 2. 会用加减法解二元一次方程组。(重点·难点)
新课进行时
问题3:下面的二元一次方程组能用加减法解吗?
例3.解方程组:
2x 3y 3x 4y
12 17
① ②
人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)
![人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)](https://img.taocdn.com/s3/m/aefcd55bbed5b9f3f80f1c44.png)
③+④,得 19x=114 x=6
把x=6代入①,得
3×6+4y=16
y=
-
1 2
x=6
所以这个方程组的解是 y= - 1
2
你能不能用加减消元的方法消去x呢?
x+y=10 ① 2x+y=16 ②
解:①×2,得
2x+2y=20
③
③- ②,得 y=4
把y=4代入①,得 x=6
所以这个方程组的解是 x=6 y=4
x=6 y=4
① -②也能消去 未知数y,求得x 吗?
联系上面的解法,想一想怎样解方程组
3x+10y =2.8
①
15x-10y =8
②
解:
① +②,得
18x=10.8 从上面两个方解程得组的解法x=可0.以6 看出:当二元一次方程组的两个方程中同一未知数 的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知
x+yy=10 ① 2x+y=16 ② 的解,这个方程组的两个方程中,y的系数有什么关系?利用这 种关系你能发现新的消元方法吗?
这两个方程中未知数y的系数相等,②-①可消去未知数y,得x=6
②-①就是用方程 ②的左边减去①的 左边,方程②的右 边减去方程①的右 边
把x=6代入①,得y=4
所以这个方程组的解是
解:设这些消毒液应该分装x大瓶、y小瓶.根据大、小瓶数的比,以及消毒液分装量 与总生产量的数量关系,得
5x=2y
①
500x+250y=22500000 ②
5
由①,得y= 2 x ③
把③代入②,得
500x+250×
5 2
x=22500000.
《消元——解二元一次方程组 1课时》PPT
![《消元——解二元一次方程组 1课时》PPT](https://img.taocdn.com/s3/m/d167d0dbafaad1f34693daef5ef7ba0d4a736db8.png)
表示y,再代入②中求解.由①,得y=2x+3③.把③代入②,得4x+5(2x+3)=1,
4x+10x+15=1,14x=-14,x=-1.把x=-1代入③,得y=2×(-1)+3=-2+3=1.所
以这个方程组的解是ቊ
= −1
。
=1
知识梳理
【方法小结】注意:(1)当方程组中含有一个未知数表示另一个未知数的
二元一次方程组的关键,其方法就是利用等式的性质将其变形为y=ax+b(或
x=ay+b)的形式,其中a,b为常数,a≠0.
知识梳理
2 − = −3
【例2】用代入法解方程组ቊ
4 + 5 = 1
①
②
【讲解】要考虑将方程组中的某一个未知数用含另一个未知数的代数式表
示出来,方程组①中y的系数为-1,因此可将方程①变形,用含x的代数式
即可.
6.如图8-2-1,周长为68cm的长方形ABCD被分成7个相同的长
方形,求长方形ABCD的长和宽.
图8-2-1
课堂练习
答案:解:设小长方形的长和宽分别为x、ycm,依题意得ቊ
解这个方程组,得ቊ
4 + 7 = 68
,
2 = 5y
= 10
。5×4=20(cm),10+4=14(cm).答:长方形
的解互为相反数,则k的值是_____________.
2 + 3 = k
+ 2 = −1
课堂练习
2 − 7 = 8 ①
②
y=4+2x
1.用代入法解方程组ቊ
可以由_____得___________
2024年秋新湘教版7年级上册数学 3.6 2元1次方程组的解法 教学课件
![2024年秋新湘教版7年级上册数学 3.6 2元1次方程组的解法 教学课件](https://img.taocdn.com/s3/m/14d98fa26037ee06eff9aef8941ea76e59fa4a6a.png)
感悟新知
知2-讲
2. 解二元一次方程组的基本思路:
消去一个未知数(简称为消元)
一元一次方程
求另一个未知数的值
转化
一个未知数的值
求解
代入
感悟新知
知2-讲
3. 用加减消元法解二元一次方程组的一般步骤:
步骤
具体做法
目标
注意事项
①变形
取某一个未知数的系数的最小公倍数,将方程的两边都乘适当的数
使 某 一 个 未 知 数在 两 个 方 程 中 的系 数 相 等 或 互 为相反数
3.6 二元一次方程组的解法
第三章 一次方程(组)
逐点导讲练
课堂总结
作业提升
学习目标
课时讲解
1
课时流程
2
代入消元法解二元一次方程组加减消元法解二元一次方程组
知1-讲
感悟新知
知识点
代入消元法解二元一次方程组
1
1. 定义: 把其中一个方程的某一个未知数用含有另一个未知数的代数式表示,然后把这个代数式代入另一个 方程中,便消去了一个未知数,得到一个一元一次方 程,解 这 个一元一次方程就可以求出其中一个未知数的值,再把求出的未知数的值代入前面的代数式中,就可以求出另一个未知数的值 . 至此就求出了二元一次方程组的解 . 这种解二元一次方程组的方法叫作代入消元法,简称代入法 .
感悟新知
知1-练
感悟新知
感悟新知
知2-讲
知识点
加减消元法解二元一次方程组
2
1. 定义: 对于二元一次方程组,把一个方程进行适当变形后,再加上 ( 或减去 ) 另一个方程,消去其中一个未知数,得到只含另一个未知数的一元一次方程,解这个一元一次方程求出另一个未知数的值,再把这个值代入原二元一次方程组的任意一个方程,就可以求出被消去的未知数的值,从而得到原二元一次方程组的解 . 这种解二元一次方程组的方法叫作加减消元法 .
知2-讲
2. 解二元一次方程组的基本思路:
消去一个未知数(简称为消元)
一元一次方程
求另一个未知数的值
转化
一个未知数的值
求解
代入
感悟新知
知2-讲
3. 用加减消元法解二元一次方程组的一般步骤:
步骤
具体做法
目标
注意事项
①变形
取某一个未知数的系数的最小公倍数,将方程的两边都乘适当的数
使 某 一 个 未 知 数在 两 个 方 程 中 的系 数 相 等 或 互 为相反数
3.6 二元一次方程组的解法
第三章 一次方程(组)
逐点导讲练
课堂总结
作业提升
学习目标
课时讲解
1
课时流程
2
代入消元法解二元一次方程组加减消元法解二元一次方程组
知1-讲
感悟新知
知识点
代入消元法解二元一次方程组
1
1. 定义: 把其中一个方程的某一个未知数用含有另一个未知数的代数式表示,然后把这个代数式代入另一个 方程中,便消去了一个未知数,得到一个一元一次方 程,解 这 个一元一次方程就可以求出其中一个未知数的值,再把求出的未知数的值代入前面的代数式中,就可以求出另一个未知数的值 . 至此就求出了二元一次方程组的解 . 这种解二元一次方程组的方法叫作代入消元法,简称代入法 .
感悟新知
知1-练
感悟新知
感悟新知
知2-讲
知识点
加减消元法解二元一次方程组
2
1. 定义: 对于二元一次方程组,把一个方程进行适当变形后,再加上 ( 或减去 ) 另一个方程,消去其中一个未知数,得到只含另一个未知数的一元一次方程,解这个一元一次方程求出另一个未知数的值,再把这个值代入原二元一次方程组的任意一个方程,就可以求出被消去的未知数的值,从而得到原二元一次方程组的解 . 这种解二元一次方程组的方法叫作加减消元法 .
人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)
![人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)](https://img.taocdn.com/s3/m/412b47908662caaedd3383c4bb4cf7ec4afeb6eb.png)
3×0.6+10y=2.8
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1
②
列方程解应用题的总思路:
实际
问题
分析
方程
抽象
(组)
求解
检验
1. 审(题)
3. 设(未知数)
2. 找(等量关系) 4. 列(方程组)
问题
解决
5. 解(方程组)
6. 验(检验)
7. 答
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
消元--解二元一次方程组
新知导入
我校七年级准备举行篮球比赛,13个班打单循环比赛,每场
比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果6班为了
争取较好名次,想在全部12场比赛中得20分,那么这个队胜负场数
用学过的一元一
应分别是多少?
次方程能解决此
问题吗?
这可是两个
未知数呀?
新知学习
例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),
审题:等量关系: (1)大瓶数
2×小瓶数=5×大瓶数
1.审题
(2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
2.找等量关系
试一试:
1.用含x的代数式表示y:
x+y=2
y=2-x
2.用含x的代数式表示y:
x-y=2
y x2
解方程组
x +y = 12
①
2x + y =20
解: 由①,得
未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解.这种方法叫做代入消元法,简称代入法.
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1
②
列方程解应用题的总思路:
实际
问题
分析
方程
抽象
(组)
求解
检验
1. 审(题)
3. 设(未知数)
2. 找(等量关系) 4. 列(方程组)
问题
解决
5. 解(方程组)
6. 验(检验)
7. 答
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
消元--解二元一次方程组
新知导入
我校七年级准备举行篮球比赛,13个班打单循环比赛,每场
比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果6班为了
争取较好名次,想在全部12场比赛中得20分,那么这个队胜负场数
用学过的一元一
应分别是多少?
次方程能解决此
问题吗?
这可是两个
未知数呀?
新知学习
例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),
审题:等量关系: (1)大瓶数
2×小瓶数=5×大瓶数
1.审题
(2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
2.找等量关系
试一试:
1.用含x的代数式表示y:
x+y=2
y=2-x
2.用含x的代数式表示y:
x-y=2
y x2
解方程组
x +y = 12
①
2x + y =20
解: 由①,得
未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解.这种方法叫做代入消元法,简称代入法.
人教初中数学七下 8.2 消元 解二元一次方程组(第3课时)课件 【经典初中数学课件】
![人教初中数学七下 8.2 消元 解二元一次方程组(第3课时)课件 【经典初中数学课件】](https://img.taocdn.com/s3/m/2566bd206fdb6f1aff00bed5b9f3f90f76c64dd7.png)
8
三、研读课文
一
元
一
知次
不
识等
式
点的
三
解 法
及
练
习
注意:当不等式的两边都乘或除以同一个负数时, 不等号的方向 改变 .归纳:解一元一次方程,要根 据等式的性质,将方程逐步化为 X=a的形式;而解
一元一次不等式,则要根据不等式的性质,将不等
式逐步化为 x<a (或 X>a )的形式.
一
元
一
知
次 不
四、归纳小结
3、解一元一次不等式的一般步骤: ① 去分母 ② 去括号 ③ __移__项___ ④ 合__并__同__类__项__⑤ 系数化为1 .
4、学习反思___________________.
五、强化训练
1、下列式子中,属于一元一次不等式的
是( D )
A. 4>3
B. C.C. 3x-2<y+7
解得 y= 14
11
把y=
14 11
代入①得2x+ 解得y= 9
70 11
=8
11
所以方程组的解是
x
=
70 14
y= 9
11
四、归纳小结
四、归纳小结 1、加减消元法的步骤: (1)将原方程组的两个方程化为有一个未知数
的系数_相__反或相等 的两个方程; (2)把这两个方程相加或_相__减___,消去一个
4
这个不等式的解集在数轴上的表示:
5
04
四、归纳小结
1、含有 一 个未知数,未知数__次__数_是__1____的 不等式,叫做一元一次不等式.
2、解一元一次方程,要根据等式的性质,将方 程逐步化为 X=a 的形式;而解一元一次 不等式,则要根据不等式的性质,将不等式逐 步化为 x<a (或 X>a )的形式.
人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】
![人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】](https://img.taocdn.com/s3/m/d20fe7eb7e192279168884868762caaedd33ba16.png)
P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48
①
10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2
⑵
2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)
①
3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)
京改版数学七年级下册《用代入消元法解二元一次方程组》课件
![京改版数学七年级下册《用代入消元法解二元一次方程组》课件](https://img.taocdn.com/s3/m/ce96f443c4da50e2524de518964bcf84b8d52d4f.png)
作业
习题5-2,第1题.
由①,得 x 5 2 y ③. 3
把③代入②,得 4 5 2 y 3y 1. 3
解这个方程,得y= 1.
把y=1代入③,得x=1.
x 1,
所以原方程组的解是
yห้องสมุดไป่ตู้
1.
例题精讲
把求出的解代入原方程组,看是否保 证每一个方程左右两边的值都相等.
例题精讲
上面解二元一次方程组 的思路和步 骤是什么?
写出方程组的解—— 写解
随堂练习
1、解二元一次方程组
(1) xx
y y
5 1
① ②
(2) 2x
x 3y 40 y 5
① ②
2、已知(2x+3y-4)2+∣x+3y-7∣=0,则x= -3 ,
10
y= 3 .
课堂小结
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
第五章 二元一次方程组
用代入消元法解二元一次方程组
目 Contents 录
01 学习目标 02 旧知回顾
03 新知探究
04 例题精讲
05 随堂练习
06 课堂小结
学习目标
1.会用代入消元法解二元一次方程组. 2.了解解二元一次方程组的“消元”思想, 初步体会数学研究中“化未知为已知”的化归 思想.
1.什么是二元一次方程组? 含有两个未知数的两个一次方程所组成的
一组方程,叫做二元一次方程组.
2.什么是二元一次方程组的解? 使二元一次方程组中的两个方程左右两边
的值都相等的两个未知数的值,叫做二元一次 方程组的解.
新知探究
考考你
怎样求出二元一次方程组
代入消元法解二元一次方程组图文课件
![代入消元法解二元一次方程组图文课件](https://img.taocdn.com/s3/m/5c75d735178884868762caaedd3383c4bb4cb4e8.png)
THANKS
感谢观看
熟练掌握代数运算,是正确代入消元法的扩大和 总结
代入消元法的扩大
扩大到三元一次方程组
代入消元法可以进一步扩大到三元一 次方程组,通过逐个消元,将三元一 次方程组转化为二元一次方程组或一 元一次方程进行求解。
扩大到高次方程
虽然代入消元法主要适用于二元一次 方程组,但理论上可以将其扩大到高 次方程,通过代入和消元逐步简化方 程,直至得到可解的一元一次方程。
课程背景
二元一次方程组是数学中的基 础知识点,广泛应用于日常生 活和科学研究中。
代入消元法是一种常用的解二 元一次方程组的方法,具有简 单易懂的优点。
通过本课程的学习,学生可以 更好地理解和掌握代入消元法 ,提高解决实际问题的能力。
02
二元一次方程组的基 本概念
二元一次方程组的定义
二元一次方程组:由两个或两个 以上的二元一次方程组成的方程
解出方程后,需要进行检验,确保解的公 道性。
技能
使用等式变形
在代入前,可以通过等式变形,使代 入后的方程更易于计算。
视察方程特点
在选择代入的方程时,可以视察方程 的特点,选择具有较大系数或易于计 算的方程进行代入。
利用已知条件简化计算
在解题过程中,可以利用已知条件简 化计算,减少计算量。
熟练掌握代数运算
实例三:解二元一次方程组
总结词
通过代入消元法解二元一次方程组,得到解集。
详细描述
再选取一个二元一次方程组,例如$4x + 3y = 10$和 $5x - y = 7$。第一,将其中一个方程中的变量代入 另一个方程中,以消去一个变量。在这个例子中,我 们将$4x + 3y = 10$代入$5x - y = 7$中,得到$5x (10/4) + (10/4) = 7 + (10/4)$,进一步化简得到$5x = frac{35}{4}$,解得$x = frac{7}{4}$。然后,将$x = frac{7}{4}$代入原方程$4x + 3y = 10$中,解得$y = frac{9}{4}$。因此,该二元一次方程组的解集为$(x = frac{7}{4}, y = frac{9}{4})$。
人教版七年级下册8.1二元一次方程组_8.2消元—解二元一次方程组(共25张PPT)
![人教版七年级下册8.1二元一次方程组_8.2消元—解二元一次方程组(共25张PPT)](https://img.taocdn.com/s3/m/daf47b34b84ae45c3a358c3a.png)
数,那么就把二元一次方程组转化为我们熟悉的一元一次方
程.我们可以先求出一个未知数,然后再求另一个未知数.
这种将未知数的个数由多化少、逐一解决的思想,叫做消元
思想.
上面的解法,是把二元一次方程组中的一个方程的一个未知
数用含另一个未知数的式子表示出来,再代入另一个方程,
实现消元,进而求得这个二元一次方程组的解.这种方法叫 做
x=20 000. 把x=20 000代入③,得
y=50 000.
所以这个方程组的解是 x=20 000,
y=50 000. 答:这些消毒液应该分装20 000大瓶和50 000小瓶.
2019年 中 学 德 育 工 作总结 计划: 春风化 雨 润物 有声学 德育工 作总结:春风化雨 润 物有声
学 德 育 工 作 总结:春 风化雨 润物有 声 党 的 十 八 大 报告提 出,倡导 富强、 民主、 文明、 和谐;倡 导自 由、平 等、公 正、法 治 ;倡 导 爱 国 、敬业 、诚信 、友善 ,积极 培育社 会主义 核心价 值观。 价值观 是人们 心 深 层 的 信 念系统 ,党的十 八大报 告将社 会主义 核心价 值观分 为国家 、社会 、公民 三 个 层 面 ,用 高度浓 缩的24个 字进 行了最 精辟的 阐述,三 个层面 之间的关系是相互依 存 的 ,但 价 值 观最基 本的主 体还是 个人。 培育社 会主义 核心价 值观是 青少年 学生全
(1) 7x-3y=9; 3x+4y=16,
(3) 5x-6y=33;
(2) (4)
3s-t=5,
5s+2t=15; 4(x-y-1)=3(1-y)-2,
+ =2
答案 (1)解:把①代入②,得7x+5(x+3)=9, 所以x=- .
3.4二元一次方程组及其解法(第2课时代入消元法)(课件)-七年级数学上册(沪科版2024)
![3.4二元一次方程组及其解法(第2课时代入消元法)(课件)-七年级数学上册(沪科版2024)](https://img.taocdn.com/s3/m/a05962964793daef5ef7ba0d4a7302768f996f09.png)
2
4
(2)根据(1)中的数据写出方程组的解.
【解】
= − ,
= .
10. [新考法 情境辨析法法]甲、乙两人共同解关于 x , y 的方程组
+ = ,①
解完以后有下面一段对话,请认真阅读对
− = − ,②
话内容,然后求出 a2 025+
−
的值.
=
即笼中有鸡23只,兔子12只.
概念归纳
使二元一次方程组中每个方程都成立的两个未知数的值,
叫作二元一次方程组的解.
上面解二元一次方程组的基本思想是“消元”,也就
是要消去其中一个未知数,把解二元一次方程组转化
成解一元一次方程.
从一个方程中求出某一个未知数的表达式, 再把
它“代入”另一个方程,进行求解,这种方法叫作
b 2.
分层练习-基础
知识点1
二元一次方程组的解
+ = ,
1. 方程组
的解是( A
− = −
= ,
A.
=
C.
= ,
=
)
= − ,
B.
= −
D.
= ,
= −
+ = ,
2. 已知 x , y 满足的方程组是
则 x + y 的值为 5
解得 a = .
分层练习-拓展
12. [新考法 整体代入法]阅读材料:善于思考的小军在解方程组
− = ,①
时,采用了一种“整体代换”的解法.
− = ②
解:将方程②变形,得6 x -4 y - y =7,即2(3 x -2 y )- y =7.③
消元解二元一次方程组优质课市公开课一等奖省优质课获奖课件
![消元解二元一次方程组优质课市公开课一等奖省优质课获奖课件](https://img.taocdn.com/s3/m/1dd6597b492fb4daa58da0116c175f0e7cd119b4.png)
来日苦短,去日苦长。
出自魏晋陆机的《短歌行》原文置酒高堂,悲歌临觞。
人寿几何,逝如朝霜。
时无重至,华不再阳。
苹以春晖,兰以秋芳。
来日苦短,去日苦长。
今我不乐,蟋蟀在房。
乐以会兴,悲以别章。
岂曰无感,忧为子忘。
我酒既旨,我肴既臧。
短歌可咏,长夜无荒。
陆机(261-303),字士衡,吴郡吴县(今江苏苏州)人,西晋文学家、书法家,孙吴丞相陆逊之孙、大司马陆抗之子,与其弟陆云合称“二陆”。
孙吴灭亡后出仕晋朝司马氏政权,曾历任平原内史、祭酒、著作郎等职,世称“陆平原”。
后死于“八王之乱”,被夷三族。
他“少有奇才,文章冠世”(《晋书·陆机传》),与弟陆云俱为中国西晋时期著名文学家,被誉为“太康之英”。
陆机还是一位杰出的书法家,他的《平复帖》是中古代存世最早的名人书法真迹。
创作背景:译文因为人的寿命短促,虽然临觞作乐,也只能悲歌慷慨,难以忘怀忧愁。
人生在人世间,就好像早晨的露珠一样,转瞬就会逝去。
时间不会重新再来,花也不可能再次开放。
苹只在春天绽放光彩,兰只在秋天发出芬芳。
剩下的日子苦短难耐,过去的日子让人感到苦闷惆怅。
人应当及时享乐,因与友人相会而快乐,以分别而感到悲伤。
哪里会没有这样的人生感触,只是因为见到我的朋友而忘却忧愁了。
我的酒肴十分美好,就让自己尽情地品尝享受吧!去吟咏短歌,及时取乐,而不至于荒废岁月。
注释朝霜:早晨的露水。
这里形容转瞬而逝的短暂。
华不再扬:指花不能再次开放。
苹(pínɡ):一种水草,春天生长。
来日:指自己一生剩下的日子。
去日:指已经过去的日子。
蟋蟀在房:这里借用《诗经》的诗句:“蟋蟀在堂,岁律其莫。
今我不乐,日月其除。
”《诗经》原意是教人及时依照礼制而适当取乐。
陆机在这里运用此意。
旨:美好。
消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
![消元-解二元一次方程组(共28张ppt)七年级下册数学人教版](https://img.taocdn.com/s3/m/19ff3e7cf6ec4afe04a1b0717fd5360cba1a8d3d.png)
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巩固新知 二元一次方程组 消元 一元一次方程
变 3. 用代入消元法解下列方程组
代
(1)xx
= – 3y + 7y =
8
(2)
x–y =3 3x – 8y = 14
求
(3)
2x 3x
– +
y=5 4y = 2
写
巩固新知 二元一次方程组 消元 一元一次方程 变
4.比一比,看谁能用巧妙的方法解下列方程组
求
第3层
1. 解方程组 x +1 = 2 y
写
2(x +1) - y =12
2. 如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、
y 的值.
程中相应的未知数,得到一个
9+3y– 8y= 14
一元一次方程,求得一个未知
– 5y= 5
数的值;
y= – 1
求
把y= – 1代入③,得
x=2 ∴方程组的解是
x y
=2 写
= -1
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
巩固新知 二元一次方程组 消元 一元一次方程
的价钱 的价钱
6
的价钱
30
的价钱
“一切问题都可以转化为数学问题, 一切数学问题都可以转化为代数问题,而 一切代数问题又都可以转化为方程问题, 因此,一旦解决了方程问题,一切问题将 迎刃而解!”
——法国数学家 笛卡儿[Descartes, 1596-1650 ]
6
的价钱
y
-
的价钱
x
=6
探究新知
的价钱
代入消元法(第一课时)
厂口中学 孙安丽
你好,欢迎光临肯德
基活!动想就喜要请参先与选讯我个们题的吧!
喜
炎炎夏日即将来
临,为鼓励广大学
子努力学习,本店
近期举办“小小会
计之星”活动。只
要你是学生,只要
你能答对问题,我
们就为你免单!同
学们快来试试吧!
如果一个全虾堡比一杯圣代多6元,买一杯 圣代和两个全虾堡共需30元,你能算出一杯 圣代多少元吗?一个全虾堡是多少元呢?
代 ìï x + y = 8 í
求 ïî 5x - 2(x + y) = - 1
写
课堂小结 二元一次方程组 消元 一元一次方程
1.解二元一次方程组的基本思想是什么? 消元
2.我们已经学习了解二元一次方程组的哪些知识?
变
把二元一次方程组中的一个方程的未知数用 含另一个未知数的式子表示出来,
即 x = …. 或 y = …. 的形式
的价钱
x + 2y
解:设一杯圣代为x元,一个全虾堡为 (x+6)元,则
x+2(x+6)=30
30
= 30
解:设一杯圣代为x元,一个全虾堡为 y元,则
y–x=6 x + 2y = 30
的价钱
6
y的价钱
-
的价钱
x
=6
6元
的价钱
的价钱
.
y = x+ 6
6元
6元
的价钱的价钱 的价钱
30元
x + 2(x + 6) = 30
探究新知
观察 你所列的二元一次方程组和一元一次方程有什么关系? 能否将二元一次方程组转化为一元一次方程进而求得 方程组的解呢?
y–x=6
①
x + 2y = 30②
y=x+6 (x + 6)
x + 2 y = 30
将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
由二元一次方程组中一个方程,将一个未知数用含另一 未知数的式子表示出来,再代入另一个方程,实现消元,进 而求得这个二元一次方程组的解。这种方法叫做代入消元法, 简称代入法(substitution method) 。
x=1 y=2
说说方法:
例3 解方程组
x –y = 3 3x -8 y = 14
① ②
用代入法解二元一次 方程组的一般步骤
解:由①得:x = 3+ y ③ 变
1、将方程组里的一个方程变 形,用含有一个未知数的式子
把③代入②得:
表示另一个未知数;
3(3+y)– 8y= 14 代 2、用这个式子代替另一个方
谈谈思路:
例2 解方程组
2y – 3x = 1 x=y-1
① 变: 2y – 3x = 1 ①
②
x–y=–1 ②
解: 把②代入①得:
2y – 3(y – 1)= 1
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y = -2
y= 2
把y = 2代入②,得
x=y–1=2–1=1
∴方程组的解是
代 代入另一个方程,实现消元,将二元一次方
程组转化为一元一次方程
求 求出两个未知数的解
写 写出方程组的解并检验
布置作业 二元一次方程组 消元 一元一次方程
变
第1层
书 P97 习题8.2第 1,2题
用代入法解下列二元一次方程组:
代
第2层
3x+2y=8 ⑴ y=2x-3
2x- y=5 ⑵
3x +4y=2
变 1.已知3 x + y =1,用含x的式子表示y, 则y = 1 – 3x 。
代 2.用代入消元法解方程组 2 x – 3 y = 1 ①, y=x+2 ②
求 最简便的方法是先把 ② 代入 ① ,消去
未知数 y ,所得的方程化简后是( D )
写
A. 5 x = – 1
C. 5 x = – 5
B. – x = 10 D. – x = 7