连续时间信号与系统S域分析
04四章 连续时间信号与系统的S域分析

相应的傅里叶逆变换为
• Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为 Fb(s) 的双边拉氏逆变换(或原函数)。
二、双边拉氏变换的收敛域
能使
收敛的S值的范围。
若f(t)绝对可积,则 F(jω)=F(s)|σ=0 或F(jω)= F(s)|s= jω
S平面与零点、极点
N (s) F ( s) D( s )
例5.1-5求复指数函数(式中s0为复常数)f(t)=es0t(t)的 象函数
• 解: L[e (t )] 0 e e dt 0 e
s0 t s0t st
( s s0 ) t
dt
1 , Re[ s] Re[ s0 ] s s0 1 t , Re[ s ] 若s0为实数,令s0=,则有 e (t ) s
三、 S域平移(Shifting in the s-Domain): 若 x(t ) X (s), ROC: R 则
x(t )e X ( s s0 ), ROC : R Re[s0 ]
s0t
表明 X (s s0 ) 的ROC是将 X ( s)的ROC平移了 一个Re[ s0 ] 。
1 s2 X 1 ( s) 1 , s 1 s 1
1 X 2 ( s) , s 1
ROC: 1
ROC: 1
而 x1 (t ) x2 (t ) t 1 ROC为整个S平面 • 当R1 与R2 无交集时,表明 X ( s) 不存在。
二、 时移性质(Time Shifting):
ROC : 包括 R1 R2
x1 (t ) x2 (t ) X1 (s) X 2 ( s)
信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E
…
0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
精品文档-信号与系统分析(徐亚宁)-第4章

F2= s/(s^2+w0^2)
第4章 连续时间信号与系统的复频域分析
【例4-10】用MATLAB求解【例4-3】, 设τ=1 解 求解的代码如下: %program ch4-10 R=0.02; t=-2:R:2; f=stepfun(t, 0)-stepfun(t, 1); S1=2*pi*5; N=500; k=0:N; S=k*S1/N; L=f*exp(t′*s)*R; L=real(L);
本例中
和
的ROC均为
Re[s]>0,
极点均在s=0处。但
有一个s=0的零点,
抵消了该处的极点,相应地ROC扩大为整个s平面。
第4章 连续时间信号与系统的复频域分析 4.2.3 复频移(s域平移)特性
【例4-4】
, s0为任意常数 (4-12)
求e-atcosω0tU(t)及e-atsinω0tU(t)的象函数。
第4章 连续时间信号与系统的复频域分析
1. s 借助复平面(又称为s平面)可以方便地从图形上表示 复频率s。如图4-1所示,水平轴代表s Re[s]或σ, 垂直轴代表s的虚部,记为Im[s]或jω, 水平 轴与垂直轴通常分别称为σ轴与jω轴。如果信号f(t)绝 对可积,则可从拉氏变换中得到傅里叶变换:
f= exp(-t)+2*t*exp(-2*t)-exp(-2*t)
第4章 连续时间信号与系统的复频域分析
【例4-9】 用MATLAB求解【例4-2】 解 求解的代码如下:
%program ch4-9 syms w0t; F1=laplace(sin(w0*t)) F2=laplace(cos(w0*t))
(4-2)
连续时间信号与系统的S域分析课件

VS
频谱分析
在信号处理中,频谱分析是了解信号特性 的重要手段。通过s域分析,可以将时域 信号转换为频域信号,实现对信号的频谱 分析,了解信号的频率成分和功率分布等 特性。
THANKS.
系统的实现与仿真
控制系统硬件实现
根据系统设计要求,选择合适的硬件设备,如 传感器、执行器、控制器等,搭建控制系统。
控制系统软件实现
编写控制算法程序,实现控制系统的软件部分。
系统仿真
通过仿真软件对控制系统进行模拟实验,验证系统设计的正确性和有效性。
s域分析的用
05
在通信系统中的应用
信号传输
在通信系统中,信号经常需要经过长距离传输。在传输过程中,信号会受到各种 噪声和干扰的影响,导致信号质量下降。通过s域分析,可以对信号进行滤波、 均衡等处理,提高信号的抗干扰能力,保证信号的传输质量。
调制解调
在通信系统中,调制解调是实现信号传输的关键技术。通过s域分析,可以对信 号进行调制和解调,将低频信号转换为高频信号,或者将高频信号转换为低频信 号,实现信号的传输和接收。
在控制系统中的应用
系统稳定性分析
在控制系统中,系统的稳定性是非常重要的。通过s域分析,可以对系统的极点和零点进行分析,判断系统的稳 定性,以及系统对外部干扰的抑制能力。
稳定性分类
根据系统对输入信号的响应速度 和超调量,可以将系统的稳定性 分为渐近稳定、指数稳定和超调 稳定等类型。
系的s域
04
系统的状态空间表示
状态空间模型
描述系统的动态行为,包括状态方程和输出 方程。
输出方程
描述系统输出与状态变量和输入之间的关系。
状态方程
描述系统内部状态变量的变化规律。
第四章 拉普拉斯变换、连续时间系统的 s 域分析

+
1 vC (0 ) s
-
1 1 VC ( s) I C ( s) vC (0 ) sC s
Vc(s)
-
(四)延时特性(时域平移)
若
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
f (t )u(t ) F (s)
f (t t0 )u (t t0 ) e st0 F ( s )
0
s j
F ( s) f (t )e dt
st 0
单边拉氏变换
FB ( s ) f (t )e st dt
双边拉氏变换
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
2. 拉氏逆变换
f1 (t ) f (t )e
1 f (t ) 2
在算子符号法中,由于未能表示出初始条件的作用,只 好在运算过程中作出一些规定,限制某些因子相消。而拉氏 变换法可以把初始条件的作用计入,这就避免了算子法分析 过程中的一些禁忌,便于把微积分方程转化为代数方程,使 求解过程简化。
(三)单边拉氏变换的收敛域
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟 j
f1 (t )
t0
t
cos(0 )sin(1t ) sin(0 )cos(1t ) 1 cos(0 ) s sin(0 ) F (s) 2 2 0 1t0 2 2 s 1 s 1
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
例2:求 (t 1)u (t 1), t 1, t 1, (t 1)u (t 1),
f1 (t ) f (t )e t
信号与系统教案第5章连续系统的s域分析

04
连续系统的s域响应分析
初始状态下的s域响应
01
初始状态下的s域响应是指系统 在输入信号和初始状态共同作 用下的输出信号。
02
在s域中,系统的初始状态可以 表示为s的函数,即系统的初始 值。
03
通过求解线性常微分方程或传 递函数,可以得到系统在初始 状态下的s域响应。
零输入响应和零状态响应
零输入响应是指系统在没有输入信号作用下的自由响应,由系统的内部动 态特性决定。
通过分析极点和零点,可以预测系统在不同输入信号 下的行为,从而对系统进行优化和控制。
05
连续系统的s域设计方法
系统函数的合成与分解
线性时不变系统函数的合成
通过组合简单系统函数,构建复杂系统函数。
系统函数的分解
将复杂系统函数分解为简单系统函数的组合, 便于理解和分析。
传递函数表示法
利用传递函数表示系统函数,便于分析系统 的性能和稳定性。
硬件实现
根据系统函数的数学表达式,选择合适的硬件 平台实现系统函数。
软件实现
利用编程语言或仿真软件实现系统函数,并进 行仿真验证。
实验验证
通过实验测试,验证系统函数的正确性和性能指标的符合程度。
THANK YOU
感谢聆听
02
连续系统的s域分析基础
s域的基本概念
80%
s域
复平面上的一个区域,用于描述 线性时不变系统的传递函数。
100%
传递函数
描述系统输入与输出之间关系的 复数函数。
80%
系统函数
描述系统对不同频率输入信号的 响应。
s域分析的优点
方便数学处理
s域中的传递函数可以进行代 数运算和微积分,便于分析和 设计系统。
连续系统的S域分析法

s
s
s2 8s 16
1s 2s
3
1
即 Y s 4.5 4 + 2
s 1 s 2 s 3
反变换, y t 4.5et 4e2t 1 e3t t 0
2
已知微分方程的s域分析
例3 描述某LTI系统的微分方程为: y(t) 5y(t) 6y(t) f (t)
且 y(0-)=1,y’(0-)=-1,f(t)=5cost (t),求系统的全响应y(t)
解 对微分方程取拉氏变换得:
s2Y (s) sy(0 ) y(0) 5 s Y ( s ) y ( 0 ) 6Y(s) 2F (s)
(s2 5s 6)Y(s) 2 F ( s ) sy ( 0 ) y ( 0 ) 5 y ( 0 )
2F (s) Y(s) s 2 5 s 6
1 s
I ( s )
u(0 ) 1 I(s)
s
Cs
+ u(t)
-
Cs
i(t)
+
I(s)
C
1 Cs
U(s)
-
+
U (s)
C u (0-)
-
I(s)
1 Cs +
u(0 )
-s
1 复频域容抗
Cs
u(
0 ) 、 Cu(0
s 内部电源
)
:
电容并联模型(宜于节点分析) 电容串联模型(宜于回路分析)
3) 电感
zi
已知微分方程的s域分析
例2 设有方程y(t) 3y(t) 2 y(t) e3t (t)
y ( 0 ) 1, y(0 ) 2, 求 y(t)。
解 对方程取拉氏变换,得
[s 2Y (s) sy(0 ) y(0 )] 3[sY (s) y(0 )] 2Y (s)
第七章连续时间信号与系统的复频域分析

第七章连续时间信号与系统的复频域分析1、内容简介在连续时间信号与系统的复频域分析中,首先介绍了利用Laplace 变换进行连续时间信号的复频域分析和连续时间系统的复频域分析。
在此基础上,分析了系统函数及其与系统特性的关系,并介绍了系统的复频域方框图表示。
最后介绍了用MATLA实现连续时间系统的复频域分析。
2、学习目标1.熟练掌握单边Laplace 变换及其基本性质和Laplace 反变换。
(双边Laplace 变换不要求)2.掌握用单边Laplace 求解连续系统响应的零输入响应和零状态响应。
3.重点掌握系统的传输函数,及系统函数与系统特性(频响特性、因果性、稳定性)的关系。
4.掌握连续系统的直接型、级联型和并联行模拟框图。
5•能够利用MATLA进行连续系统的复频域分析。
3、重点难点1. 单边Laplace 变换及其基本性质和Laplace 反变换。
2. 系统的传输函数,及系统函数与系统特性(频响特性、因果性、稳定性)的关系。
3. 连续系统的直接型、级联型和并联行模拟框图。
4、应用利用MATLA进行连续系统的复频域分析5、教案内容1、复频域分析方法的引入背景由于频域分析存在不足:其一,某些信号不存在傅立叶变换,因而无法利用频域分析法;其二,系统频域分析法只能求解系统的零状态响应,系统的零输入响应仍按时域方法求解;其二,频域分析法中,傅立叶反变换一般较为复杂2、连续时间信号与系统的复频域(S域)分析Laplace变换的定义L[f(t)]F(s) f (t)e st dtLaplace反变换的定义L1[F(s)] f(t)1 j2 j jF (s)e st ds单边Laplace变换对L[f(t)] F(s)o f(t)est dt1 1 j stL [ F (s)] f (t)2 j jF (s)e dsLap lace变换实现从时间域到复频域的转换,而Laplace反变换实现从复频域到时间域的变换。
第五章 连续系统的s域分析

w
S + w s S 2+ w
2
0
R e s R e s
0 0
5.1 拉普拉斯变换
例5、求L[e (t )]
解: L[e (t )]
lim[e (t )e st ] 0
t
0
e (t )e dt e
st 0
st
1 st dt e s
S(复频)域~拉(普拉)斯变换 代数方程
简单的初等函数
相乘 Y(S) =Yzi(S) + Yzs(S) 为很多不满足绝对可 积的函数f (t)找到变换 域的分析方法。
st
3) 卷积
4) y(t) =yzi(t) + yzs(t) 5) 不满足绝对可积 条件的f (t)
S(复频)域分析法中基本变量为S = s +jw , e 为基本信 号
0
确定收敛域的一般规律
2)周期信号及幅度稳定信号(只需少加衰减) s >s0 = 0 3)其增长速度比指数函数的衰减慢的信号 s > s0 = 0 如 f ( t ) t n lim t n e s t = 0 s s0 0
t
1)时限信号(能量有限信号)s0 = -(即全部S平面收敛)
例1 因果信号f1(t)= eat e(t) ,求其拉普拉斯变换。 解 F1b (s) 0 e e
at
st
e ( s a )t dt (s a )
0
1 [1 lim e (s a )t e jw t ] t (s a )
收敛轴
1 s a , Re[s ] s a 不定 , s a 无界 , s a 对于因果信号,当Re[s]=s>a时,
第4章拉普拉斯变换

第四章 连续信号与系统的S 域分析1、如下方程和非零起始条件表示的连续时间因果LTI 系统,()()t f dt dft y dt dy dty d 524522+=++ 已知输入()()t e t f t ε3-=时,试求(1)系统的零状态响应;(2)判断系统的稳定性解:(1) 方程两边取拉氏变换;()()()()4552455222+++=⋅+++=⋅=s s s s F s s s s F s H s Y()()()t e e e t y s s s s s s s s Y t t t zs z ε⎪⎭⎫ ⎝⎛--=+-+-+=+++⋅+=---4221212142122111459221(2) 对于因果连续系统,()s H 的全部极点位于s 平面的左半平面, ()t h 才是衰减信号,由此可以得出,在复频域有界输出的充要条件是系统函数()s H 的全部极点位于s 平面的左半平面,若系统函数的极点是虚轴上的单阶共轭极点。
则系统临界稳定,若系统函数的极点在右半平面,则系统不稳定,如下图。
该题中,()114145522+++=+++=s s s s s s H ,其极点分别为4,121-=-=s s ,都在左半平面,所以系统稳定。
2、如下方程和非零起始条件表示的连续时间因果LTI 系统()()()()⎪⎩⎪⎨⎧==+=++--30,20223'22y y t f dt dft y dt dy t d y d已知输入()()t e t f t ε3-=时,试用拉普拉斯变换的方法求系统的零状态响应()t y zs 和零输入响应()t y zi , 0≥t 以及系统的全响应()0,≥t t y 。
解:方程两边取拉氏变换()()()()()()[]()()()()()()()()()()()()()()()t e e e t y t e e t y s s s s s s Y t e e e t y s s s s s s s s Y s s s s s s s s Y s s F s F s y y sy s Y s s t t t t t zi zi t t t zs ZS εεε⎪⎭⎫ ⎝⎛+--=+-=+++-=+++=⎪⎭⎫ ⎝⎛-+-=+-++++-=+⋅+++=++++++⋅+++=+=+=---+++-----------213225751725239232132512123325312312223632312312;3112030'023*********22。
信号分析第四章:拉普拉斯变换、连续时间系统的s域分析

A ( 1 esT ) AesT sF ( s ) Ts
F( s )
A/T s2
( 1 e sT
)
A e sT s
f (t)
A T
0
f (0 ) 0
Tt A ( t T )
20
拉普拉斯变换的性质
例 10 f (t) t e(t2) (t 1)
方法一:因为 (t 1) 1 es
中:a >0
解:
F ( s ) 0 e( sa ) tdt 0 e( a ) te j tdt 1
sa
为保证收敛,有 a+<0,故收敛域为 <-a
j
收 敛 a 0 域
9
拉普拉斯变换的收敛区
例3
求双边信号 f (t)= -e – t (-t)+ e -2t (t)的拉普拉斯变 换及其收敛域。
s s0
令 s0 = 实数, 则
et( t ) s
1
令 s0 = j 虚数, 则 e j t ( t ) s
1 j
12
常用函数的拉普拉斯变换 三个基本函数的拉普拉斯变换
• 单位阶跃函数 (t)
已知 es0 t ( t ) 1
s s0
令上例中s0=0。则
(
t
)
1 s
• 单位冲激函数 (t)
s 1
t
e(
t1 )
(
t
1)
d ds
(
s
1 es 1
)
(
s
1 1 )2
es
s
1 es 1
F(
s
)
(
2 s s 1 )2
e s1
郑君里《信号与系统》(第3版)(上册)(章节题库 拉普拉斯变换、连续时间系统的s域分析)【圣才出品】

t 0
ea d
s(s
1
a)2
,
再次用到频移特
性
eat t ea d
1
0
(s a)s2
三、选择题
1.像函数 A.tU(t)
B.tU(t-2)
的原函数 f(t)为( )。 C.(t-2)U(t) D.(t-2)U(t-2)
【答案】B
【解析】 拉氏变换的时移性质,
x(t t0 ) X (s)est0
22
2
则稳态响应为 1 cos t 1 sin t 1 sin(t 45o)
2
2
2
(2)x(t)的 w=1, H ( jw)
1 jw 1
1 j 1
1 e j45o ,幅度为 2
1 ,相位为 2
45o ,稳态为
9.已知信号 f(t)的拉氏变换为 F(s),则 tf(2t)的拉氏变换为( )。
s 0
s 0 2s 1
2.利用初值定理求
原函数的初值 f(O+)=( )。
【答案】f(O+)=4
【解析】因为 F(s)不是真分式,利用长除法 F(s)=(s-2)(1-e-s )+ 4 (1-e-s ) , s+2
F0 (
s
)
4(1 es s2
)
,所以
f
(
0
)
lim
s
sF0 (sFra bibliotek)lim
s
s
4(1 es s2
w0
)
1 w2
j (w) 。
5.信号 tu(t-1)的拉普拉斯变换是( )。
【答案】 【解析】由拉氏变换性质的时域平移知:tu(t-1)=(t-1)u(t-1)+
s域和z域分析

VC (s)
1 sC
IC (s)
1 s
vC
(0 )
用于回路分析
R,L,C并联形式的s域模型
VR (s) RIR (s)
VL (s) sLIL (s) LiL (0 )
1
1
VC (s) sC IC (s) s vC (0 )
对电流解出得:
IR (s)
1 R
VR
(s)
I L (s)
(五) z变换与拉普拉斯的关系
(一)从s平面到z平面的映射
z esT
s 1 ln z T
s
2
T
s j
z rej
z e( j )T eT e jT
2
r eT e s
T 2 S
s平面到z平面有如下映射关系:
(1)s平面上的虚轴( 0, s j)映射到z平面是单位圆,其
H (s) LT[r(t)] R(s) LT[e(t)] E(s) h(t) ILT[H (s)]
r(t) e(t) h(t) R(s) E(s)H (s)
r(t) 1 j R(s)estds
2 j j
(八)零极点与系统的时域特性
etu(t)
1
ZT[cos(0n)u(n)]
z(z cos0 ) z2 2z cos0 1
(二)几类序列的收敛域:
(1)有限序列:在有限区间内,有非零的有限值的序列
n2
X (z) x(n)zn
n1 n n2
nn1
除n1 0时,z 和n2 0时z 0外,所有z值都收敛
全国名校信号与系统考研真题及详解(拉普拉斯变换、连续时间系统的s域分析)【圣才出品】

第4章拉普拉斯变换、连续时间系统的s域分析一、选择题以下为4个信号的拉普拉斯变换,其中不存在傅里叶变换的信号是()。
[武汉大学2015研]A.1/sB.1C.1/(s+3)D.1/(s-3)【答案】D【解析】D选项为1/(s-3),其时域表达式为e3t u(t),很显然是不稳定的,不满足绝对可积条件,也就不存在傅里叶变换。
二、填空题1.信号x(t)=cos2t的单边拉普拉斯变换为______。
[北京邮电大学2016研]【答案】s/(s2+4),Re[s]>0【解析】由于cos(βt)=(1/2)(e jβt+e-jβt),根据拉氏变换的定义式即可求解,该拉氏变换对也是常用变换对。
2.某连续线性时不变系统的系统函数为H(s)=s/(s+2),若用e(t)表示输入信号,而r(t)表示输出信号,则该系统的微分方程可以表示为______。
[北京邮电大学2016研]【答案】r ′(t)+2r(t)=e ′(t)【解析】由H(s)=s/(s +2)=R(s)/E(s),有sR(s)+2R(s)=sE(s),对应的微分方程即为:r ′(t)+2r(t)=e ′(t)3.已知某LTI 系统模型如下:y ′′(t)+3y ′(t)+2y(t)=f ′(t)+4f(t),y ′(0-)=1,y(0-)=0,f (t)=u (t),则系统的零状态响应y f (t )为______。
[武汉大学2015研]【答案】(2+e -2t -3e -t )u(t)【解析】对该微分方程两边取拉普拉斯变换得:s 2Y (s )+3sY (s )+2Y (s )=sF (s )+4F (s ) 则H (s)为:H(s)=(s +4)/(s 2+3s +2),系统的零状态响应为22441()()3232s s Y s F s s s s s s ++==⋅++++对Y (s)取拉氏逆变换得:y f (t)=(2+e -2t -3e -t )u(t)。
第五章 连续系统的S域分析

Re[s ] = σ > σ 0 = 0
t e t ε (t ) 、 t ε (t )
增长比任何指数阶都快,所以不存在拉氏变换。
另外,要注意还有一类信号:时限信号
∫
∞
0
f (t ) e −σt dt
T1 T2
f (t )
f (t )
=∫
f (t ) e −σt dt < ∞
0
T1
(a )
T2
t
0
2
t
满足绝对可积的条件。
3
假设 f (t )e −σt 满足绝对可积条件,则
ℱ
[ f (t )e ] = ∫ f (t )e
−σ t ∞ −∞ ∞
−σ t
e − jω t dt
收敛
上述积分结果是 (σ + jω )的函数,令其为 Fb (σ + jω ) 即:
=∫
−∞
f (t )e − (σ + jω ) t dt
σ 的值使
∫
∞ −∞
f (t ) e − σ
e −σ t ,适当
t
当
t → ±∞ 时,
信号幅度趋于0,从而使其满足绝对可积的条件:
f (t )e −σ t dt < ∞
例如
f (t ) = e 2 t ε (t )
2t ∞
∫
∞
−∞
e ε (t )dt = ∫ e 2 t dt
0
不满足绝对可积的条件。 只要
......
......
(1)
(2)
Fb (s ) 称为 f (t )的双边拉氏变换(或象函数);
f (t ) 称为Fb (s )的双边拉氏逆变换(或原函数)。
信号与系统的S域分析

三、常用信号的拉普拉斯变换
3. (t ),
0
( n)
(t )
st
L[ (t )] (t )e dt 1
' 0 st
Re(s) , 即整个s平面
d st L[ (t )] ' (t )e dt (e ) t 0 s ds
1
F(s)为单位带宽内各谐波的合成振幅,是密度函数。 S 是复 数,称为复频率,F(s)称复频谱。 F(j)是频谱密度函数,简称频谱。
如果仅考虑信号加入之后 t≧0 的情况,就成为单边拉氏变换 (下式为正变换式,其反变换式与双边拉氏反变换式相同) :
LT [ f (t )] F ( s) f (t )e st dt
7 信号与系统的S域分析 p 10
lim f (t )e
t
s t
0 ,s s 0
二、单边拉普拉斯变换及其存在的条件
拉氏变换与单边拉氏变换存在的充分条件
lim f (t )e s t 0
t
,s s 0
右半平面 收敛域(ROC)
左半平面
虚部Hale Waihona Puke jS平面s0
s
实部
s0 称绝对收敛坐标,s s0 称收敛条件(仅针对实部Re(s)而言)。
7 信号与系统的S域分析 p 14
三、常用信号的拉普拉斯变换
1. 指数型函数 e t u(t)
cos 0 t u (t )
LT
正弦型信号
e
j 0 t
1 1 1 s ( ) 2 2 2 s j0 s j0 s 0
e 2
j 0 t
u (t )
信号与系统复习总结

左边序列 :
信号的三大变换
五
(三)z变换
3、典型序列的z变换
单位样值序列
单位阶跃序列
斜变序列
指数序列
信号的三大变换
五
(三)z变换
4、性质
线性
ROC为公共部分
位移性
(1)单边Z变换
信号的三大变换
五
(三)z变换
4、性质
(2)双边Z变换
位移性
z域微分特性
(一)傅立叶变换
五
3、非周期信号的傅立叶变换
(3)傅立叶变换的性质
尺度变换特性
时域压缩——频域展宽
时移特性
频移特性
为常数
微分特性
信号的三大变换
积分特性
(一)傅立叶变换
五
3、非周期信号的傅立叶变换
(3)傅立叶变换的性质
频域微分定理
时域卷积定理
频域卷积定理
信号的三大变换
五
(二)拉普拉斯变换
1、单边定义式
大连轻工业学院信息学院
信号与系统
CLICK HERE TO ADD A TITLE
复习总结
演讲人姓名
信 号 信号与系统 系 统
信号的基本运算
信号
典型信号
信号的定义及分类
信号的三大变换
章节一
信号的特性
CHAPTER ONE
信号的定义及分类
一
1、信号的定义:随时间变化的物理量。
2、信号的分类:
确定性信号
同时域法
等效激励源法
等效激励源法
电感L:
电容C:
系统稳定性的判别
3、s域分析法
连续时间系统
(一)
信号与系统第四章知识点

第四章 拉普拉斯变换—连续信号s 域分析一、考试内容(知识点)1.拉普拉斯变换的定义及其性质、拉普拉斯逆变换; 2.系统的复频域分析法; 3.系统函数)(s H ;4.系统的零极点分布决定系统的时域、频域特性; 5.线性系统的稳定性;6.拉普拉斯变换与傅里叶变换之间的关系。
二、内容(知识点)详解1.拉普拉斯变换的定义、收敛域(1)变换式与反变换式dt e t f t f s F st -∞⎰-==0)()]([)(L ds e s F js F t f stj j ⎰∞+∞--==σσπ)(21)]([)(1L )(s F 称为)(t f 的象函数,)(t f 称为)(s F 的原函数。
下限值取-0,主要是考虑信号)(t f 在t =0时刻可能含有冲激函数及其导数项也能包含在积分区间之内。
(2)收敛域在s 平面上,能使式0)(lim =-→∞t t e t f σ满足和成立的σ的取值范围(区域),称为)(t f 或)(s F 的收敛域。
2.常用时间函数的拉普拉斯变换(1)冲激函数 )()(t t f δ= 1)(=s F)()()(t t f n δ= n s s F =)((2)阶跃函数 )()(t u t f = ss F 1)(= (3)n t (n 是正整数) t t f =)( 21)(s s F =2)(t t f = 32)(s s F =n t t f =)( 1!)(+=n s n s F(4)指数信号 t e t f α-=)( α+=s s F 1)(t te t f α-=)( ()21)(α+=s s F t n e t t f α-=)( ()1!)(++=n s n s F αt j e t f ω-=)( ωj s s F +=1)( (5)正弦信号、余弦信号系列)sin()(t t f ω= 22)(ωω+=s s F)cos()(t t f ω= 22)(ω+=s ss F)sin()(t e t f t ωα-= 22)()(ωαω++=s s F)cos()(t e t f t ωα-= 22)()(ωαα+++=s s s F )sin()(t t t f ω= 222)(2)(ωω+=s ss F )cos()(t t t f ω= 22222)()(ωω+-=s s s F )()(t sh t f ω= 22)(ωω-=s s F )()(t ch t f ω= 22)(ω-=s ss F (6) ∑∞=-=0)()(n nT t t f δ sT e s F --=11)(∑∞=-=00)()(n nT t f t f sTes F s F --=1)()(0 3.拉普拉斯变换的基本性质象函数)(s F 与原函数)(t f 之间的关系为:)]([)(t f s F L = (1)线性(叠加性)∑∑===⎥⎦⎤⎢⎣⎡ni i i n i i i s F a t f a 11)()(L ,其中i a 为常数,n 为正整数。
【实验】连续时间系统S域零极点分析

【关键字】实验实验七连续时间系统S域零极点分析一、目的(1)掌握连续系统零极点分布与系统稳定性关系(2)掌握零极点分布与系统冲激响应时域特性之间的关系(3)掌握利用MATLAB进行S域分析的方法二、零极点分布与系统稳定性根据系统函数的零极点分布来分析连续系统的稳定性是零极点分析的重要应用之一。
稳定性是系统固有的性质,与激励信号无关,由于系统函数包含了系统的所有固有特性,显然它也能反映出系统是否稳定。
对任意有界信号,若系统产生的零状态响应也是有界的,则称该系统为稳定系统,否则,则称为不稳定系统。
上述稳定性的定义可以等效为下列条件:●时域条件:连续系统稳定充要条件为,即冲激响应绝对可积;●复频域条件:连续系统稳定的充要条件为系统函数的所有极点位于S平面的左半平面。
系统稳定的时域条件和频域条件是等价的。
因此,只要考察系统函数的极点分布,就可判断系统的稳定性。
对于三阶以下的低阶系统,可以利用求根公式方便地求出极点位置,从而判断系统稳定性,但对于告阶系统,手工求解极点位置则显得非常困难。
这时可利用MATLAB来实现这一过程。
例7-1:已知某连续系统的系统函数为:试用MATLAB求出该系统的零极点,画出零极点图,并判断系统是否稳定。
解:调用实验六介绍的绘制连续系统零极点图函数sjdt即可解决此问题,对应的MATLAB命令为:a=[8 2 3 1 5];b=[1 3 2];[p,q]=sjdt(a,b)运行结果为:p =-0.6155 - 0.6674i -0.6155 + 0.6674i 0.4905 - 0.7196i 0.4905 + 0.7196iq =-2 -1绘制的零极点图如图7-1所示。
由程序运行结果可以看出,该系统在S平面的右半平面有一对共轭极点,故该系统是一个不稳定系统。
三、零极点分布与系统冲激响应时域特性设连续系统的系统函数为,冲激响应为,则显然,必然包含了的本质特性。
对于集中参数的LTI连续系统,其系统函数可表示为关于s的两个多项式之比,即(7-1)其中为的M个零点,为的N个极点。
第五章:连续系统的s域分析

根据线性性质可得
1 jβ t − jβ t sin( β t )ε (t ) ↔ l[ (e − e )ε (t )] 2j
1 1 jβ t l[e ε (t )] − l[e − j β t ε (t )] = 2j 2j 1 1 1 1 = − 2 j s − jβ 2 j s + jβ =
β
s +β
2 2
Re[ s ] > 0 ,
二﹑尺度变换
f (t ) ↔ F ( s ), Re[ s ] > σ 0 ,则有 若
1 s f (at ) ↔ F ( ), Re[ s ] > aσ 0, (a为实常数且a > 0) a a
证明如下
l[ f (at )] = ∫ f (at )e − st dt
f (t )e sat ↔ F ( s − sa ), Re[ s ] > σ 0 + σ a, (sa =σ a +jσ a为复常数)
证明如下
∞ ∞
l[f (t )e ]=∫ - f (t )e e dt = ∫ − f (t )e − ( s − sa )t dt
sa t sa t − st 0 0
ε (t ) 的傅立叶变换,但有些函数如单位阶跃函数 虽然
存在傅立叶变换,却很难求得;而另一些函数如指数 增长函数 ,不存在傅立叶变换。 eα t ε (t )(α > 0) 为克服困难,可以用衰减因子 乘 eσ t (σ 为实常数) 信号 f (t ) ,若用 F(σ +jω )表示该信号的傅里叶变 换,根据傅里叶变换的定义, 则有
1 σ + j∞ st f (t ) = F s e ds t > −∞ ( ) b ∫ j σ − ∞ 2π j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k1 k2 kr kr1 kn
s p1 (s p1 )2
(s p1 ) r s pr1
s pn
kj
1 (r
dr j j)! ds r j
[(s
p1 ) r F (s)]
j 1,2, , r
5
六、拉普拉斯反变换
—— 部分分式展开法
归纳:
F (s) N (s) bm s m bm1s m1 b1s b0 D(s) s n an1s n1 a1s a0
S域代数方程
S域响应Y(s)
解代数方程
11
一、微分方程描述系统的S域分析
二阶系统响应的S域求解
d 2 y(t) dy(t)
d 2 f (t) df (t)
dt 2 a1 dt a2 y(t) b0 dt 2 b1 dt b2 f (t)
已知 f (t),y(0),y' (0) ,求y(t)。
—— 部分分式展开法
归纳:
F (s) N (s) bm s m bm1s m1 b1s b0 D(s) s n an1s n1 a1s a0
2) F(s)为有理真分式( m < n),极点为r重阶极点
F(s) N(s)
N (s)
D(s) (s p1 ) r (s pr1 ) (s pn )
例1 系统的微分方程为
y''(t) + 5y'(t) + 6y(t) = 2f '(t) + 8f(t) 激励 f(t) = etu(t),初始状态y(0)=3, y'(0)=2,求响应y(t)。
解:对微分方程取拉氏变换可得
s2Y (s) sy(0 ) y(0 ) 5[sY (s) y(0 )] 6Y (s) 2sF (s) 8F (s)
✓ 求解步骤: 1) 经拉氏变换将时域微分方程变换为s域代数方程 2) 求解s域代数方程,求出Yx(s), Yf (s) 3) 拉氏反变换,求出响应的时域表示式
12
一、微分方程描述系统的S域分析
二阶系统响应的S域求解
y"(t)
a1y'(t)
a2y (t)
[s 2Y (s) sy(0 ) y'(0 )] a1[sY (s) y(0 )] a2Y (s)
六、拉普拉斯反变换
—— 部分分式展开法
f
(t)
1 2πj
j
j
F
(s)e
st
ds
计算拉普拉斯反变换方法:
1. 利用复变函数中的留数定理 2. 采用部分分式展开法
1
六、拉普拉斯反变换
1. 利用复变函数中的留数定理
L1[F (s)] f (t) 1
j
F
(s)e ห้องสมุดไป่ตู้t ds, t
0
2πj j
设一闭合围线的积分路径为无限大圆弧,
则上式中积分等于围线中 被积函数所有极点的留数之和
2
六、拉普拉斯反变换
即f (t) F(s)est的留数 极点
若极点s pi处留数为ri , 围线中
有n个极点pi (k阶)
n
则f (t) ri , i 1
ri
(k
1 d k 1
1)
!
ds
k
1
(s
2) F(s)为有理真分式( m < n),极点为r重阶极点
ki (s pi )F(s) s pi i r 1, r 2, , n
其反变换为
f
(t)
k1e p1t
r j2
(
kj t j 1)!
j
1e
p1t
u(t
)
n
kie pit
ir 1
u(t)
6
六、拉普拉斯反变换
—— 部分分式展开法
pi )k
F
(
s)est
3
六、拉普拉斯反变换
—— 部分分式展开法
归纳: F (s) N (s) bm s m bm1s m1 b1s b0
D(s) s n an1s n1 a1s a0
1) F(s)为有理真分式( m < n),极点为一阶极点
F(s) N(s)
N (s)
b0s2F (s) b1sF (s) b2F (s)
b0 f "(t) b1 f '(t) b2 f (t)
Y (s)
sy(0 ) y' (0 ) a1y(0 ) s2 a1s a2
b0s2 b1s b2 s2 a1s a2
F(s)
Yx(s)
Yf(s)
y(t) y f (t) yx (t) L1{Yx (s) Yf (s)} 13
8
连续时间信号与系统的S域分析
连续时间信号的复频域分析 连续时间系统的复频域分析 连续时间系统函数与系统特性 连续时间系统的模拟
9
连续系统响应的复频域分析
微分方程描述系统的S域分析 电路的S域模型
10
一、微分方程描述系统的S域分析
时域微分方程
拉 氏 变 换
解微分方程
时域响应y(t)
拉 氏 反 变 换
归纳:
F (s) N (s) bm s m bm1s m1 b1s b0 D(s) s n an1s n1 a1s a0
3) F(s)为有理假分式( m≥ n)
F(s)
N (s) D(s)
B0
B1s
Bmn s mn
N1 (s) D(s)
N1 (s) D(s)
为真分式,根据极点情况按1)或2)展开。
B0 L B0 (t) B1s L B1 '(t)
Bmnsmn L Bmn (mn) (t) 7
信号的复频域分析实质是将信号分解为 复指数信号的线性组合。
信号的复频域分析使用的数学工具是拉 普拉斯变换。
利用基本信号的复频谱和拉普拉斯变换 的性质可对任意信号进行复频域分析。
复频域分析主要用于线性系统的分析。
D(s) (s p1 )(s p2 ) (s pn )
F (s) k1 k2 kn
s p1 s p2
s pn
ki (s pi )F(s) s pi i 1,2, , n
f (t) (k1e p1t k2e p2t kne pnt )u(t) 4
六、拉普拉斯反变换
2s 8
(s 5) y(0 ) y' (0 )
Y (s)
s2
5s
F(s) 6
(s2 5s 6)
Yf (s) Yx (s)
Yx
(s)
s
3s 2
17 5s
6
11 s2
s
8
3
yx (t) L1{Yx (s)} 11e2t 8e3t , t 0
14
例1 系统的微分方程为
y''(t) + 5y'(t) + 6y(t) = 2f '(t) + 8f(t) 激励 f(t) = etu(t),初始状态y(0)=3, y'(0)=2,求响应y(t)。