八年级初二数学第二学期勾股定理单元 易错题难题同步练习试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学第二学期勾股定理单元易错题难题同步练习试卷
一、解答题
1.定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:
(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);
(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;
(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.
①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;
②请证明△ABC为“类勾股三角形”.
2.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.
(1)求证:∠ABE=∠CAD;
(2)如图2,以AD为边向左作等边△ADG,连接BG.
ⅰ)试判断四边形AGBE的形状,并说明理由;
ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).
3.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.
(1)求∠EDF= (填度数);
(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;
(3)①若AB=6,G是AB的中点,求△BFG的面积;
②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.
4.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.
(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.
5.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .
(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G . ①求证:BE EF =;
②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形. 6.阅读下列一段文字,然后回答下列问题.
已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离
()
()2
2
121212PP x x y y =
-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂
直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y . (1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.
已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;
(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.
7.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在
ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .
(1)求点A 的坐标;
(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ∆的周长.
8.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线
AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
9.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .
(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.
(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.
①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.
②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.
10.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.
(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .
(2)已知△PMN 中,PM 17,MN =5NP 13图(2)中画出△PMN ,并直接写出△RMN 的面积 .
11.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒
∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;
(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形; (3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
12.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .
(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;
(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;
(4)P 是直线AC 上的一点,且1
3
CP AC =
,连接PE ,直接写出PE 的长. 13.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.
(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).
(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.
14.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;
(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.
15.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅; (2)若AF 平分DAE ∠交BC 于F ,
①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,
16.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.
(1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.
17.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
18.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0. (1)求直线AB 的解析式及C 点坐标;
(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标; (3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.
19.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.
20.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .
(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;
②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析 【分析】
(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;
(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论; ②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=1
2
(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论. 【详解】
解:(1)如图1,假设Rt △ABC 是类勾股三角形,
∴ab +a 2=c 2,
在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2, ∴ab +b 2=a 2+b 2,
∴ab=a2,
∴a=b,
∴△ABC是等腰直角三角形,
∴等腰直角三角形是类勾股三角形,
即:原命题是假命题,
故答案为:假;
(2)∵AB=BC,AC>AB,
∴a=c,b>c,
∵△ABC是类勾股三角形,
∴ac+a2=b2,
∴c2+a2=b2,
∴△ABC是等腰直角三角形,
∴∠A=45°,
(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,
∴∠ABC=64°,
根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,
∵把这个三角形分成两个等腰三角形,
∴(Ⅰ)、当∠BCD=∠BDC时,
∵∠ABC=64°,
∴∠BCD=∠BDC=58°,
∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;
(Ⅱ)、当∠BCD=∠ABC=64°时,
∴∠BDC=52°,
∴∠ACD=20°,∠ADC=128°,
∴△ACD是等腰三角形,此种情况不成立;
(Ⅲ)、当∠BDC=∠ABC=64°时,
∴∠BCD=52°,
∴∠ACD=∠ACB﹣BCD=32°=∠BAC,
∴△ACD是等腰三角形,
即:分割线和顶角标注如图2所示,
Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;
Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;
②如图3,在AB边上取点D,连接CD,使∠ACD=∠A
图3
作CG⊥AB于G,
∴∠CDB=∠ACD+∠A=2∠A,
∵∠B=2∠A,
∴∠CDB=∠B,
∴CD=CB=a,
∵∠ACD=∠A,
∴AD=CD=a,
∴DB=AB﹣AD=c﹣a,
∵CG⊥AB,
∴DG=BG=1
2
(c﹣a),
∴AG=AD+DG=a+1
2
(c﹣a)=
1
2
(a+c),
在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[1
2
(c+a)]2,
在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[1
2
(c﹣a)]2,
∴b2﹣[1
2
(a+c)]2=a2﹣[
1
2
(c﹣a)]2,
∴b2=ac+a2,
∴△ABC是“类勾股三角形”.
【点睛】
此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.
2.(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ)2
221
k k k
+++
.
【解析】
【分析】
(1)只要证明△BAE≌△ACD;
(2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AE,BG∥AE即可;
ⅱ)求出四边形BGAE的周长,△ABC的周长即可;
【详解】
(1)证明:如图1中,
∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°,
∵AE=CD,
∴△BAE≌△ACD,
∴∠ABE=∠CAD.
(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.
理由:∵△ADG,△ABC都是等边三角形,
∴AG=AD,AB=AC,
∴∠GAD=∠BAC=60°,
∴△GAB≌△DAC,
∴BG=CD,∠ABG=∠C,
∵CD=AE,∠C=∠BAE,
∴BG=AE,∠ABG=∠BAE,
∴BG∥AE,
∴四边形AGBE是平行四边形,
ⅱ)如图2中,作AH⊥BC于H.
∵BH=CH=1 (1) 2
k+

1113 1(1),31) 222
DH k k AH BH k =-+=-==+
∴222
AH DH k k1
AD=+=++
∴四边形BGAE的周长=2
2k k1
k+++,△ABC的周长=3(k+1),
∴四边形AGBE与△ABC的周长比=
2
221 k k k
+++
【点睛】
本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
3.(1)45°;(2)GF=AG+CF,证明见解析;(3)①6;②s ab
=,理由见解析.
【解析】
【分析】
(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.
(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明
△GDH≌△GDF(SAS)即可解决问题.
(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.
②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】
解:(1)如图1中,连接BE.
∵四边形ABCD是正方形,
∴CD=CB,∠ECD=∠ECB=45°,
∵EC=EC,
∴△ECB≌△ECD(SAS),
∴EB=ED,∠EBC=∠EDC,
∵∠DEF=∠DCF=90°,
∴∠EFC+∠EDC=180°,
∵∠EFB+∠EFC=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF,
∴DE=EF,
∵∠DEF=90°,
∴∠EDF=45°
故答案为45°.
(2)猜想:GF=AG+CF.
如图2中,将△CDF绕点D旋转90°,得△ADH,
∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,
∴∠DAC+∠DAH=180°,
∴H、A、G三点共线,
∴GH=AG+AH=AG+CF,
∵∠EDF=45°,
∴∠CDF+∠ADG=45°,
∴∠ADH+∠ADG=45°
∴∠GDH=∠EDF=45°
又∵DG=DG
∴△GDH≌△GDF(SAS)
∴GH=GF,
∴GF=AG+CF.
(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,
则有(3+x)2=(6-x)2+32,
解得x=2
∴S△BFG=1
2
•BF•BG=6.
②设正方形边长为x,
∵AG=a,CF=b,
∴BF=x-b,BG=x-a,GF=a+b,
则有(x-a)2+(x-b)2=(a+b)2,
化简得到:x2-ax-bx=ab,
∴S=1
2(x-a)(x-b)=
1
2
(x2-ax-bx+ab)=
1
2
×2ab=ab.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
4.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.
【解析】
【分析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;
(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;
(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF =60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF 内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x =3﹣即可.
【详解】
(1)解:△AEF是等边三角形,理由如下:
连接AC,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC=AD,∠B=∠D,
∵∠ABC=60°,
∴∠BAD=120°,△ABC是等边三角形,
∴AC=AB,
∵点E是线段CB的中点,
∴AE⊥BC,
∴∠BAE=30°,
∵∠EAF=60°,
∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,
在△BAE和△DAF中,

∴△BAE≌△DAF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形;
故答案为:等边三角形;
(2)证明:连接AC,如图2所示:
同(1)得:△ABC是等边三角形,
∴∠BAC=∠ACB=60°,AB=AC,
∵∠EAF=60°,
∴∠BAE=∠CAF,
∵∠BCD=∠BAD=120°,
∴∠ACF=60°=∠B,
在△BAE和△CAF中,

∴△BAE≌△CAF(ASA),
∴BE=CF;
(3)解:同(1)得:△ABC和△ACD是等边三角形,
∴AB=AC,∠BAC=∠ACB=∠ACD=60°,
∴∠ACF=120°,
∵∠ABC=60°,
∴∠ABE=120°=∠ACF,
∵∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,

∴△BAE≌△CAF(ASA),
∴BE=CF,AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,
∴∠AEB=45°,
∴∠CEF=∠AEF﹣∠AEB=15°,
作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:
则GE=GF,∠FGH=30°,
∴FG=2FH,GH=FH,
∵∠FCH=∠ACF﹣∠ACB=60°,
∴∠CFH=30°,
∴CF=2CH,FH=CH,
设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,∵BC=AB=4,
∴CE=BC+BE=4+2x,
∴EH=4+x=2x+3x,
解得:x=﹣1,
∴FH=x=3﹣,
即点F到BC的距离为3﹣.
【点睛】
本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.
5.(1)①见解析;②()22012x y x x
-=
<<-;(2)见解析 【解析】
【分析】
(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;
②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证
△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.
(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.
【详解】
(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,
∴CB=CD ,∠BCE =∠DCE =45°,
又∵CE=CE ,∴△CBE ≌△CDE (SAS ),
∴EB=ED ,∠CBE =∠1,
∵∠BEC =90°,∠BCF =90°,
∴∠EBC +∠EFC =180°,
∵∠EFC +∠2=180°,
∴∠EBC =∠2,
∴∠1=∠2.
∴ED=EF ,
∴BE=EF .
②解:∵正方形ABCD
的边长为2,∴对角线AC =2.
将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,
∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,
由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,
在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩

∴△PBG ≌△EBG (SAS ).
∴PG=EG =2-x -y ,
∵∠PCG =∠GCB +∠BCP =45°+45°=90°,
∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--,
化简,得()22012x y x x
-=<<-. (2)如图3,作法如下:
①延长BE 交AD 于点M ,
②连接MO 并延长交BC 于点N ,
③连接DN 交AC 于点Q ,
④连接DE 、BQ ,
则四边形BEDQ 为菱形.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.
6.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(
1304,)时,PD+PF 73
【解析】
【分析】
(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;
(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.
【详解】
解:(1)∵()2, 4A 、()3, 8B --
∴()()22AB 234813=+++=
故A 、B 两点间的距离为:13.
∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1
∴()MN 415=--=
故M 、N 两点的距离为5.
(2)∵()1, 6D 、()3, 3E -、()4, 2F
∴()()
22DE 13635=++-= ()()
22DF 14625=-+-= ()()22EF 343252=--+-=∴DE=DF ,222DE DF EF +=
∴△DEF 为等腰直角三角形
(3)
作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短
设直线DF'的解析式为y=kx+b
将D (1,6),F'(4,-2)代入得:
642k b k b +=⎧⎨+=-⎩
解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩
∴直线DF'的解析式为:826y 33x =-
+ 令y=0,解得13x 4=
,即P 的坐标为(1304,) ∵PF=PF'
∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(
1304,)时,PD+PF 73 【点睛】
本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.
7.(1)(0,3);(2)DF OE =;(3)93233+
【分析】
(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出2263OA AB OB =-=A 的坐标;
(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;
(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证
出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得1332
DG OF ==即可得出答案.
【详解】
解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,
6OB ∴=,12AB AC BC ===
,OA === ∴点A 的坐标为(0
,;
(2)DF OE =;理由如下:
ADE ∆,AFO ∆均为等边三角形,
AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,
FAD OAE ∴∠=∠,
在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩

()FAD OAE SAS ∴∆≅∆,
DF OE ∴=;
(3)60AOF ∠=︒,
30FOB ∴∠=︒,
60ABO ∠=︒,
90AGO ∴∠=︒,
AFO ∆
是等边三角形,AO =
·sin 609AG OA ∴=︒==, FAD OAE ∆≅∆,
AOE AFD ∴∠=∠,
30DOE AOD AOE ∠=︒=∠+∠,
30AOD AFD ∴∠+∠=︒,
FDO AFD FAO AOD ∠=∠+∠+∠,
60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,
AG OF ⊥,AOF ∆为等边三角形,
G ∴为斜边OF 的中点,
1122
DG OF ∴==⨯= ADG ∴∆
的周长9AG AD DG =++=+
【点睛】
本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
8.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为
333-.理由见解析.
【分析】
(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.
(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.
【详解】
(1)CF FH =
证明:延长DF 交AB 于点G
∵在ABC △中,90ACB ∠=︒,6AC BC ==,
∴45A B ∠=∠=︒
∵DF DE ⊥于点D ,且DE DF =,
∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.
∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,
∴135CEF FGH ∠=∠=︒,
∵点D 是AC 的中点,∴132
CD AD AC ===,∴CD DG = ∴CE FG =
∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒
∴DCF GFH ∠=∠
∴CEF FGH ≌
∴CF FH =;
(2)依然成立
理由:设AH ,DF 交于点G ,
由题意可得出:DF=DE ,
∴∠DFE=∠DEF=45°,
∵AC=BC ,
∴∠A=∠CBA=45°,
∵DF ∥BC ,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D为AC的中点,DF∥BC,
∴DG=1
2
BC,DC=
1
2
AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
CEF FGH
EC GF
ECF GFH
∠=∠


=

⎪∠=∠


∴△FCE≌△HFG(ASA),
∴HF=FC.
由(1)可知ABC
△和CFH
△均为等腰直角三角形
当他们面积相等时,6
CF AC
==.
∴2233
DE DF CF CD
==-=
∴333
CE DE DC
=-=-
∴点E与点C之间的距离为333
-.
【点睛】
本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.
9.(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=
20
3

【解析】
【分析】
(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;
(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;
(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可
能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB 上,根据平行四边形的性质求出即可.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AEO=∠CFO,
∵AC的垂直平分线EF,
∴AO=OC,AC⊥EF,
在△AEO和△CFO中

AEO CFO
AOE COF AO OC
∠∠


∠∠







∴△AEO≌△CFO(AAS),
∴OE=OF,
∵OA=OC,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴平行四边形AECF是菱形;
(2)解:设AF=acm,
∵四边形AECF是菱形,
∴AF=CF=acm,
∵BC=8cm,
∴BF=(8﹣a)cm,
在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,
a=5,
即AF=5cm;
(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,
只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,
P点运动的时间是:(5+3)÷1=8,
Q的速度是:4÷8=0.5,
即Q的速度是0.5cm/s;
②分为三种情况:第一、P在AF上,
∵P的速度是1cm/s,而Q的速度是0.8cm/s,
∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;
第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,
∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),
∴8﹣(0.8t﹣4)=5+(t﹣5),
t =203, 第三情况:当P 在AB 上时,Q 在DE 或CE 上,此时当A 、P 、C 、Q 四点为顶点的四边形不是平行四边形;
即t =203

【点睛】
考查了矩形的性质,平行四边形的性质和判定,菱形的判定和性质,勾股定理,全等三角形的性质和判定,线段垂直平分线性质等知识点的综合运用,用了方程思想,分类讨论思想.
10.(1)13,17,10,
112;(2)图见解析;7. 【分析】
(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.
(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.
【详解】
解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,
S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣
32﹣2=112, 故答案为13,17,10,
112
. (2)△PMN 如图所示.
S △PMN =4×4﹣2﹣3﹣4=7,
故答案为7.
【点睛】
此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.
11.(1)出发2秒后,线段PQ 的长为213;(2)当点Q 在边BC 上运动时,出发83
秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.
【分析】
(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.
【详解】
(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,
∵∠B=90°,
由勾股定理得:PQ=22224652213BQ BP +=+==
∴出发2秒后,线段PQ 的长为213;
(2)BQ=2t ,BP=8−t
由题意得:2t=8−t
解得:t=83
∴当点Q 在边BC 上运动时,出发
83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.
①当CQ=BQ 时(图1),则∠C=∠CBQ ,
∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,
∴BC+CQ=11,∴t=11÷2=5.5秒;
②当CQ=BC 时(如图2),则BC+CQ=12
∴t=12÷2=6秒
③当BC=BQ 时(如图3),过B 点作BE ⊥AC 于点E ,
∴BE=6824105
AB BC AC ⋅⨯==, 所以CE=22BC BE -=
185
=3.6, 故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒. 由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.
【点睛】
本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.
12.(1)2,232)证明见解析(3)
2217(423221【分析】
(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;
(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;
(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.
【详解】
(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,
在Rt △BDE 中,
∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,
∴BD=2BE ,∴∠BDE 为60°,
∴ABD ∆为等边三角形; (3))由(1)(2)可知,=23AC ,AD=4,
∴22=27CD AC AD =+,
∵BCD ACD ACBD S S
S =+四边形, ∴111()222
BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =
; (4)分点P 在线段AC 上和AC 的延长线上两种情况,
如图,过点E 作AC 的垂线交AC 于点Q ,
∵AE=2,∠BAC=30°,∴EQ=1,
∵=23AC ,∴=3CQ QA =,
①若点P 在线段AC 上,
则23=333PQ CQ CP =-=, ∴2223PE PQ EQ =+; ②若点P 在线段AC 的延长线上,
则253=3333PQ CQ CP =++
=, ∴22221=PE PQ EQ =+; 综上,PE 的长为
23或221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.
13.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =
【分析】
(1)根据题意画出图形即可;
(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.
【详解】
解:(1)如图所示;
(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,
∴∠PAD=α,AB=AD ,
∵90BAC ∠=︒,
∴902DAC α∠=︒-,
又∵AB=AC ,
∴AD=AC ,
∴∠ADC=
1[180(902)]2
α⨯︒-︒-=45α︒+; (3)如图,连接BE ,
由(2)知:∠ADC=45α︒+,
∵∠ADC=∠AED+∠EAD ,且∠EAD=α,
∴∠AED=45°,
∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,
∴∠AED=∠AEB=45°,BE=DE ,
∴∠BED=90°,
∴△BED 是等腰直角三角形,
∴22222BD BE DE DE =+=, ∴2BD DE =
.
【点睛】
本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键. 14.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194
时,△BCP 为等腰三角形. 【分析】
(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;
(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12
t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194
t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程
2234352
t --=⨯,即可得到结论. 【详解】
解:在Rt ABC 中,5AB cm =,3BC cm =,
4AC cm ∴=,
(1)设存在点P ,使得PA PB =,
此时2PA PB t ==,42PC t =-,
在Rt PCB 中,222PC CB PB +=,
即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516
t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,
此时72BP t =-,24PE PC t ==-,541BE =-=,
在Rt BEP 中,222PE BE BP +=, 即:222(24)1(72)t t -+=-,
解得:83
t =, 当6t =时,点P 与A 重合,也符合条件,
∴当83
t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,
当P 在AC 上时,BCP 为等腰三角形,
PC BC ∴=,即423t -=,
12
t ∴=, 当P 在AB 上时,BCP 为等腰三角形,
CP PB =①,点P 在BC 的垂直平分线上,
如图2,过P 作PE BC ⊥于E ,
1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194
t =, PB BC =②,即2343t --=,
解得:5t =,
PC BC =③,如图3,过C 作CF AB ⊥于F ,
12
BF BP ∴=, 90ACB ∠=︒,
由射影定理得;2BC BF AB =⋅,
即2234352
t --=⨯, 解得:5310t =
, ∴当15319,5,2104
t =或时,BCP 为等腰三角形. 【点睛】
本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.
15.(1)见详解(2)①结论:2
22BD FC DF +=,证明见详解②35
【分析】
(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;
(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG
即可求解.
【详解】
解:(1)∵AE AD ⊥
∴90DAC CAE ∠+∠=︒
∵90BAC ∠=︒
∴90DAC BAD ∠+∠=︒
∴BAD CAE ∠=∠
∴在ABD △和ACE △中
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
∴ABD △≌ACE △()SAS
(2)①结论:2
22BD FC DF +=
证明:连接EF ,如图:
∵ABD △≌ACE △
∴B ACE ∠=∠,BD CE =
∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒
∴222FC CE EF +=
∴222FC BD EF +=
∵AF 平分DAE ∠
∴DAF EAF ∠=∠
∴在DAF △和EAF △中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌EAF △()SAS
∴DF EF =
∴222FC BD DF +=
即2
22BD FC DF +=
②过点A 作AG BC ⊥于点G ,如图:
∵由①可知222223425DF BD FC =+=+=
∴5DF =
∴35412BC BD DF FC =++=++=
∵AB AC =,AG BC ⊥ ∴1112622
BG AG BC ===⨯= ∴633DG BG BD =-=-=
∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】
本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.
16.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.
【分析】
(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;
(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=
12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=
12
BN 列方程求解可得. 【详解】
解 (1)设经过x 秒,△BMN 为等边三角形,
则AM =x ,BN =2x ,
∴BM =AB -AM =30-x ,
根据题意得30-x =2x ,
解得x =10,
答:经过10秒,△BMN 为等边三角形;
(2)经过x 秒,△BMN 是直角三角形,
①当∠BNM =90°时,
∵∠B =60°,。

相关文档
最新文档