波音737飞机外形结构说明书

合集下载

B737-700飞机结构图

B737-700飞机结构图
设备和其它设备。 机翼的作用:
主要是在飞行中产生升力和装载燃油。
精选完整ppt课件
5
737NG各主要部件功用
垂直尾翼的作用: 控制飞机的方向。
水平安定面的作用: 控制飞机的纵向重心和飞机的俯仰操作。
精选完整ppt课件
6
737NG各主要部件功用
起落架的作用:
• 飞机在地面时支持飞机重量。以下是起落 架结构系统:
• — 主起落架(MLG)及其舱门(32-10) • — 前起落架(NLG)及其舱门(32-20) • 起落架放下和收上系统收放起落架(32-
30)。 • 前轮转弯系统提供飞机在地面的方向控制
(32-50)。
精选完整ppt课件
7
737NG各主要部件功用
发动机的作用: • 发动机为飞机提供推力。发动机也为以下
的垂直基准平面测量机身站位线。 • 机身纵剖线(BL)是横向标注尺寸。可测量机身中线向左或向右的纵
剖线。 • 水线(WL)是垂直标注尺寸。从一个飞机下方的水平基准面测量水
线。
精选完整ppt课件
12
系统提供动力: • - 电气 • - 液压 • - 气动。
精选完整ppt课件
8
737NG区域图
精选完整ppt课件
9
737NG区域图
• 机有八个主要分区帮助查找并识别飞机部件和零件。主要 分区被分成子分区,子分区被分成区域。以下是主要分区:
• - 100-下半机身 • - 200-上半机身 • - 300-机尾 • - 400-动力装置和吊舱支柱 • - 500-左机翼 • - 600-右机翼 • - 700-起落架和起落架舱门 • - 800-舱门。
737NG主要部件介绍
精选完整ppt课件

B737飞机结构及起落架 概述ppt课件

B737飞机结构及起落架 概述ppt课件
50
可装载软件 注意:
以上有些组件用于飞机选装系统。当飞机上没有选装系统的LRU时,选装 系统的电门位置显示不工作(INOP)信息。
除了电子发动机控制(EEC)外,你将便携式数据装载器连接到P61板上 的数据转换器组件的插座上来装载软件。
可在发动机上用便携式数据装载器装载EEC软件。
51
可装载软件
30
驾驶舱仪表板
31
驾驶舱仪表板
32
主仪表板
33
遮光板
34
P2中央仪表板和P9前电子面板 P2中央仪表板和P9前电子面板
35
控制台
控制台
36
P8后电子面板
37
驾驶舱仪表板 P5后顶板
38
驾驶舱仪表板 P5前顶板
39
后驾驶舱面板 主电路跳开关面板位于副
驾驶和机长座位后面。P6 和P18面板上有电路组件 载荷电路跳开关。电路跳 开关由飞机系统控制。 P61面板有数据装载控制 器。
程序电门组件有下列部 件:
- 电门 - 销钉接头 - 电门密封塞 - 安全盖。 LRU程序销钉输入接到
销钉接头。电门设定程 序销钉。
安全盖盖在电门密封塞 上。安全盖和密封塞可 使电门保持稳定不动47。
程序电门组件向LRU提
可装载软件 737上的一些LRU需要硬件和软件。没有软件,LRU内的逻辑电路不能执
机翼结构为铝合金破损安全设计的抗扭盒形结构。由连续的上、下椽条、腹 板及加强件连接而成。上、下蒙皮从翼根至翼尖为连续的机械加工变厚度蒙皮, 铆接桁条。出色的机翼设计使波音737适用于短跑道起降并拥有较好的高空巡航 能力。新一代737飞机机翼设计采用了新的先进临界技术,机翼的翼弦(宽度) 都增加了20英寸(50厘米),翼展(长度)约增加了16英尺(5米)。机翼总面 积增加了25%,不但增加了载油量,而且提高了效率,这都有利于延长航程。每 个载油量增加了30%。

Boeing 737 NG 飞机参数表说明书

Boeing 737 NG 飞机参数表说明书
Equipped for ACARS/PDC and FANS 1/A or 1/A +, and possible other capabilities (Jx)
FANS 1/A & FANS 1/A+ CPDLC-DCL/PDC
FANS 1/A & FANS 1/A+ CPDLC-DCL/PDC
........................................................................................................................................ 10 .................................................................................... 11
This cod is to be used to obtain CPDLCDCL and en route clearances with aircraft that have no UM80 load issues.
User Preference
Data Comm Capability Description
ICAO 2012 Field 10a
Data Comm Field 18 DAT/ Code
Comments
PDC and CPDLC-DCL
PDC only*
Not ACARS equipped but gets PDC Z
E3J4Jx Z
For flights authorized for enroute E3J4Jx data link with no UM80 load issues. Z

737-NG_主起落架及其舱门

737-NG_主起落架及其舱门
主起落架阻尼器含有下列组件:
— 壳体组件 — 活塞 — 放气塞 — 总管组件 — 进口单向活门 — 释压活门 — 补偿器
位置
主起落架阻尼器的体连接在上扭力臂的前端。
功能介绍
在内筒和外筒之间的振动导致内筒在外筒内转动。这使得主起 落架阻尼器活塞在壳体组件内来回移动。
当活塞移动时,液压油流过阻尼孔,这减弱了活塞的运动。阻 尼器连接在主起落架作动筒的回油管上。
主起落架减震支柱
锁紧螺母 安装尺寸
锁紧螺母
32—10—00
主起落架及其舱门 — 主起落架减震支柱舱门
概述
主起落架减震支柱舱门在主起落架收上时遮盖机翼上的减震支 柱开口。
主起落架减震支柱舱门有下列部件:
— 外侧门 — 中门 — 内侧门
外侧门
外侧门的外边缘围绕一铰链转动。外侧门铰链在沿该门外侧边 缘的机翼结构上。外侧门控制连杆连接在减震支柱转轴上。它操纵外 侧门。
32—10—00—002 Rev 4 01/16/1999
有效性
YE201
32—10—00
外筒
32—10—00—002 Rev 4 01/16/1999
备用静密封圈
动密封圈 静密封圈
减震支柱
左主起落架 (向前看)
有效性 YE201
备用动密封圈 备用静密封圈
防尘圈
刮油环
内筒
主起落架及其舱门 - 减震支柱
32—10—00—006 Rev 2 01/16/1999
有效性
YE201
32—10—00
左主起落架
32—10—00—006 Rev 2 04/04/1997
有效性 YE201
主起落架及其舱门 - 减震支柱 - 培训知识点-2

B737700飞机结构图课件

B737700飞机结构图课件
• - 100-下半机身 • - 200-上半机身 • - 300-机尾 • - 400-动力装置和吊舱支柱 • - 500-左机翼 • - 600-右机翼 • - 700-起落架和起落架舱门 • - 800-舱门。
PPT学习交流
10
737NG机身尺寸
PPT学习交流
11
737NG机身尺寸
• 737概述 - 机体尺寸 •
50)。
PPT学习交流
7
737NG各主要部件功用
发动机的作用: • 发动机为飞机提供推力。发动机也为以下系统提
供动力: • - 电气 • - 液压 • - 气动。
PPT学习交流
8
737NG区域图
PPT学习交流
9
737NG区域图
• 机有八个主要分区帮助查找并识别飞机部件和零件。主要 分区被分成子分区,子分区被分成区域。以下是主要分区:
剖线。 • 水线(WL)是垂直标注尺寸。从一个飞机下方的水平基准面测量水线。
PPT学习交流
12
其它设备。 机翼的作用:
主要是在飞行中产生升力和装载燃油。
PPT学习交流
5
737NG各主要部件功用
垂直尾翼的作用: 控制飞机的方向。
水平安定面的作用: 控制飞机的纵向重心和飞机的俯仰操作。
PPT学习交流
6
737NG各主要部件功用
起落架的作用: • 飞机在地面时支持飞机重量。以下是起落架结构
系统: • — 主起落架(MLG)及其舱门(32-10) • — 前起落架(NLG)及其门(32-20) • 起落架放下和收上系统收放起落架(32-30)。 • 前轮转弯系统提供飞机在地面的方向控制(32-
737NG主要部件介绍
PPT学习交流

B737-700飞机结构图

B737-700飞机结构图
737NG主要部件介绍
737NG图示
737NG区域图
737NG主要组成部件
飞机的主要组成: ❖ 机身 ❖ 机翼 ❖ 垂直尾翼 ❖ 水平安定面 ❖ 起落架 ❖ 发动机
737NG各主要部件功用
机身的作用: 主要是载客,载货。以及安装各种操纵设
备和其它设备。 机翼的作用:
主要是在飞行中产生升力和装载燃油。
❖ - 100-下半机身 ❖ - 200-上半机身 ❖ - 300-机尾 ❖ - 400-动力装置和吊舱支柱 ❖ - 500-左机翼 ❖ - 600-右机翼 ❖ - 700-起落架和起落架舱门 ❖ - 800-舱门。
737NG机身尺寸737N源自机身尺寸❖ 737概述 - 机体尺寸

概述 ❖ 标注尺寸给出在机身上的定位。尺寸的单位是英寸。可用下列标注尺寸
737NG各主要部件功用
垂直尾翼的作用: 控制飞机的方向。
水平安定面的作用: 控制飞机的纵向重心和飞机的俯仰操作。
737NG各主要部件功用
起落架的作用: ❖ 飞机在地面时支持飞机重量。以下是起落架
结构系统: ❖ — 主起落架(MLG)及其舱门(32-10) ❖ — 前起落架(NLG)及其舱门(32-20) ❖ 起落架放下和收上系统收放起落架(32-30
)。 ❖ 前轮转弯系统提供飞机在地面的方向控制(
32-50)。
737NG各主要部件功用
发动机的作用: ❖ 发动机为飞机提供推力。发动机也为以下系
统提供动力: ❖ - 电气 ❖ - 液压 ❖ - 气动。
737NG区域图
737NG区域图
❖ 机有八个主要分区帮助查找并识别飞机部件和零件。主要分 区被分成子分区,子分区被分成区域。以下是主要分区:
在机身上查找部件。 ❖ - 机身站位线 ❖ - 机身纵剖线 ❖ - 水线。 ❖ 机身站位线(STA)是水平标注尺寸。它始于零站位线。从飞机前部的

B737-300概述

B737-300概述

飞行操纵面
• 飞机操纵面有:
RUDDER 方向舵
ELEVATORS (2) 升降舵
前缘缝翼、前缘 襟翼、后缘襟翼、 副翼、扰流板, 它们都固定在机 翼前、后梁上。
HORIZONTAL STABILIZER 水平安定面 TE FLAPS (4) 后缘襟翼 SPOILERS (12) 扰流板 AILERONS (2) 副翼
1 78 19 6 .5 2 11 .8 22 4.8 2 43 .7 2 5 9 .9 277 2 9 4.5 3 12 328 344 3 60 38 0 400 42 0 44 0 460 480 50 0 52 2 54 4 56 6 588 6 10 632 654 675 814 837 86 1 .75 883 90 4 92 5 94 5 96 5 9 85 1007 10 29 10 5 1 10 73 1 09 5 1 1 17 1 13 7 11 5 7 11 7 7 1 1 97 1217 12 3 7 12 5 7 12 77 12 97 13 17 1337 13 5 7.5 13 77 1 39 6 .5 1 42 6 1 45 0 1 47 4 1 4 98 1 52 2 1 5 39 1 5 66
• •


• •
主起落架拖行接头 前起落架拖行接头
73 7 概述-飞机拖 行
发动机的危险区域
• 喷气发动机在工
ANTI - COLLISION LIGHT (TOP OF FUSELAGE) 防撞灯 (机身顶部) ANTI - COLLISION LIGHT (BOTTOM OF FUSELAGE) 防撞灯 (机身底部) INLET HAZARD AREA 进气口危险区域 13 FT ( 4.0 M)

B737-700飞机结构图ppt课件

B737-700飞机结构图ppt课件
30)。 • 前轮转弯系统提供飞机在地面的方向控制
(32-50)。
7
737NG各主要部件功用
发动机的作用: • 发动机为飞机提供推力。发动机也为以下
系统提供动力: • - 电气 • - 液压 • - 气动。
8
737NG区域图
9
737NG区域图
• 机有八个主要分区帮助查找并识别飞机部件和零件。主要 分区被分成子分区,子分区被分成区域。以下是主要分区:
737NG主要部件介绍
1
737NG图示
2
737NG区域图
3
737NG主要组成部件
飞机的主要组成: • 机身 • 机翼 • 垂直尾翼 • 水平安定面 • 起落架 • 发动机
4
737NG各主要部件功用
机身的作用: 主要是载客,载货。以及安装各种操纵
设备和其它设备。 机翼的作用:
主要是在飞行中产生升力和装载燃油。
线。
12
• - 100-下半机身 • - 200-上半机身 • - 300-机尾 • - 400-动力装置和吊舱支柱 • - 500-左机翼 • - 600-右机翼 • - 700-起落架和起落架舱门 • - 800-舱门。
10
737NG机身尺寸
11
737NG机身尺寸
• 737概述 - 机体尺寸 •
概述 • 标注尺寸给出在机身上的定位。尺寸的单位是英寸。可用下列标注尺
寸在机身上查找部件。 • - 机身站位线 • - 机身纵剖线 • - 水线。 • 机身站位线(STA)是水平标注尺寸。它始于零站位线。从飞机前部
的垂直基准平面测量机身站位线。 • 机身纵剖线(BL)是横向标注尺寸。可测量机身中线向左或向右的纵
剖线。 • 水线(WL)是垂直标注尺寸。从一个飞机下方的水平基准面测量水

B737机型介绍

B737机型介绍
B737-300/400机型介绍
中国邮政航空 机务工程部
培训管理分部
概述
• B737是一种双发,中短途,窄体客机。 也是世界航空运输历史上最成功的民航 客机。
• 截止至2010年5月,中国民航运行着614 架B737飞机,其中B737-300/400客机113 架,B737-300/400货机32架,B7377/8/900型飞机469架。与此同时,全民航 运行的干线飞机1353架,B737飞机所占 比例接近50%
邮航B737机队概述
• 我公司拥有17架B737货机机队,其中 B737-300货机11架(含退租中的 B2655/2656);B737-400货机6架。
• 目前我公司B737机队的货机都是B737300/400客机经改装而成。改装方案有两 种,分别称为PEMCO方案和IAI方案。
• 前面提到的IAI和PEMCO改装方案都是 在飞机的左侧,STA站位360-500处切开 一个货仓门。不同之处在于货仓大门的 控制以及其他一些细节。
?737cl型34500飞机的后缘机翼为三开缝式扰流板地面扰流板014飞行扰流板23扰流板?7373400飞机共有10块扰流板从左到右依次编号为09其中2367块为飞行扰流板014589为地面扰流板?扰流板提供空中减速地面减速和辅助滚转的功能驾驶舱各面板识别面板识别?p1正驾驶面板?p2中央仪表板?p3副驾驶面板?p5飞行顶板?p6跳开关板?p7中央主面板自动飞行面板?p8后电子仪表板?p9中央操纵台前面板?p18跳开关板大翼照明灯?大翼照明灯?大翼照明灯用于照亮大翼的前缘?安装于机身的两侧且在每恻大翼的前面外部灯光wingscanninglights大翼照明灯着陆灯内侧着陆灯内侧着陆灯转弯灯外侧着陆灯外侧着陆灯外侧着陆灯的收放机构转弯灯转弯灯滑行灯航行灯航行灯航行灯防撞灯频闪灯频闪灯频闪灯频闪灯航徽灯logo灯航徽灯logo灯皮托管静压口aoatat位置aoaangleofattack

B737-700飞机结构图

B737-700飞机结构图

737NG机身尺寸
737NG机身尺寸
• 737概述 - 机体尺寸 概述 • 概述 • 标注尺寸给出在机身上的定位。尺寸的单位是英寸。可用下列标注尺 寸在机身上查找部件。 • - 机身站位线 • - 机身纵剖线 • - 水线。 • 机身站位线(STA)是水平标注尺寸。它始于零站位线。从飞机前部 的垂直基准平面测量机身站位线。 • 机身纵剖线(BL)是横向标注尺寸。可测量机身中线向左或向右的纵 剖线。 • 水线(WL)是垂直标注尺寸。从一个飞机下方的水平基准面测量水 线。
737NG各主要部件功用
机身的作用: 主要是载客,载货。以及安装各种操纵 设备和其它设备。 机翼的作用: 主要是在飞行中控制飞机的方向。 水平安定面的作用: 控制飞机的纵向重心和飞机的俯仰操作。
737NG各主要部件功用
起落架的作用: • 飞机在地面时支持飞机重量。以下是起落 架结构系统: • — 主起落架(MLG)及其舱门(32-10) • — 前起落架(NLG)及其舱门(32-20) • 起落架放下和收上系统收放起落架(32- 30)。 • 前轮转弯系统提供飞机在地面的方向控制 (32-50)。
737NG各主要部件功用
发动机的作用: • 发动机为飞机提供推力。发动机也为以下 系统提供动力: • - 电气 • - 液压 • - 气动。
737NG区域图
737NG区域图
• 机有八个主要分区帮助查找并识别飞机部件和零件。主要 分区被分成子分区,子分区被分成区域。以下是主要分区: • - 100-下半机身 • - 200-上半机身 • - 300-机尾 • - 400-动力装置和吊舱支柱 • - 500-左机翼 • - 600-右机翼 • - 700-起落架和起落架舱门 • - 800-舱门。

B737-700飞机结构图 PPT

B737-700飞机结构图 PPT
30)。 • 前轮转弯系统提供飞机在地面的方向控制
(32-50)。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
ห้องสมุดไป่ตู้37NG各主要部件功用
发动机的作用: • 发动机为飞机提供推力。发动机也为以下
系统提供动力: • - 电气 • - 液压 • - 气动。
737NG区域图
737NG区域图
737NG机身尺寸
737NG主要部件介绍
737NG图示
737NG区域图
737NG主要组成部件
飞机的主要组成: • 机身 • 机翼 • 垂直尾翼 • 水平安定面 • 起落架 • 发动机
737NG各主要部件功用
机身的作用: 主要是载客,载货。以及安装各种操纵
设备和其它设备。 机翼的作用:
主要是在飞行中产生升力和装载燃油。
• 机有八个主要分区帮助查找并识别飞机部件和零件。主要 分区被分成子分区,子分区被分成区域。以下是主要分区:
• - 100-下半机身 • - 200-上半机身 • - 300-机尾 • - 400-动力装置和吊舱支柱 • - 500-左机翼 • - 600-右机翼 • - 700-起落架和起落架舱门 • - 800-舱门。
737NG各主要部件功用
垂直尾翼的作用: 控制飞机的方向。
水平安定面的作用: 控制飞机的纵向重心和飞机的俯仰操作。
737NG各主要部件功用
起落架的作用: • 飞机在地面时支持飞机重量。以下是起落
架结构系统: • — 主起落架(MLG)及其舱门(32-10) • — 前起落架(NLG)及其舱门(32-20) • 起落架放下和收上系统收放起落架(32-

波音737飞行机手册说明书

波音737飞行机手册说明书

CHAPTER15---ICE AND RAIN PROTECTION SYSTEMPage TABLE OF CONTENTS15--00 Table of Contents15--00--1INTRODUCTION15--10 Introduction15--10--1ICE DETECTION SYSTEM15--20 Ice Detection System15--20--1 System Circuit Breakers15--20--5WING ANTI-ICE SYSTEM15--30 Wing Anti--Ice System15--30--1 System Circuit Breakers15--30--6ENGINE COWL ANTI-ICE SYSTEM15--40 Engine Cowl Anti--Ice System15--40--1 System Circuit Breakers15--40--5 AIR DATA ANTI-ICE SYSTEM15--50 Air Data Anti--Ice System15--50--1 System Circuit Breakers15--50--4 WINDSHIELD AND SIDE WINDOW ANTI-ICE SYSTEM15--60 Windshield and Side Window Anti--Ice System15--60--1 System Circuit Breakers15--60--5WINDSHIELD WIPER SYSTEM15--70 Windshield Wiper System15--70--1 System Circuit Breakers15--70--2LIST OF ILLUSTRATIONSINTRODUCTIONFigure15--10--1Anti--Iced Areas15--10--2ICE DETECTION SYSTEMFigure15--20--1Ice Detection System--Schematic15--20--2 Figure15--20--2Ice Detection System15--20--3 Figure15--20--3Anti--Ice System EICAS Indications15--20--4WING ANTI-ICE SYSTEMFigure15--30--1Wing Anti--Ice System Schematic15--30--2 Figure15--30--2Wing Anti--Ice Controls15--30--3 Figure15--30--3Anti--Ice Synoptic Page15--30--4 Figure15--30--4Wing Anti--Ice System EICAS Indications15--30--5ENGINE COWL ANTI-ICE SYSTEMFigure15--40--1Engine Cowl Anti--Ice System--General15--40--2 Figure15--40--2Anti--Ice Synoptic Page15--40--3 Figure15--40--3Engine Cowl--Anti--Ice EICAS Indications15--40--4 AIR DATA ANTI-ICE SYSTEMFigure15--50--1Air Data Sensor Anti--Ice System15--50--2 Figure15--50--2Air Data Sensor Anti--Ice EICAS Indications15--50--3WINDSHIELD AND SIDE WINDOW ANTI-ICE SYSTEMFigure15--60--1Windshield Temperature Control15--60--2 Figure15--60--2Windshield and Side Window Anti--Ice Controls15--60--3 Figure15--60--3Windshield and Side Window Anti--Ice EICAS Indications15--60--4 WINDSHIELD WIPER SYSTEMFigure15--70--1Windshield Wiper Control Panel15--70--11.INTRODUCTIONIce and rain protection is provided for the wing leading edges,engine intake cowl,windshields,side windows and the air data probes and sensors.An ice detection system alerts the flight crew of impending icing conditions.Hot bleed air from the engine compressors is used to anti-ice the wing leading edges and engine intake cowl.Electrical power is used to anti-ice the windshields,side windows,air data probes and sensors.Electrical windshield wipers provide rain removal for the pilot and copilot’s windshields.A bleed air leak detection system monitors the bleed air ducting for leaks andovertemperature(refer to Chapter19).Ice and rain protection system warnings and cautions are displayed on the EICAS primary page.Status and advisory messages are displayed on the EICAS status page.A general view of the pneumatic anti-icing system is presented as a diagram on the EICAS A--ICE synoptic page.Anti---iced AreasFigure15---10---11.ICE DETECTION SYSTEMThe aircraft is equipped with an ice detection system that alerts the flight crew of impending icing condition.The ice detection system consists of two independent ice detectorassemblies located on each side of the forward fuselage.Each detector assembly includesa detector unit and a probe that extends into the airstream.The ice detection system isoperational whenever AC power is available on the aircraft.The ice detectors interface with the data concentrator units(DCU)to provide visualindications of icing conditions.When the probes detect an ice build up,a signal is sent by the unit to the EICAS and at the same time electrical power is used to de--ice the probe.When the probe is de--iced,it is then ready to detect ice formation again.Ice Detection System---SchematicFigure15---20---1Figure15---20---2<1001> Figure15---20---3A.System Circuit BreakersSYSTEM SUB--SYSTEM CB NAME BUS BAR CBPANELCBLOCATIONNOTESIce Detection ICE DET1ACESSENTIAL1T11System Ice DetectorsICE DET2AC BUS22A14THIS PAGE INTENTIONALLY LEFT BLANK1.WING ANTI--ICE SYSTEMThe wing anti-ice system prevents ice formation on the wing leading edge by heating the surface using hot engine bleed air.The hot bleed air is supplied through insulated ducting and released through piccolo tubes to the inner surface of the wing and slat leading edges.The wing anti-ice system is divided into identical left and right systems.In normal operation, each engine supplies bleed air to its respective wing anti-ice system.The systems areconnected by a,normally closed,wing anti--ice cross bleed valve.In the event one system fails,the cross bleed valve is opened to permits cross bleed between systems.This ensures that wing anti--icing is maintained to both systems.The system is manually activated and is automatically controlled by a dual channel digital anti-ice and leak detection controller(AILC).The AILC controls the wing anti-ice system using electrical inputs received from skin temperature sensors located at each wing leading edge.The AILC modulates the respective wing anti-ice valve open or closed as necessary to prevent ice formation.Each of the two channels of the AILC has the capability to control both left and right anti-ice valves.Figure15---30---1Wing Anti---Ice ControlsFigure15---30---2Figure15---30---3<1001> Figure15---30---4A.System Circuit BreakersSYSTEM SUB--SYSTEM CB NAME BUS BAR CBPANELCBLOCATIONNOTESIsolation Valve WING A/ICEISOL BATTERYBUS2N5Wing Anti-IceA/ICE CONTCH A DC BUS11D7 ControllerA/ICE CONTCH BDCESSENTIAL2T11.ENGINE COWL ANTI--ICE SYSTEMThe engine cowl anti-ice system is used to prevent ice formation on the engine intakeleading edges.This is done by using hot engine bleed air to heat the leading edge surface.The hot bleed air is supplied to the intake leading edges through respective L/R cowlanti--ice shutoff valves.Bleed air is distributed through insulated ducting and an air mixing tube before entering a double walled duct in the engine cowl leading edge.The innerportion of the duct carries the bleed air.In the event of a rupture of the inner wall,a bleed leak detector transducer mounted in the outer wall supplies a bleed leak signal to the EICAS to illuminate the L/R COWL A/I DUCT warning message.The left and right cowl anti-ice shutoff valves are manually controlled by respective LH and RH COWL switches on the ANTI--ICE control panel.Crew activation of each system,opens the respective engine cowl anti-ice shutoff valve.The shutoff valves are electricallycontrolled and pneumatically operated.Valve status is displayed on the EICAS,ANTI--ICE synoptic page.2.T2SENSOR PROBE ANTI--ICINGA fan inlet temperature sensing probe(T2),mounted on the engine cowling,is used toprovide temperature data to the FADEC.The FADEC uses the information as one of the sensing parameters to set engine power and to control the compressor variable geometry stator vanes.The probe also contains a built--in heating element that is used to anti--ice the probe.Electrical heating power to the probe heating element is controlled by the FADEC.Testing of the T2heater function is done automatically by the FADEC,which initiates asystem check after engine shutdown on the ground.Following right engine shutdown,electrical power must be maintained on the aircraft for at least one minute to make sure that the FADEC has sufficient time to successfully complete the test.The FADEC verifies T2heater function by energizing the heater and looking for an appropriate temperature rise during a30second period.Following a successful test,the next test will be initiated after the next ground engineshutdown.If the FADEC(through channel A)cannot energize the T2heater,the FADEC will automatically switch to channel B to conduct the test(after a30second time delay).If the T2heater test fails on both channels,the respective L/R ENG TAT HEAT caution message will be displayed on the EICAS primary page and the FADEC will not attempt to energize the T2heater.Engine Cowl Anti---Ice System---GeneralFigure15---40---1Anti---Ice Synoptic PageFigure15---40---2<1001> Figure15---40---3A.System Circuit BreakersSYSTEM SUB--SYSTEM CB NAME BUS BAR CBPANELCBLOCATIONNOTESAnti-Ice A/ICE VALVEL ENG BATTERY N3Engine Cowl Anti-Ice Anti IceValves A/ICE VALVER ENGBUS2N4Anti IceT2HEATER L DC BUS11F4 T2HeatersT2HEATER R DC BUS22F4THIS PAGE INTENTIONALLY LEFT BLANK1.AIR DATA ANTI--ICE SYSTEMAir data probes and sensors are located on the left and right sides of the forward fuselage and extend into the airstream.The air data sensor(ADS)anti-ice system consists ofintegral,self regulating,heating elements for the air data sensors and probes.The ADS heaters prevent ice formation that may cause erroneous air data information.ADS anti-icing is achieved by electronically controlling the heating elements.The air data sensor heating system is activated automatically on the ground and in flight.The ground mode has two operational heating modes,automatic and manual.In automatic mode,when either engine generator is on and the LH and RH PROBES switches,(on the ANTI--ICE control panel)are OFF,the LH and RH pitot probes and the standby pitot probe are heated at half power(automatic mode is not functional when the aircraft is beingpowered by the APU generator or external power).The static ports and the AOA vanes are not powered automatically in the ground mode.For manual mode,the static ports and the AOA vanes can be heated by selecting the LH and RH PROBES switches to ON.In the flight mode,the automatic control function is completely independent of the control switches.The controllers automatically supply full power to all the air data probes andsensors.The LH and RH PROBES switches have no effect on the function of thecontrollers.The air data probes and sensors are monitored and controlled by three independent and identical controllers.Controller1monitors the heater elements for the left pitot,left angle of attack(AOA)vane and left static port.Controller2monitors the right pitot,right AOA vane and right static port.Controller3monitors the standby pitot and total air temperature(TAT) probe.Air Data Sensor Anti---Ice SystemFigure15---50---1Air Data Sensor Anti---Ice EICAS Indications <1001>Figure 15---50---2Status PageA.System Circuit BreakersSYSTEMSUB--SYSTEMCB NAMEBUS BARCB PANEL CB LOCATIONNOTESTAT HeaterHEATERS TATA12HEATERS PITOT R AC BUS 1A14Pitot HeatersHEATERSPITOT L T7HEATERS PITOT STBY ACESSENTIAL1T9HEATERS AOA LT8Air Data Sensor AOA HeatersHEATERS AOA R AC BUS 1A13Anti-IceHeatersHEATERS STATIC RDC BUS 1G14Static HEATERS STATIC L S1HEATERS ADS CONT 1DC2S2ControllersHEATERS ADS CONT STBY ESSENTIALS3HEATERS ADS CONT 2DC BUS 11G131.WINDSHIELD AND SIDE WINDOW ANTI--ICE SYSTEMWindshield and side window anti-icing is achieved by electrically heating the windshield and side windows.Each windshield and side window incorporates an electrical heating element and three temperature sensors.One sensor is used for normal temperature control and another is used for overheat detection.The third sensor is a spare,and is used should one of the other sensors fail.The amount of heat supplied to the windshields and side windows is controlled by fouridentical temperature controllers,one for each window.The controllers automaticallyregulate power to the heating elements as selected by the LOW/HI WSHLD switches on the ANTI--ICE control panel.When an overheat condition is detected,the associated controller removes the power to the heater element and posts a caution message on the EICASprimary page.Windshield Temperature ControlFigure15---60---2<1001> Figure15---60---3A.System Circuit BreakersSYSTEMSUB--SYSTEMCB NAMEBUS BARCB PANEL CB LOCATIONNOTESHEATERSL WSHLD AC BUS 1A10--A11HEATER L WIND ACESSENTIAL 1U10HeatersHEATERS R WSHLD A10--A11Windshield HEATER R WIND AC BUS 22C7and Side Window Anti-Ice HEATERS CONT L WSHLDDC BUS 11G12Anti IceHEATERS CONT L WIND DCESSENTIAL S4ControllersHEATERS CONT R WSHLD2G13HEATERS CONT R WINDDC BUS 2G14Flight Crew Operating Manual CSP C--013--0671.WINDSHIELD WIPER SYSTEM The windshield wiper system is designed to remove rain and/or snow from the pilot and co-pilot’s windshields at speeds up to 250knots.The windshield wiper system consists of independent pilot and copilot systems.Each system consists of a windshield wiper and motor with both systems being controlled by an electronic control unit.Each pilot has a selector,located on the WIPER control panel that actuates both wipers.Under normal operations,both wipers will operate in the same mode when selected from either panel.If each selector is set to a different mode,the last selection made overrides the previous selection.If one wiper system fails,the remaining system will still be functional.Flight Crew Operating Manual CSP C--013--067A.System Circuit Breakers SYSTEM SUB--SYSTEM CB NAME BUS BAR CB PANEL CB LOCATION NOTESWindshield WIPER PILOT DC BUS 11G5Wiper System Wipers WIPER C/PLT DC BUS 22G5。

737 结构设计

737 结构设计

737 结构设计(实用版)目录1.737 飞机的结构设计概述2.737 飞机的主要结构部件3.737 飞机的结构设计特点4.737 飞机的结构设计对飞行性能的影响5.结论正文一、737 飞机的结构设计概述737 飞机是美国波音公司生产的一款中短程窄体客机,自 1967 年首飞以来,已经成为全球最畅销的客机之一。

737 飞机的结构设计在保证安全性、舒适性和经济性的同时,还具有较高的可靠性和易于维护的特点。

本文将从结构设计的角度,分析 737 飞机的主要结构部件、设计特点以及其对飞行性能的影响。

二、737 飞机的主要结构部件1.机身:737 飞机的机身采用全金属半硬壳式结构,主要包括前机身、中部机身和后机身三个部分。

前机身主要承担乘员和行李的运输任务,中部机身主要负责客舱的布置,后机身则主要承载发动机和设备。

2.机翼:737 飞机的机翼采用下单翼布局,具有较高的升力系数,能够保证在短距离起降的情况下具有良好的飞行性能。

机翼结构采用铝合金材料,具有较高的强度和耐疲劳性能。

3.发动机:737 飞机的发动机采用吊挂式安装,可以避免发动机在起降过程中受到异物损伤。

发动机的进气道采用向前延伸的设计,以减小气流对发动机的冲击,提高发动机的可靠性。

4.尾翼:737 飞机的尾翼包括水平稳定面和垂直稳定面两部分。

水平稳定面主要用于保持飞机的平衡,垂直稳定面则主要用于保持飞机的方向稳定性。

5.起落架:737 飞机的起落架采用前三点式布局,能够在保证飞机稳定性的同时,实现较短的起降距离。

起落架结构采用高强度合金材料,具有较高的抗冲击性能。

三、737 飞机的结构设计特点1.模块化设计:737 飞机采用模块化设计,使得飞机的制造、维修和升级更加便捷。

此外,模块化设计还有助于提高飞机的通用性和互换性。

2.高强度材料:737 飞机的结构部件主要采用高强度合金材料,具有较高的抗疲劳性能、耐腐蚀性能和抗撞击性能。

3.优化的气动布局:737 飞机采用优化的气动布局,能够降低飞机的阻力,提高飞行性能。

737 结构设计

737 结构设计

737 结构设计
737结构设计是指波音737系列飞机的整体结构设计。

对于波
音737飞机来说,其结构设计包括机身结构、翼结构、尾翼结构、起落架结构等多个部分。

1. 机身结构:波音737飞机的机身采用了全铝合金结构,由前机身、中机身和后机身三部分组成。

前机身连接机头和机翼,中机身连接前后机身,并且起到支撑整个飞机结构的作用,后机身连接了机翼和垂直尾翼。

2. 翼结构:波音737飞机的翼结构采用了全铝合金结构,翼梁由前缘梁和后缘梁组成,起到支撑翼面、承担飞机受力的作用。

翼上还有各种副翼、襟翼等用于飞行控制的设备。

3. 尾翼结构:波音737飞机的尾翼结构由水平安定面和垂直安定面组成。

水平安定面在飞行中产生升力以平衡飞机的重心位置,垂直安定面用于控制飞机的偏航运动。

4. 起落架结构:波音737飞机的起落架起到支撑飞机在地面行驶和起降的作用。

起落架结构包括前起落架和主起落架,前起落架位于机头下方,主起落架位于机身下方。

总的来说,波音737飞机的结构设计注重轻量化、强度高、安全可靠等特点,以保证飞机在各种飞行状态和应力下都能保持良好的结构性能。

同时还考虑了机上系统的布局和安装要求,以适应不同的飞行任务和客户需求。

737NG轮舱部件图解

737NG轮舱部件图解

人工加 油油滤
SYSB系统 回油滤组件 (A系统类似)
回油滤组件:将来自发动机驱 动泵(EDP)或电动马达驱动 泵(EMDP)的回油在返回液 压油箱之前清洁。当回油滤堵 塞导致在滤芯两侧产生65psi 压 差时,红色的压差指示销会伸 出,使你能够看到。当温度低 于36℉(2℃)时,压差指示器 不会伸出。 如果压差达到 100psi 或更高时,旁通活门打 开,使液压油旁通油滤,并直 接流入油箱。 回油滤组件头部
前缘打开 保险
前缘备用 保险
前缘收上 保险
流量限制 活门
前缘流量限制活门和液压保险:控制到前缘襟翼和缝翼液压部件的液压流量。前缘流量限制活门限 制前缘襟翼和缝翼的运动速度。如果存在泄漏,三个液压保险会停止液压流量,有三个液压保险: -前缘放下液压保险 -前缘收上液压保险 -前缘备用液压保险
前缘巡航释压 活门
A系统液压 油箱
前缘襟翼和缝翼控制活门
前缘襟翼和缝翼控制活门:后缘襟翼PDU给前缘襟翼和缝翼控制活门提供机械输入,而该控制活门 给前缘襟翼和缝翼作动筒提供液压动力。
前缘巡航释压活门:防止在巡航时前缘襟翼和缝翼放下。正常时前缘巡航释压活门是打开的,这可使 B 液压系统压力供给前缘襟翼和缝翼控制活门,该活门给前缘襟翼和缝翼作动筒的打开管路提供压力。 FSEU控制前缘巡航释压活门的电磁线圈的操纵。当FSEU 提供信号并给电磁线圈操纵活门通电时, 该活门移动并提供压力而移动压力操纵活门。这就停止给前缘襟翼和缝翼控制活门提供B 液压系统的 压力。这可防止给前缘襟翼和缝翼作动筒打开压力。
副翼配平作动筒:驾驶员用两上电 门控制副翼配平。电门控制副翼配 平作动筒。驾驶员必须同时操纵两 个电门给配平作动筒提供动力。 副翼机体扇形盘:通过曲柄,PCU 壳体带动曲轴。这带动机体扇形盘 和相关的副翼。如果一个液压系统 关闭,另一个系统的PCU通过叉和 凸耳组件传动两个扇形盘。

737 结构设计

737 结构设计

737 结构设计【最新版】目录1.737 飞机的结构设计概述2.737 飞机的机身结构设计3.737 飞机的机翼结构设计4.737 飞机的动力装置设计5.737 飞机的起落架设计6.737 飞机的飞行控制系统设计7.737 飞机的安全与环保设计正文【737 飞机的结构设计概述】737 飞机是一款由美国波音公司研发的中短程窄体客机,自 1967 年首飞以来,已成为全球最畅销的客机之一。

其成功的原因之一就是它的结构设计,既保证了飞行性能,又满足了旅客的舒适度和航空公司的运营效率。

本文将详细介绍 737 飞机的结构设计。

【737 飞机的机身结构设计】737 飞机的机身采用全金属半硬壳结构,前段为圆形截面,后段为椭圆形截面。

机身前段设置了驾驶舱、客舱和行李舱,后段则主要为发动机舱。

机身结构在保证强度的同时,也要尽可能降低重量,以提高燃油效率。

【737 飞机的机翼结构设计】737 飞机的机翼采用下单翼布局,有利于减小阻力和提高燃油效率。

机翼结构采用铝合金材料,翼型为 NACA 23012 翼型,同时翼尖设有翼尖小翼,以减小侧风对飞行稳定性的影响。

【737 飞机的动力装置设计】737 飞机的动力装置为两台涡轮风扇发动机,安装在机翼下方。

发动机采用高涵道比设计,有利于减小噪音和提高燃油效率。

同时,发动机进气道和风扇叶片的设计也要考虑到抗冰性能和异物吸入安全性。

【737 飞机的起落架设计】737 飞机的起落架采用前三点式布局,前起落架为双轮,主起落架为四轮。

起落架结构采用高强度合金材料,能够在承受飞机重量的同时保证轻量化。

起落架的收放和锁定系统也需要经过严格的设计和测试,以确保安全。

【737 飞机的飞行控制系统设计】737 飞机的飞行控制系统采用电传操纵系统,由驾驶员对飞机的姿态和运动进行控制。

飞行控制系统的设计要保证在各种飞行状态下都能提供良好的操控性能,同时要考虑到飞行安全性和稳定性。

【737 飞机的安全与环保设计】737 飞机的设计充分考虑了安全性和环保性。

波音737飞机外形结构说明书

波音737飞机外形结构说明书

B737飞机外部结构说明——观察机头整流罩是否整流罩完好无损,如整流罩头有黑点,表明可能被雷击或静电积累击过。

需走近仔细观察,如发现击穿,应要求机务换整流罩;如不能确定,也可让机务搬观察梯近距离检查。

前轮舱——前轮舱整体外观——支柱、撑杆是否有裂纹,是否断裂。

——起落架作动筒、前轮转弯作动筒是否漏液压油(特别是冬天在北方机场过站、长时间停放时,由于橡胶低温易硬化特性,易造成密封圈硬化导致液压油渗漏)。

若出现渗漏,应查MEL 。

拖把转弯角度限制线(推°。

轮胎1、是否磨损见线(基地见线一层以上,外站见线二层以上建议换胎,轮胎总共有12-13层)2、是否被钉子扎伤:①、钉子扎入其中,可见一个白色亮点。

若不能确定是否石子、尘埃等还是钉子,可用手或脚轻轻刮几下,若刮不掉,则可能是钉子需进一步仔细确认并请机务检查。

②、若见到一个孔,而不见刺入物,可用牙签或木棍等探测一下孔深;若感觉较深,也需让机务进一步检查确认。

机身——氧气释放片(右前机身下侧)——全温探头:——静压口:货舱前货舱整体外观——可控压力平衡板:(有的飞机有,有的飞机无)天线等实用文档机翼大翼热防冰排气口加油面板放油口翼梁燃油关断活门油尺——加油面板:——翼上油箱通气口:附:液压油: 无色透明液体,易与雨水混淆;但用手摸起来感觉粘滑;涡杆润滑油:宗红色液体(一旦出现渗漏,不可放行。

若空中漏光,则易造成襟翼卡阻或不对称);发动机滑油:宗红色液体;燃油:无色透明液体,有汽油味,手感较滑。

发动机①②发动机恒速传动装置滑油量:如为右发,应观察滑油量对应右边的刻度;如为左发,则应观察左边的刻度。

达到刻度①,表示已满;低于刻度②,表示应补加。

——叶片:叶片裂纹:双指夹着叶片边缘来回移动。

若有剧齿状感觉,则可能叶片已产生裂纹, 需要机务进一步确认,必要时更换叶片。

发动机进气道压力、温度传感器 (300为分开的2个,NG 型为集成的一个):测得的信息供给EEC 用于进行燃油供给流量的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B737飞机外部结构说明
——观察机头整流罩
是否整流罩完好无损,如整流罩头有黑点,表明可能被雷击或静电积累击过。

需走近仔细观察,如发现击穿,应要求机务换整流罩;如不能确定,也可让机务搬观察
梯近距离检查。

前轮舱
——前轮舱整体外观
——支柱、撑杆是否有裂纹,是否断裂。

——起落架作动筒、前轮转弯作动筒是否漏液压油(特别是冬天在北方机场过站、长时间停放时,由于橡胶低温易硬化特性,易造成密封圈硬化导致液压油渗漏)。

若出现渗漏,应查MEL 。

拖把转弯角度限制线(推
°。

轮胎
1、是否磨损见线(基地见线一层以上,外站见线二层以上建议换胎,轮胎总共有12-13层)
2、是否被钉子扎伤:
①、钉子扎入其中,可见一个白色亮点。

若不能确定是否石子、尘埃等还是钉子,
可用手或脚轻轻刮几下,若刮不掉,则可能是钉子需进一步仔细确认并请机务
检查。

②、若见到一个孔,而不见刺入物,可用牙签或木棍等探测一下孔深;若感觉较深,
也需让机务进一步检查确认。

机身
——氧气释放片(右前机身下侧)
——全温探头:
——静压口:
货舱
前货舱整体外观
——可控压力平衡板:(有的飞机有,有的飞机无)
天线等
实用文档
机翼
大翼热防冰排气口
加油面板
放油口
翼梁燃油关断活门
油尺
——加油面板:
——翼上油箱通气口:
附:液压油: 无色透明液体,易与雨水混淆;但用手摸起来感觉粘滑;
涡杆润滑油
:宗红色液体(一旦出现渗漏,不可放行。

若空中漏光,则易造成襟翼卡阻
或不对称);
发动机滑油:宗红色液体;
燃油:无色透明液体,有汽油味,手感较滑。

发动机

②发动机恒速传动装置滑油量:
如为右发,应观察滑油量对应右边的刻度;
如为左发,则应观察左边的刻度。

达到刻度①,表示已满;
低于刻度②,表示应补加。

——叶片:
叶片裂纹:双指夹着叶片边缘来回移动。

若有剧齿状感觉,则可能叶片已产生裂纹, 需要机务进一步确认,必要时更换叶片。

发动机进气道压力、温度传感器 (300为分开的2个,NG 型为集成的一个):
测得的信息供给EEC 用于进行燃油供给流量的计算。

雨水及余油排放口(左为
NG ,右为300)
涡轮及尾气排放口:主要检查内部是否积油(一般尾喷管着火即为此处积油在高温下着火燃烧造成,发动机灭火瓶对它不起作用,只能通过冷转吹掉积油)
对于停放一天以上的飞机,应检查是
否内有小鸟筑巢。

主起落架
主起落架整体外观
起落架销插口
——减震支柱镜面(①):通常为四指宽;若低于二指宽应询问机务是否需要加压(极冷天
气长期过站可排除)。

——刹车片探测杆(②):在提起停留刹车后,若探测杆全没入,表明该换刹车片了。

(在松刹车状态下检查,若杆的光亮部分已位于杆外侧尖端,则表明该换刹车片了。




——轮速传感器及防滞探测器导线(通到轮轴内)
在轮轴内装有轮速传感器。

地面低速滑行时,探测单位时间轮胎转动圈数,通过导线传给计算机乘以轮胎周长即可得滑行地速。

防滞探测器(位于轮轴内):滑跑时当探测到轮胎突然停止转动现象,表明可能出现拖胎,通过导线发送信号给计算机,适当将刹车压力释压,令轮胎再次转动。

减震支柱镜面宽度压力对照表
(位于左主轮舱壁上)
——轮胎胎压:若轮胎压力过大,轮胎与地面接触过小,则刹车减速效果差,夏天高温环境还可能造成轮胎爆破;若胎压过小,对轮胎损耗也很大。

怎样判断胎压是否正常呢?横向从侧面看,轮胎似乎有些瘪,有一部分胎面与地表接触;而纵向顺着轮胎前后看,并无瘪出,上下宽度一致,则胎压正常。

——空地传感器:
NG型(为每个起落架都安有,且为盒状)
300型(只有右主起落架安装)
刹车用液压油导管(液压油导管都为蓝色)
——减摆器
地面高速滑跑时,主轮会左右摆动;接
地时若飞机带侧滑角,也会令主轮剧烈晃动, 这样易造成起落架支柱、联杆受侧力过大,甚 至令其受力疲劳而断裂。

通过此装置增加摆动 阻尼,减小支柱受力。

主轮舱
主轮舱整体外观
后舱壁前舱壁
——加液压油:
液压油罐压力表
A系统 B系统
开关手柄
1、将开关手柄扳至所需位置,向右扳,箭头指
左,表明给A系统加液压油。

向左扳,箭头指右,
表明给B系统加液压油。

2、将加油管伸入加油罐中。

3、来回摇动白色手柄,将液压油打入油罐。

——液压油之间的传输:
A系统传输至B系统:1、提起停留刹车;
2、A、B系统电动泵开;
3、关B系统电动泵,当B系统压力低到黄区以下后;
4、关A系统电动泵,当A系统压力低到黄区后;(此时单向活门已打
开)
5、(关键)双脚快速、有力使劲地不断踩刹车到底(较费劲),随着
刹车蓄压瓶压力的逐渐下降,十几下之后,你会发现B系统油量逐渐
上升。

注:有的飞机未安装单向活门,所以可能无效。

B系统传输至A系统:
(需通过提反推手柄,通过反推液压管路进行传输。


由于地面提起反推可能造成人员受伤,需地面监护,程序比较复杂,所以不提倡使用。

1、A系统飞行操纵电门“STBY RUD”位;
2、拉起1#反推手柄(用备用液压作动);
3、A飞行操纵电门正常位;
4、压下反推手柄。

(一次可传输约10%液压油)
——液压油罐压力表
探测液压油罐压力(正常为40~60PSI ) 通过空调系统给油罐加压
(若不加压的话,当飞机在高空低压环境飞行时,在地面高压 环境中溶解于液压油中的空气分子就会释放出来,可能在液压 油中形成气泡——原理如同开汽水瓶、啤酒瓶。

若气泡顺着管 道进入操纵系统,由于气体的可伸缩性,会造成操纵间隙甚至 操纵失灵)
——备用收放襟翼电动马达
备用收放后缘襟翼时,电动马达 驱动螺杆转动,通过翼根部的传动组 件推动后缘襟翼运动。

由于传动组件 机构复杂,若一边传动机构故障或误 差不能阻止另一边传动机构正常运作, 所以没有不对称保护。

(正常为液压作 动筒直接推动襟翼整流罩内的涡杆运动)
备用收放襟翼传动组件
——检查轮舱中各组件是否有液压油等渗漏:
通过查看轮舱底部集油槽是否有积油存在。

APU火警铃
APU灭火电门
APU灭火预位手柄
APU火警灯
发动机灭火瓶(左主轮舱)
——压力不小于800PSI
轮舱灯开关(NG 型)
——位于左主轮舱支撑杆旁
机尾
机尾整体外观
空速配平/马郝配平用皮托管探头
负压释压活门
静压口及正 压释压活门
主外流活门
APU 组件冷却空气入口(300型为从APU 进气口处分流一部分空气)
安定面配平机头最向下位: 地面除冰程序及寒冷天气过夜时需安定面配平机头最向下位,以便使雨水或除冰液顺着雨水及余油排放口排出机外,避免积在安定面前缘从而造成飞行中结冰令俯仰操纵卡阻。

APU 隔间燃油及液压油排放口:
上排放口为燃油排放口(供APU 燃油管道破裂渗漏)
下排出口为多余液压油排放口(液压油罐加得过满,或APU 液压油管道破裂渗漏)
排放口说明标牌 (位于左主轮舱壁上)
雨水及余油排放口
抽吸式马桶排气口(NG型)——位于左后服务门下面
勤务内话插孔 (维护期间方便地面机务与驾驶舱通讯)
翼上紧急撤离引导绳锁扣 (引导绳连接锁扣与紧急 出口之间,防止人从机翼 前缘掉下去摔伤)
翼上紧急撤离引导区
(翼上)允许过冷燃油结霜区 ——只允许在黑框内出现霜(详见使用手册第一册补充正常程序)
舱门紧急撤离滑梯
预位滑梯卡销储压罐压力表(绿区)
登机门安全锁扣 ——固定舱门在完全打开的位置;
防止舱门意外转动损坏设备或伤人 (关门前需扳动黄色锁扣)
服务门安全锁扣
——固定舱门在完全打开的位置;防止舱门意外转动损坏设备或伤人
(关门前需按下弹簧锁扣)。

相关文档
最新文档