风荷载

合集下载

风荷载标准值与风压高度变化系数

风荷载标准值与风压高度变化系数

《风荷载标准值与风压高度变化系数》一、引言风荷载标准值和风压高度变化系数是建筑设计和结构工程中的重要参数。

它们直接影响着建筑物在风力作用下的稳定性和安全性。

本文将从风荷载标准值和风压高度变化系数的概念、计算方法和应用等方面展开探讨,并共享个人对这一主题的见解。

二、风荷载标准值的概念及计算方法1. 风荷载标准值的概念风荷载标准值是指建筑物在一定设计年限内所受到的最大风载荷。

它是根据当地气象数据、建筑物结构形式、高度等因素综合计算而得。

通常以单位面积(N/m²)来表示,被广泛应用于建筑物的结构设计和风险评估中。

2. 风荷载标准值的计算方法风荷载标准值的计算通常采用风荷载计算规范,其中包括了基本风速、高度变化系数等参数。

基本风速是指在一定设计年限内,某一特定重现期下的平均最大风速,高度变化系数则反映了风荷载随高度变化的规律。

根据规范的要求,可以通过相关公式和图表来计算得到风荷载标准值。

三、风压高度变化系数的概念及影响因素1. 风压高度变化系数的概念风压高度变化系数是用来描述建筑物在不同高度上所受风压的变化规律。

通过计算风压高度变化系数,可以更准确地评估建筑物在不同高度上所受到的风荷载大小,为结构设计提供重要依据。

2. 影响风压高度变化系数的因素风压高度变化系数受到多种因素的影响,主要包括地形、建筑物周围环境、建筑物结构形式等。

在平原地区和山区地区,由于地形的不同,风压高度变化系数也会有所不同。

建筑物周围的密度、高度和形状也将对风压高度变化系数产生影响。

四、风荷载标准值与风压高度变化系数的应用在实际工程实践中,风荷载标准值和风压高度变化系数的应用是十分重要的。

在建筑物的结构设计中,需要根据所在地区的气候特点和相关规范要求,合理计算风荷载标准值,并采取相应的结构设计措施。

在建筑物的风险评估和安全监测中,风荷载标准值和风压高度变化系数也是必不可少的参数,可以帮助工程师和设计师更好地评估建筑物的风险程度,从而采取相应的安全措施。

第4章风荷载

第4章风荷载

静风 软风 轻风 微风 和风 清劲风 强风 疾风 大风 烈风 狂风 暴风飓风
当风以一定的速度向前运动遇到建筑物、构筑物、桥梁等阻碍物时,将对这些阻碍 物产生压力。
风荷载是工程结构的主要侧向荷载之一,
它不仅对结构物产生水平风压作用,还会引 起多种类型的振动效应。
风灾实例 1926年9月,美国迈阿密17层高的 Meyer-Kiser大楼在一次飓风袭击下, 维护结构受到严重破坏,钢框架结 构发生塑性变形,大楼在风暴中严 重摇晃,顶部残留位移达0.61m。
第4章 风荷载
风致桥梁破坏 1940 年 11 月 7 日 , 美 国 华 盛 顿 州 塔 科 马 桥 ( Tacoma Bridge )因风振致毁,这一严重的桥梁事故,开始促使人 们对桥梁的风致振动问题进行系统深入的研究。该桥主跨 长853.4m,全长1810.56m,桥宽11.9m,而梁高仅1.3m。通 过两年时间的施工,于 1940 年 7 月 1 日建成通车。但由于当
使用功能 住宅、公寓 办公、旅馆 amax (m/s2) 0.15 0.25
第4章 风荷载
抗风减振措施
台北 101 大楼(高 508 米),在 92楼 层悬挂设置重达 800 吨的悬浮阻尼 球,通过吸收振动能量,避免大楼 在强风下大幅晃动
第4章 风荷载
抗风减振措施
上海环球金融中心(高492米),在395 米的第 90 层安装两台重达 150 吨、长宽 各 9 米的风阻器,中间桔红色的是用钢 索悬吊的重 100 多吨的配重物,其下安 装了驱动装置。
第4章 风荷载
第4章
第一节 第二节 第三节 第四节 第五节 风的有关知识 风压
风荷载
内容提要
结构抗风计算的几个重要概念 顺风向结构风效应 横风向结构风效应

建筑结构设计风荷载参数

建筑结构设计风荷载参数

建筑结构设计风荷载参数
建筑结构设计风荷载参数包括风荷载标准值、风荷载体型系数、风压高度变化系数等。

其中,风荷载标准值是按规定风压和建筑体型系数计算得到的,用于确定建筑物各部位受到的风压力。

风荷载体型系数则是根据建筑物体型和尺寸等因素确定的,用于反映建筑物在风作用下的体型效应。

风压高度变化系数则是根据建筑物高度和地面粗糙度等因素确定的,用于反映风压随高度的变化规律。

在建筑结构设计时,需要根据具体情况选择合适的风荷载参数,并进行详细的计算和分析,以确保建筑物在风作用下的安全性和稳定性。

此外,还需要注意建筑物所处地区的气候条件、地形地貌等因素对风荷载的影响,以便进行更为准确和全面的设计。

风荷载作用方向 解释并说明、使用场景

风荷载作用方向 解释并说明、使用场景

风荷载作用方向解释并说明、使用场景1. 引言1.1 概述风荷载是指由风对建筑物或结构物表面施加的压力,其大小和方向取决于气流的速度、密度以及建筑物形状、高度等因素。

在建筑设计与结构分析中,准确确定风荷载作用方向是非常重要的,它直接影响着建筑物的稳定性和安全性。

1.2 文章结构本文主要围绕风荷载作用方向展开论述,并将分为四个部分进行阐述。

首先,在第二部分中,我们将对风荷载作用方向进行解释和说明,包括其定义、含义以及其对建筑物产生的影响;接着,在第三部分中,我们将探讨风荷载作用方向在建筑设计与结构分析中的应用以及在工程施工过程中需要考虑的因素;最后,在第四部分中,我们将总结风荷载作用方向的重要性,并强调正确理解和应用该概念的必要性。

此外,我们还将展望未来关于风荷载作用方向领域的研究和实践。

1.3 目的本文旨在深入探讨风荷载作用方向的含义和影响,以提高建筑设计与分析领域的专业人员对该概念的认识。

同时,我们也希望通过介绍风荷载作用方向在建筑工程中的应用场景,为工程实践者提供参考,并促进未来相关研究的发展。

通过本文的阐述和讨论,读者将能够更好地理解和应用风荷载作用方向,从而为建筑物结构的安全性和稳定性提供坚实基础。

2. 风荷载作用方向的解释和说明2.1 什么是风荷载作用方向风荷载作用方向指的是风对建筑物或结构体产生的力在空间中的作用方向。

由于风是一种流体介质,其对建筑物产生的压力和力矩具有明确的方向性。

风荷载作用方向是建筑设计与结构分析中考虑的一个重要参数。

它决定了建筑物受到风载荷时的应力、变形等响应。

正确理解和确定风荷载作用方向对于确保建筑物结构稳定性和安全性至关重要。

2.2 风荷载作用方向对建筑物的影响风荷载作用方向直接影响建筑物结构系统的承受能力,包括抗倾覆、抗滑移、抗倾覆扭转以及整体稳定性等。

具体来说,风荷载从不同方向作用于建筑物表面会引起不同类型的应力和变形。

例如,在高层建筑中,顶层受到侧向(横向)风力可能会导致房屋侧倾或屋顶失稳;在长向风力作用下,会引起整体的变形和振动。

风荷载

风荷载

见教材P63中公式)
进行结构设计的时候,考虑风荷载由框
架柱或者剪力墙承担。
风荷载传递:
外墙(窗)表面----楼盖----框架(墙) 风荷载的传递按照就近原则传到靠近
的楼盖上。每一层楼盖承受的风荷载为上
下各半楼层墙面所承受风荷载的合力。
结构外墙面所承受风荷载示意图
外墙面所承受风荷载集中到楼盖后的示意 图(风荷载作用下框架计算简图)
风灾实例
厂房屋面风致破坏
风灾实例
广告牌风致破坏
风灾实例
2006 年 3 月 12 日,位于福建泉 州北峰路段的一块大型户外广 告牌被大风吹倒,压住了两辆 行驶中的摩托车,造成 3 人死 亡。当天,受强冷空气影响, 泉州气温持续下降,并伴有 8 级大风。 2007 年 7 月 29 日下午,郑州市区 瞬时大风吹倒郑州市文化路的 巨幅广告牌。将 4 辆奇瑞轿车全 部压在身下,砸塌了另外 2 辆轿 车的车顶。倒塌的广告牌下, 停放着10多辆展销轿车。
s风载体型系数
: 主要与建筑物的体
型有关,《荷载规范》给出了38项不同类
型的建筑物和各类结构体型及其体型系数。
【例】 封闭式双坡屋面单层厂房
屋面风载体型系数
s
150 300
600
s
-0.5
-0.6
0
+0.8
注:中间值按插入法计算
主体结构风载体型系数
-0.7
+0.8 -0.7 -0.5
大风 烈风 狂风 暴风
飓风
(飓风--风速在32.7m/s以上)
风灾实例
1926 年 9 月,美国迈阿 密一座17层高的大楼在一 次飓风袭击下,维护结构 受到严重破坏,钢框架结 构发生塑性变形,大楼在 风暴中严重摇晃,顶部残 留位移达0.61m。

风荷载名词解释

风荷载名词解释

风荷载名词解释
风荷载名词解释
风荷载是指风的作用在建筑物表面上产生的一种外力类型。

风荷载的形式包括
压力、剪力、拉力等等。

它们不仅影响建筑物的结构设计,还会影响建筑物的美观外观。

当风把气体运动时,就会在建筑物上形成位力,从而产生风荷载。

风荷载主要
是由风速、风对流及风吹刮等影响。

风荷载不仅会影响建筑物的整体抗风性能,还可能对建筑物位及结构垂直变形造成负担。

建筑物的设计与建造时都必须考虑风荷载。

一般来说,建筑物在室外必须具有
很强的抗风能力,这就意味着在设计、施工等过程中必须把风荷载考虑在内,应使用抗风强度比较大的材料、利用风的影响方向和结构的特性实现最佳抗风设计,以减轻风荷载的压力。

此外,在进行建筑物结构设计时,还要考虑屋顶的结构,以及抗风设计的因素,如圆柱、桁架等,使其具有良好的抗风性能。

风荷载对建筑物的设计师和建造者都有着不可忽视的重要性。

现代建筑物的设
计要求抗风性能非常强大,这需要结构设计师和建造者正确的计算和估计风荷载,并合理的选择材料,使建筑物结构抗风性和耐久性都获得最佳状态,确保建筑物的安全运行。

如何计算风荷载

如何计算风荷载

如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。

[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。

这种压力的强度就是风荷载。

风的影响取决于建筑物的大小和形状。

为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。

方法1用通用公式计算风荷载1 了解通用公式。

风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。

[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。

2 得出受力面积 A。

它是承受风吹的二维面面积。

[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。

比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。

计算面积的公式取决于面的形状。

计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。

公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。

使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。

使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。

3 计算风压。

使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。

[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。

[5]这个公式是基于美国土木工程师协会的规范。

系数0.00256是根据空气密度和重力加速度的典型值计算得出的。

[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。

你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。

如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。

比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。

风荷载计算

风荷载计算

风荷载计算参考规范:《建筑结构荷载设计规范》gb50009-2022《高层建筑混凝土结构技术规程》jgj3-2021一般情况下的风荷载:风荷载的标准值为荷载规范8.1.1和4.2.1wk??ZsZw0(1)风荷载标准值计算公式适用于主要承重(主)结构的风荷载计算;(2)风荷载的标准值为沿风向的风荷载;(3)风荷载垂直于建筑物表面;(4)风荷载的作用面积应为垂直于风向的最大投影面积;(5)适用于高层建筑任意高度的风荷载计算。

对于荷载规范3.2.5第2条中的雪荷载和风荷载,重现期应视为设计使用寿命。

8.1.2在荷载规范中,基本风压应为根据本规范规定的方法确定的重现期为50年的风压,但不得小于0.3kn/o。

荷载规范的E.5和高度规范的4.2.2。

对风荷载敏感的高层建筑,其承载力按基本风压的1.1倍设计。

(文章描述)。

一般情况下,对于高度超过60m的高层建筑,在承载力设计中可按基本风压的1.1倍计算风荷载。

吸烟守则第5.2.1条。

基本风压不应小于0.35kn/o。

对于安全等级为I级的烟囱,应根据每100年一次的风压采用基本风压。

8.2.1地面粗糙度a类近海海面和岛屿、海岸、湖岸和沙漠地区B类田地、村庄、丛林、丘陵和城镇,房屋稀疏,城市地区C类密集建筑,城市地区D类密集建筑,房屋高大。

荷载规范表8.2.1显示了墙和柱的风压高度随墙顶的变化系数。

柱顶与地面之间的距离被视为计算高度Z,通过查表插入法确定。

荷载规范中的风压体型系数8.3.1围护结构:根据第32项,高度规范中取1.3 4.2.31,圆形平面建筑取0.8;2正多边形和截断三角形平面建筑的计算公式如下:?s0.8? 1.2/n3对于高宽比H/b不大于4的矩形、方形和交叉平面建筑,取1.3;4.以下建筑采用1.4:1)V形、Y形、弧形、双十字形和井形平面建筑;2)高宽比H/b大于4的L形、槽形和十字形平面建筑;风压高度变异系数3)高宽比H/b大于4,长宽比L/b小于1.5的矩形和鼓形平面建筑。

第四章 风荷载

第四章  风荷载

§4.3
风压高度变化系数
《建筑结构荷载规范》(GB50009-2012)为方便设计人员使用,用风 压高度变化系数 综合考虑不同高度和不同地貌情况的影响。对于平坦或稍 有起伏的地形,风压高度变化系数直接按下表取用;对于山区的建筑物, 风压高度变化系数除由下表确定外,还应考虑地形条件的修正。表中地貌 (地面粗糙程度)分为A、B、C、D四类。

§4.2
基本风速和基本风压
3. 平均风速的时距 风速随时间不断变化,常取某一规定时间内的平均风速作为计算标准。 平均风速与时距的大小有密切关系,如果时距取的很短,例如3s,则平均 风速只反映了风速记录中最大值附近的较大数值的影响,较低风速在平均 风速中的作用难以体现,致使平均风速较高;相反,如果时距取的很长, 例如1天,则必定将一天中大量的小风平均进去,致使平均风速值较低。一 般来说,时距越大,平均风速越小;反之,时距越小,则平均风速越大。
§4.1
风的基本知识
4.1.3 我国的风气候总况
§4.1
4.1.4 风级
风的基本知识
为了区分风的大小,根据风对地面(或海面)物体的影响程度将风划为若 干等级。风力等级(wind scale)简称风级,是风强度的一种表示方法。 国际通用的风力等级是由英国人蒲福(Beaufort)于1805年拟定的,故又 称蒲福风力等级(Beaufort scale )。 由于早期人们还没有仪器来测定风速,因此就按照风所引起的现象来划分 等级,最初是根据风对炊烟、沙尘、地物、渔船、渔浪等的影响大小,分为 13个等级(0~12级)。 后来又在原分级的基础上,增加了风速界限,将蒲福风力等级由 12级台风 扩充到17级,增加为18个等级(0~17级)。
§4.2
基本风速和基本风压

风荷载取值规范

风荷载取值规范
2、基本风压的取值年限
《荷载规范》 在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值, 工程设计中根据建筑物的使用性质与功能要求, 一般按照下列方法选用风压标准值的取值年 限:
1临时性建筑物:取n=10年一遇的基本风压标准值;
2一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;
图3.1.3b抗侧力构件多向布置示意图 般按照抗侧力构件布置方向, 沿着相互垂直的主3.1.3b所示。
注意: 同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算。
4、风洞试验
《高层规程》3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准 值计算公式(3.1-2)中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建 筑物受到的风荷载作用效应,确保建筑结构的抗风能力。
3、关于风荷载作用的方向问题 建筑物受到的风荷载作用来自各个方向, 风荷载的主要作用方向与建筑物所在地的风玫 瑰图方向一致(全国主要城市风玫瑰图,可以查相应的建筑设计资料) 。工程设计中,一般 按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应。
对于抗侧力构件相互垂直布置的建筑物: 一般按照两个相互垂直的主轴方向来考虑风荷 载的作用效应,详图3.1.3a所示。
3特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取
表3.1.12浙江省主要城镇基本风压(kN/m2)取值参考表
城镇名称
海拔高度
(m)
基本风压(kN/m2)
n=10年
n=50年
n=100年
杭州市
41.7
0.30
0.45
0.50
临安县天目山
1505.9
0.55

风荷载取值

风荷载取值

3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照荷载规范第7章执行;1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式3.1-2计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照荷载规范7.4要求取值;多层建筑,建筑物高度<30m,风振系数近似取1; 1风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照高层规程中附录A 采用、或由风洞试验确定;注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应;一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定;W W z s z k μμβ=)21.3(-注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0;注4:验算表面围护结构及其连接的强度时,应按照荷载规范7.3.3规定,采用局部风压力体型系数;2风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用;对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按荷载规范7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求;表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B 类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C 类:有密集建筑群的城市市区;D 类:有密集建筑群和且房屋较高的城市市区; 3基本风压值W 0基本风压值W 0,单位kN/m 2,以当地比较空旷平坦场地上离地10m 高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照荷载规范附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表;2、基本风压的取值年限荷载规范在附录D 中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限:① 临时性建筑物:取n=10年一遇的基本风压标准值;② 一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;③ 特别重要的建筑物、或对风压作用比较敏感的建筑物建筑物高度大于60m :取表3.1.12 浙江省主要城镇基本风压kN/m 2取值参考表n=100年一遇的基本风压标准值;在没有100年一遇基本风压标准值的地区,可近似将50年一遇的基本风压值标准值乘以1.1经验系数以后采用;3、关于风荷载作用的方向问题建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致全国主要城市风玫瑰图,可以查相应的建筑设计资料;工程设计中,一般按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应;对于抗侧力构件相互垂直布置的建筑物:一般按照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示;图3.1.3a 抗侧力构件垂直布置示意图图3.1.3b 抗侧力构件多向布置示意图对于抗侧力构件多向布置的建筑物:一般按照抗侧力构件布置方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示;注意:同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算;4、风洞试验高层规程3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准值计算公式3.1-2中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力;一般建筑物高度大于200m 、或建筑物高度大于150m 但存在下列情况之一时,宜采用风洞试验来确定建筑物的风荷载作用参数;① 平面形状不规则,立面形状复杂; ② 立面开洞或连体建筑;③ 规范或规程中没有给出体型系数的建筑物; ④ 周围地形或环境较复杂;风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,按照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上不同部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据采集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和波动风压力值,供设计采用;多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验; 5、梯度风基本风压与风速有关,一般风速由地面为零沿高度方向按照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定;不同的地表面粗糙度使风速沿高度增加的梯度速率不同,详图3.1.4所示,风速变化的这种规律,称为梯度风;图3.1.4 风速随高度变化示意图6、特殊情况下基本风压的取值① 当重现期为任意年限R 时,相应风压值可按照公式3.1-2a 进行近似计算:式中:X R ——重现期为R 年的风压值kN /m 2;X 10——重现期为10年的风压值kN /m 2;X 100——重现期为100年的风压值kN /m 2; ② 当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定;在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的标准)21.3(a -)110ln ln )((1010010--+=RX X X X R条件,因而必须将实测的风速资料换算为标准条件的风速资料,然后再进行分析;情形一:当实测风速的位置不是l0m 高度时,标准条件风速的换算原则上应由气象台站根据不同高度风速的对比观测资料,并考虑风速大小的影响,给出非标准高度风速的换算系数,以确定标准条件高度的风速资料;当缺乏相应的观测资料时,可近似按照公式3.1-2b 进行换算:式中:ν——标准条件下l0m 高度处、时距为10分钟的平均风速值m /s ;νz ——非标准条件下z 高度m 处、时距为10分钟的平均风速值m /s ; α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值;表3.1.13 实测风速高度换算系数参考表情形二:当最大风速资料不是时距10分钟的平均风速时,标准条件风速的换算虽然世界上不少国家采用基本风压标准值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样;因此对某些国外工程需要按照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非标准时距最大风速的换算问题;实际上时距10分钟的平均风速与其它非标准时距的平均风速的比值是不确定的,表3.1.14给出了非标准时距平均风速与时距10分钟平均风速的换算系数,必要时可按照公式3.1-2c 做近似换算:式中:ν——时距为10分钟的平均风速值m /s ;νt ——时距为t 分钟的平均风速值m /s ;β——换算系数,可根据设计手册,近似按表3.1.14取用;表3.1.14 不同时距与10分钟时距风速换算系数参考表情形三:当已知风速重现期为T 年时,标准条件风压的换算当已知10分钟时距平均风速最大值的重现期为T 年时,其基本风压与重现期为50年的基本风压的关系,可按照公式3.1-2d 进行简单换算:式中:W 0——重现期为50年的基本风压值kN /m 2;W ——重现期为T 年的基本风压值kN /m 2;γ——换算系数,可根据设计手册,近似按表3.1.15取用;表3.1.15 不同重现期与重现期为50年的基本风压的换算系数参考表③ 山区的基本风压zv v α=β/t v v =γ/0W W =)21.3(b -)21.3(c -)21.3(d -山区的基本风压应通过调查后确定,如无实际资料,可按照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采用;任何情况下,山区的基本风压值不得小于0.3kN/m 2;7、围护结构的风荷载计算计算围护结构上作用的风荷载值,必须考虑阵风的影响,按照公式3.1-2e 进行:W K ——风荷载标准值,单位kN/m 2;W 0——基本风压值,单位kN/m 2,取值要求同前;βgz ——高度Z 处的阵风系数,按照荷载规范7.5要求取值;µS ——风荷载体型系数,按照荷载规范7.3.3要求取值;对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;µz ——风压高度变化系数,取值要求同前; 8、玻璃幕墙的风荷载计算玻璃幕墙作为围护结构的一种表现形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载标准值的计算要求;由于玻璃幕墙单块受荷面积较小,根据玻璃幕墙工程技术规范JGJ102-96规定,垂直于玻璃幕墙表面上的风荷载标准值,可近似按照公式3.1-2f 计算:公式中有关高度变化系数µz 、基本风压W 0的计算取值要求同前,对于体型系数µS 的取值要求如下:竖直幕墙外表面按照±1.5取用;斜玻璃幕墙可根据实际情况按照荷载规范要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定;任何情况下,设计玻璃幕墙用风荷载标准值W k 不得小于1.0kN/m 2;0W W z s gz K μμβ=025.2W W z s K μμ=)21.3(f -)21.3(e -。

风荷载对建筑物稳定性的影响分析

风荷载对建筑物稳定性的影响分析

风荷载对建筑物稳定性的影响分析在建筑设计与结构工程中,风荷载是一个重要而复杂的考虑因素。

风力与建筑物的相互作用,往往能够产生巨大的力量,对建筑物的稳定性产生直接的影响。

本文将对风荷载对建筑物稳定性的影响进行分析和探讨。

1. 风荷载的基本原理与分类首先,我们来了解一下风荷载的基本原理。

风力是空气流动产生的结果,具有导向性和不规则性,因此风荷载的作用对建筑物结构来说是不均匀、不规则的。

风荷载主要分为静风荷载和动风荷载两种。

静风荷载是指在建筑物的静止状态下,由于大气压差产生的风力作用。

静风荷载主要通过压力作用于建筑物的表面,对建筑物产生压力和吸力的力量。

而动风荷载则是指建筑物受到动力风作用时产生的力量。

动风荷载主要通过风的速度和背景压力差来计算,对建筑物产生水平和竖向的载荷。

2. 建筑物稳定性的风险与挑战风荷载对建筑物的稳定性产生直接的影响,因此在建筑设计中必须对其进行充分的考虑。

如果不合理估计风荷载,建筑物可能会因为风力过大而失去平衡,导致倒塌和破坏。

在地震多发的地区,风力的影响还会与地震力相互作用,增加建筑物的风险。

另外,对于高层建筑和特殊形态建筑,由于其结构特点和高度差异,风荷载的影响更加明显。

高层建筑会因为风力造成的摆动而产生动态影响,给人居住和工作带来不适甚至风险。

一些特殊形态建筑,如大跨度的桥梁和拱形建筑,受到风力的作用可能产生剧烈的振动和变形,降低其稳定性。

3. 建筑物的风荷载分析与抗风设计为了确保建筑物在风荷载下的稳定性,建筑工程师需要进行风荷载的详细分析和抗风设计。

首先,他们需要了解当地的气象条件,包括气候类型、最大风速、风向等。

然后,他们会把这些数据与相关标准和规范进行比对,以确定建筑物所需的风荷载参数。

接下来,工程师会使用风洞实验、数值模拟和经验公式等方法,进行风荷载的计算和分析。

风洞实验可以通过实验证明建筑物在不同风速下的受力情况,并帮助优化建筑物的结构和形态。

数值模拟则可以依据建筑物的几何形状和风场数据,模拟风荷载的分布和受力情况。

第三章 风荷载

第三章 风荷载

精选可编辑ppt
13
➢ 二、顺风向风荷载标准值
垂直于建筑物表面上的顺风向风荷载标准值,应按下述公式计算: 当计算主要承重结构时:P61
(3-25)
查表
精选可编辑ppt
14
1、风压高度变化系数 μz
风速会受到地面建筑物的摩擦而减小,风速随离地面高度增加而
增大,通常认为在离地面高度300m~550m时,风速不再受地面粗糙度
精选可编辑ppt
20
迎风面墙受压力
精选可编辑ppt
21
屋顶受吸力
精选可编辑ppt
22
侧墙受吸力
精选可编辑ppt
23
背风面墙受吸力
精选可编辑ppt
24
单层双坡屋面房屋各个面上的风力分布
垂直指向建筑物表面的产生压力 垂直离开建筑物表面的产生吸力
精选可编辑ppt
25
当风流经房屋时,对房屋的不同部位会产生不同的效果。有压力也有吸力。 空气流动还会产生涡流,对房屋局部会产生较大的压力或吸力。
➢ 二、顺风向风荷载标准值
垂直于建筑物表面上的顺风向风荷载标准值,应按下述公式计算: 当计算主要承重结构时:P61
《建筑结构荷载规范》
精选可编辑ppt
33
3、顺风向风振系数 βz
风对建筑物的作用是不规则的,风力随风速的紊乱变化而不停的改变。这 使得建筑物在风的作用下会产生振动效应(风振)。
参考国外规范及我国建筑工程抗风设计和理论研究的实践情况,对于结构 基本自振周期T > 0.25s的各种高耸结构,以及对于高度大于30m且高宽比大于 1.5的高柔房屋,由风引起的结构振动比较明显,设计中应考虑风振的影响。 P56
为了实用性考虑,《建筑结构荷载规范2012》给出了39项不同类型建筑物的 结构体型及其体型系数μs ,这些都是根据国内外的试验资料和国外规范中的建议 性规定整理而成,当建筑物与表中列出的体型类同时可参考应用。

风荷载计算公式及符号含义

风荷载计算公式及符号含义

风荷载计算公式及符号含义
风荷载计算的公式可以根据不同的情况而有所不同,以下是常见的两个公式及符号含义:
1. 低层建筑风荷载计算公式:
F = 0.613 × C_f × A × V_max^2
其中,
F为风荷载(单位为N/m^2或Pa);
C_f为风压系数;
A为被风作用面积(单位为m^2);
V_max为设计风速(单位为m/s)。

2. 高层建筑风荷载计算公式(按国家标准GB 50009-2012):
F = qz × Ce × Cg × A × V^2
其中,
F为风荷载(单位为N/m^2或Pa);
qz为高度变化系数;
Ce为暴风区基准风压系数;
Cg为结构高度系数;
A为结构投影面积(单位为m^2);
V为设计基本风速(单位为m/s)。

在这些公式中,符号的含义如下:
- C_f或Ce为风压系数,是根据建筑结构和环境条件来确定的参数,用于衡量建筑所受风力的大小;
- A为被风作用面积或结构投影面积,表示建筑物横截面在垂直方向上所受的风力面积;
- V_max或V为设计风速或设计基本风速,是参考当地的气象数据和规范要求确定的;
- qz为高度变化系数,它是表示建筑高度变化对风荷载的影响;- Cg为结构高度系数,是考虑建筑物高度和形状对风力的影响;- F表示风荷载的大小,单位为N/m^2或Pa,表示单位面积上
所受的力量。

建筑结构抗风设计与风荷载分析

建筑结构抗风设计与风荷载分析

建筑结构抗风设计与风荷载分析引言:建筑结构的抗风设计与风荷载分析是建筑工程中非常重要的一部分。

随着城市化进程的加快,高层建筑越来越多地出现在我们的生活中。

而高层建筑由于其高度较大、结构较为复杂,对风的抵抗能力要求较高。

因此,建筑结构抗风设计与风荷载分析成为了建筑工程师必须要深入研究的领域。

一、风荷载的定义与作用风荷载是指风对建筑物表面所产生的压力和力矩。

风荷载是建筑物设计时必须考虑的重要因素,它直接影响着建筑物的安全性和稳定性。

风荷载的大小与建筑物的形状、高度、周围环境等因素有关。

二、风荷载的计算方法风荷载的计算方法主要有静风法和动风法两种。

静风法是指根据风速和建筑物的特性,通过计算得到建筑物的风荷载。

动风法是指通过模拟风场的变化,计算建筑物在不同风速下的风荷载。

两种方法各有优劣,根据具体情况选择合适的方法进行计算。

三、建筑结构抗风设计的原则1.合理选择结构形式:不同的结构形式对风荷载的抵抗能力不同,建筑师应根据具体情况选择合适的结构形式,提高建筑物的抗风能力。

2.合理布置结构构件:结构构件的布置对建筑物的抗风能力有着重要的影响,合理布置结构构件可以提高建筑物的抗风能力。

3.合理选择材料:不同材料的抗风能力也有所不同,建筑师应根据具体情况选择合适的材料,提高建筑物的抗风能力。

4.合理设置风阻设施:风阻设施可以有效地减小风荷载对建筑物的影响,建筑师应根据具体情况设置合适的风阻设施。

四、建筑结构抗风设计的实践建筑结构抗风设计的实践需要建筑师具备一定的专业知识和经验。

在实践中,建筑师需要根据风荷载的计算结果,合理设计建筑物的结构形式、结构构件的布置和材料的选择等。

同时,建筑师还需要根据具体情况设置合适的风阻设施,提高建筑物的抗风能力。

五、建筑结构抗风设计的发展趋势随着科技的进步和建筑工程的发展,建筑结构抗风设计也在不断创新和发展。

未来,建筑师将更加注重风荷载的计算精确性和建筑物的抗风能力。

同时,随着新材料的应用和新技术的发展,建筑师将有更多的手段来提高建筑物的抗风能力。

高层建筑风荷载计算

高层建筑风荷载计算

高层建筑风荷载计算在现代城市的天际线中,高层建筑如雨后春笋般拔地而起。

这些高耸入云的建筑不仅是城市的地标,也是工程技术的杰作。

然而,在设计和建造这些高层建筑时,风荷载是一个至关重要的考虑因素。

风荷载的准确计算对于确保建筑的结构安全、稳定性以及居住者的舒适度都具有不可忽视的意义。

风荷载,简单来说,就是风对建筑物表面产生的压力或吸力。

由于高层建筑的高度较大,其暴露在风中的面积也相应增加,风的作用效果更加显著。

如果风荷载计算不准确,可能会导致建筑物在强风天气中出现结构破坏、摇晃甚至倒塌等严重后果。

那么,如何进行高层建筑风荷载的计算呢?这可不是一个简单的问题,需要综合考虑多个因素。

首先,风速是计算风荷载的关键因素之一。

风速通常是通过气象观测数据获得的,但这些数据往往是在地面附近测量得到的。

随着高度的增加,风速会逐渐增大,这种现象被称为风速的梯度变化。

为了准确计算高层建筑顶部的风速,需要使用特定的风速剖面公式,例如幂律公式或对数公式。

其次,建筑的外形和几何特征对风荷载的大小和分布有着重要影响。

不同的建筑形状,如方形、圆形、三角形等,以及建筑表面的凹凸变化、开口和阳台等,都会改变风的流动模式,从而影响风荷载的作用。

例如,流线型的建筑外形通常能够减少风的阻力,从而降低风荷载;而带有突出部分或复杂几何形状的建筑则可能会产生较大的风荷载。

另外,风向也是一个重要的考虑因素。

风可以从不同的方向吹来,对于高层建筑,不同方向的风荷载可能会有很大的差异。

因此,在计算风荷载时,需要考虑多个风向的情况,并选取最不利的风向组合进行设计。

在实际计算中,通常会使用两种主要的方法:规范计算方法和数值模拟方法。

规范计算方法是基于大量的实验研究和理论分析得出的一系列计算公式和系数。

例如,我国的建筑结构荷载规范就提供了详细的风荷载计算方法和参数。

这种方法相对简单、实用,但可能会存在一定的保守性,对于一些特殊形状或复杂环境下的高层建筑,计算结果可能不够准确。

风荷载集中荷载计算公式

风荷载集中荷载计算公式

风荷载计算公式:ωk=βz×μs×μz×ω0。

风荷载(windload)空气流动对工程结构所产生的压力。

其大小与风速的平方成正比,即式中ρ为空气质量密度,va和vb分别为风法结构表面前与结构表面后的风速。

物理学上的压力,是指发生在两个物体的接触表面的作用力,或者是气体对于固体和液体表面的垂直作用力,或者是液体对于固体表面的垂直作用力。

(物体间由于相互挤压而垂直作用在物体表面上的力,叫作压力。

)例如足球对地面的力,物体对斜面的力,手对墙壁的力等。

习惯上,在力学和多数工程学科中,“压力”一词与物理学中的压强同义。

[工学]风荷载

[工学]风荷载

沿下风面BC速度逐渐降低( v ↓),压力重新增大。
气流在BC中间某点S处速度停滞( v =0),生成旋涡,并在外流 的影响下以一定周期脱落(脱落频率fs)---Karman 涡街 当气流旋涡脱落频率fs与结构横向自振频率接近时,结构发生 共振,即发生横向风振 。
圆筒式结构三个临界范围
雷诺数 Re=
弯曲型:
2 3 z
4
0.7
z
当悬臂型高耸结构的外形由下向上逐渐收近,截面沿高度按连续规律 变化时,其振型计算公式十分复杂。此时可根据结构迎风面顶部宽度BH 与底部宽度B0的比值,按表3-10确定第1振型系数。
4.脉动影响系数 脉动影响系数主要反映风压脉动相关对结构的影响。
《建筑结构荷载规范》(GB 50009—2001)对于高耸结构和高层建筑, 考虑结构外形和质量沿高度分布的不同状态,给出了脉动影响系数表311供设计时直接查用。
赤道和低纬度地区:受热量较多,气温高,空气密度小、气压 小,且大气因加热膨胀,由表面向高空上升 极地和高纬度地区:受热量较少,气温低,空气密度大、 气压 大 ,且大气因冷却收缩由高空向地表上升
二、两类性质的大风 1、台风 发生在热带海洋上空的一种气旋。 2、季风 由于地球表面性质不同,热力反映有所差异引起的。
1 2 2 W0 v0 v0 2 2g
为了比较不同地区风压的大小,必须对地貌、测量高 度进行统一规定。
2、基本风压w0
按规定的地貌、高度、时距等量测的风速所确定的风压 地貌(地面粗糙度) 空旷平坦地貌 高度 10米高为标准高度
公称风速时距
=10min
公称风速 v0
~ 由风力产生的结构位移、速度、加速度响应、扭转响应
二、顺风向平均风与脉动风 顺风向风速时程曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脉动风和稳定风
风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。
3.2.6 高层建筑的风振系数βz可按下式计算:
3.2.7 当多栋或群集的高层建筑相互间距较近时,宜考虑风力相互干扰的群体效应。一般可将单栋建筑的体型系数μs乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定;必要时宜通过风洞试验确定。
3.2.8 房屋高度大于200m时宜采用风洞试验来确定建筑物的风荷载;房屋高度大于150m,有下列情况之一时,宜采用风洞试验确定建筑物的风荷载:
为什么上式是减号?是因为迎风面的压力还是背风面的吸力其实都在一个方向上,所以要调整两者的符号,要他们绝对值相加,其实上式完全可以写成μs=/μs1/+/μs2/=0.080+(0.48+0.03H/L)
另外工作中经常会发现一种现象
对于基本矩形的建筑,有的设计院不经计算直接在正压区取1.5的体型系数,
μZ 风压高度变化系数
很明显在μZ 表中可以看出高度10米以下的μZ 基本小于一,10米以上的基本大于一。这是因为基本风压是按十米高度给出的,所以不同高度上的风压应将W0乘以高度系数得出。
谈到μZ 个人认为只要记住其和结构高度以及地面粗糙程度有关并弄明白为什么有关即可。
A类:近海湖以及沙漠地区
其实在那一栏应该填原始值的呵呵,当时傻傻的我愣是对那句修正后的基本风压耿耿于怀非要自己修正一下不可,想想还真好笑。其实想想satwe其他的填空项目不就明白了吗,为什么要填粗糙程度,不就是以我们填的粗糙程度帮我们修正我们所填上去的基本风压吗,现在想想简单的很那时真的是始终转不过弯来,看来
时间是个好东西,四年过去了在这个问题上清醒的不得了。
注:转自/s/blog_51e18e270100b4fm.html
设计理论这东西,要不在有感觉的时候记下来,不常用的情况下几日一过---必然生疏!
关于风荷载计算
风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。
脉动风和稳定风
风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算。
基本风压和风荷载标准值
谈到基本风压总会想起在渤海的日子,那时大家对在satwe的W0那一栏填修正值还是原始值各执己见,甚至争的面红耳赤,最后我固执的以为自己对,结果花了半天多的时间也算不出来修正后的基本风压。一晃4年多过去了,时间飞逝,不知萍姐磊哥还有拉拉他们都混的咋样了,怀念。
横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
风载现有的计算方法
根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:
(1)对于顺风向的平均风,采用静力计算方法
(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算
主体结构计算时,垂直于建筑物表面的风荷载标准值应按(3.2.1)式计算,风荷载作用面积应取垂直于风向的最大投影面积。
3.2.2 基本风压应按照现行国家标准《建筑结构荷载规范》GB 50009的规定采用。对于特别重要或对风荷载比较敏感的高层建筑,其基本风压应按100年重现期的风压值采用。
风荷载体型系数分为三类μs1迎风面体形系数μs2 背风面体形系数μs3 和μs4为侧风面体型系数μs1=0.80
μs2=-(0.48+0.03H/L)
μs3=μs4=-0.60
平常计算风荷载主要是以顺风方向进行计算,则μs=μs1-μs2=0.080+(0.48+0.03H/L)
3.2.3 位于平坦或稍有起伏地形的高层建筑,其风压高度变化系数应根据地面粗糙度类别按表3.2.3确定。地面粗糙度应分为四类:A类指近海海面和海岛、海岸、湖岸及沙漠地区;B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类指有密集建筑群的城市市区;D类指有密集建筑群且房屋较高的城市市区。
WK=βzμsμZ W0
W0基本风压
WK 风荷载标准值
βz z高度处的风振系数
μs 风荷载体型系数
μZ 风压高度变化系数
基本风压值与风速大小有关。基本风压W0确定的标准条件务必记牢:空旷平坦平面,离地10m高,统计所得重现期为50年一遇和10min的平均最大风速V 为标准,并以W0=V2/1600来确定的。新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇且不得小于0.3kN/m2,新高规 3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。
经验取值也只能进行经验的解释:多年来这个系数是这样来的,一般建筑正风压系数为+0.8,侧面-0.7,背面-0.5。假定风来袭时正面门窗开启或者时被风损坏,那么正面的风压将会作用到室内各个部分,故其侧面的风压将会是-0.7-0.8=-1.5。2 m. ?/ U$ |2 X# n1 l- `
但是现代建筑功能复杂,房屋众多,一般不会容易出现这种最不利的情况。所以新版规范进行了修改,改为了内压0.2,正压提高到1.0。q3 A原规范大面风压体型系数取值1.5。
风振系数牵连的东西最多,包括脉动增大系数,脉动影响系数,风压高度变化系数和振型系数
\其中脉动增大系数又和周期,基本风载和粗糙程度有关 而脉动影响系数又与H/B和粗糙程度有关
设计理论这东西,要不在有感觉的时候记下来,不常用的情况下几日一过---必然生疏!
关于风荷载计算
风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。
—平面形状不规则,立面形状复杂;
—立面开洞或连体建筑;
—周围地形和环境较复杂。
3.2.9 檐口、雨篷、遮阳板、阳台等水平构件,计算局部上浮风荷载时,风荷载体型系数μs不宜小于2.0。
3.2.10 设计建筑幕墙时,风荷载应按国家现行有关建筑幕墙设计标准的规定采用。
关于风荷载计算 2008-11-15 10:08:01| 分类: 专业相关 | 标签: |字号大中小 订阅 .
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力
顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
B类:田野乡村及中小城镇和大城市郊区
C类:有密集建筑群的城市市区
D类:有密集建筑群且房屋较高的城市市区
一般的建筑都选B类,道理简单的很:这样μZ取值偏高,风荷载标准值偏高,计算偏安全。
μs 风荷载体型系数
个人认为一级结构在这里考的多且很到位。
以规则矩形结构平面为例
3 高宽比H/B不大于4的矩形、方形、十字形平面建筑取1.3;
4 下列建筑取1.4:
1)V形、Y形、弧形、双十字形、井字形平面建筑;
2)L形、槽形和高宽比H/B大于4的十字形平面建筑;
3)高宽比H/B大于4,长宽比L/B不大于1.5的矩形、鼓形平面建筑。
5 在需要更细致进行风荷载计算的场合,风荷载体型系数可按本规程附录A采用,或由风洞试验确定。
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力
顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
风载现有的计算方法
根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:
相关文档
最新文档