加热炉的温度自动控制系统

合集下载

加热炉过程自动控制系统的设计

加热炉过程自动控制系统的设计

加热炉过程自动控制系统的设计以下是一个加热炉过程自动控制系统的设计方案,详细描述了系统的组成、工作原理及控制策略:一、系统组成:1.传感器:用于检测加热炉的温度、湿度、压力、流量等参数。

2.执行器:负责控制加热炉的加热功率、燃料供给、风量等。

3.控制器:根据传感器信号,通过计算和判断,产生相应的控制命令,控制执行器的动作。

4.人机界面:提供对加热炉过程的监控、设置和操作功能,使操作员能够方便地对加热炉进行调试和控制。

二、工作原理:1.传感器采集加热炉的各项参数,并将数据传输给控制器。

2.控制器根据传感器数据进行计算和分析,将所需的控制命令传输给执行器。

3.执行器根据控制命令控制相应设备的动作,如调节加热功率、燃料供给量、风量等。

4.执行器调整加热炉的工作状态,使其达到预定的温度、湿度、压力、流量等参数。

5.人机界面可以通过可视化界面显示加热炉的运行状态和参数,操作员可以通过界面进行参数设置和调整。

三、控制策略:1.温度控制:根据加热炉的加热需求,设置温度控制器的目标温度,并通过加热功率的控制来调节温度,使其尽量趋近目标温度。

2.湿度控制:根据加热炉的加热需求,设置湿度控制器的目标湿度,并通过蒸汽量或喷雾量的控制来调节湿度,使其尽量趋近目标湿度。

3.压力控制:根据加热炉的加热需求,设置压力控制器的目标压力,并通过调节燃料供给量和风量的控制来调节压力,使其尽量趋近目标压力。

4.流量控制:根据加热炉的加热需求,设置流量控制器的目标流量,并通过调节燃料供给量和风量的控制来调节流量,使其尽量趋近目标流量。

5.故障诊断与安全保护:系统可以检测加热炉的异常状态和故障情况,并进行相应的故障诊断和安全保护措施,如当温度超过安全范围时,自动切断燃料供给等。

温度自控电加热炉工作原理

温度自控电加热炉工作原理

温度自控电加热炉工作原理
温度自控电加热炉是一种通过控制电流和加热时间来维持恒定温度的加热设备。

其工作原理如下:
1. 电源供电:将电加热炉连接到电源上,通过开关打开电流供应。

2. 温度传感器:电加热炉内部配备了温度传感器,用于检测当前炉内的温度。

3. 控制系统:电加热炉配备了一个智能控制系统,根据温度传感器的反馈信号,实时监测和调节炉内温度。

4. 控制信号:控制系统会根据设定的温度值与当前测量值进行比较,生成控制信号。

5. 电流调节:根据控制信号,控制系统会调节电流的大小,通过调整电流的传输量来控制炉内的加热速度。

6. 加热时间控制:控制系统还会根据控制信号,控制加热时间的长短,以实现温度的持续控制。

7. 反馈机制:通过不断监测和调节加热过程中的温度变化,控制系统能够及时调整电流和加热时间,以保持设定的恒定温度。

总结:温度自控电加热炉通过温度传感器、控制系统和电流调节来实现对加热过程的控制,以达到恒定温度的目的。

这种炉
子广泛应用于工业生产中的高温加热过程,提高了生产效率和产品质量。

课程设计--加热炉温度串级控制系统(设计部分)

课程设计--加热炉温度串级控制系统(设计部分)

加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。

传统的单回路控制系统很难使系统完全抗干扰。

串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。

加热炉温度自动控制系统MATLOB

加热炉温度自动控制系统MATLOB

加热炉温度自动控制系统MATLOB加热炉温度自动控制系统MATLOB是一种用于控制加热炉温度的系统。

在工业生产过程中,控制加热炉温度的准确性和稳定性对于保证产品质量和生产效率至关重要。

MATLOB系统采用先进的温度感应器和控制器,通过实时监测和调节加热炉的温度,使其保持在设定的温度范围内。

该系统具有高精度、快速响应的特点,能够有效地控制加热炉温度的波动,确保生产过程的稳定性和可靠性。

背景信息包括MATLOB系统的发展历程、应用范围和优势等方面。

通过了解MATLOB系统的背景信息,可以更好地理解该系统的重要性和作用,为后续的具体操作和维护提供基础。

系统概述加热炉温度自动控制系统MATLOB由以下主要组成部分和功能组成:温度传感器:用于测量加热炉的温度。

控制器:通过接收温度传感器的信号,对加热炉的加热器进行控制,以维持设定的目标温度。

加热器:通过加热炉的加热元件来提供加热能量。

控制算法:控制器使用特定的算法根据当前温度和目标温度之间的差异来调整加热器的输出功率,以达到温度稳定控制。

用户界面:提供给操作员对加热炉温度自动控制系统进行设置和监控的界面,如设定目标温度、显示当前温度和报警信息等。

该系统的主要功能是通过自动控制加热炉的温度,使其能够稳定地达到用户设定的目标温度。

通过温度传感器实时监测加热炉的温度,并将数据传输给控制器。

控制器根据设定的目标温度和当前温度之间的差异,通过调整加热器的输出功率来控制加热炉的温度。

用户可以通过操作界面进行设定和监控,以确保加热炉的温度处于所需的范围内。

MATLOB加热炉温度自动控制系统是一个简单而有效的解决方案,旨在提供稳定和可靠的温度控制,以满足用户对加热炉温度精确控制的需求。

加热炉温度自动控制系统MATLOB相比其他系统具有许多优势和特点,下面是一些主要的优势:高精度:MATLOB系统采用先进的传感器和控制算法,能够实现对加热炉温度的高精度控制。

这种高精度控制可以确保加热炉内的温度保持在预定的范围内,从而提高生产效率和产品质量。

电加热炉温度控制系统1

电加热炉温度控制系统1

摘要在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。

工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。

通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。

本次设计采用单片机89C51及数字式温度传感器、数码管显示温度。

数字式温度传感器将采集到的温度数据送入单片机,单片机将采集到的温度数据与设定值进行比较,若大于设定值,则电热炉关断,若小于设定值,则电热炉继续加热。

对于设定的温度值的改变采用中断方式,当改变温度设定时,检测输入的信号,改变设定值,并在数码管上显示出设定值,此次设计初始设定值为100摄氏度。

关键字:温度自动控制、单片机、数码管目录1设计内容及步骤 (1)1.1设计要求 (1)1.2方案设计 (1)1.3设计思路 (1)2硬件设计 (2)2.1主要硬件介绍 (2)2.1.1单片机 (2)2.1.2温度传感器 (2)2.1.3开关器件 (2)2.2电路设计方法 (3)2.2.1显示部分电路 (3)2.2.2温度检测电路 (4)2.2.3键盘电路 (4)2.2.4电气开关及工作电路 (5)2.2.5整体硬件设计及工作说明 (5)3软件设计 (6)3.1数码管模块 (6)3.2按键中断输入模块 (7)3.3温度检测模块 (8)3.4主程序流程图 (9)4调试和分析 (10)5课程设计心得体会 (12)参考文献 (13)附录1整体电路图......................... 错误!未定义书签。

附录2源程序 (1)1设计内容及步骤1.1设计要求设计一个温度控制系统,并用软件仿真。

功能要求如下:(1)能够利用温度传感器检测环境中的实时温度;(2)能对所要求的温度进行设定;(3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。

电阻加热炉温度控制系统设计

电阻加热炉温度控制系统设计

电阻加热炉温度控制系统设计一、温度控制系统的要求:1.稳定性:系统应能快速响应温度变化,并能在设定温度范围内保持稳定的温度。

2.精度:控制系统应具备高精度,确保炉内温度与设定温度的偏差控制在允许范围内。

3.可靠性:系统应具备高可靠性,能长时间稳定运行,并能在发生异常情况时及时报警或自动停止加热。

4.人机界面:温度控制系统应提供方便直观的人机界面,操作简单易懂。

二、温度控制系统的设计:1.传感器选择:选择合适的温度传感器进行温度检测。

常用的温度传感器有热电偶和热电阻。

根据实际需求选择合适的传感器类型和量程。

2.温度控制器选择:根据控制需求,选择适用于电阻加热炉的温度控制器。

具备温度显示功能的控制器可以直观地显示炉内温度。

还可以选择具备PID控制功能的控制器,以提高温度控制精度。

3.控制循环设计:将温度控制系统设计成闭环控制系统,以实现炉内温度的精确控制。

控制循环包括采样、比较、控制和执行四个环节。

采样环节将实际温度值与设定温度值进行比较,然后控制环节根据比较结果输出控制信号,最后执行环节根据控制信号调节电阻加热炉的加热功率。

4.温度传感器布置:将温度传感器布置在炉内合适位置,确保能够准确测量到炉内温度。

传感器的安装位置应避免热点和冷点,以避免温度不均匀。

5.控制参数调整:根据实际情况进行PID参数的调整。

通过实验或仿真等方法,逐步调整PID参数,使得系统能够快速响应温度变化、准确跟踪设定温度,并保持稳定的温度输出。

6.报警和保护设计:设计温度控制系统时,应考虑到电阻加热炉的过热或温度异常等情况,并设置相应的报警和保护功能。

当温度超过安全范围时,系统应及时报警,并自动停止加热。

7.人机界面设计:为了方便操作和监控,可以在温度控制系统上设置触摸屏或显示屏。

通过人机界面,操作人员可以方便地设定温度、监测炉内温度,并能够实时查看温度曲线和报警信息。

总之,电阻加热炉温度控制系统的设计需要考虑到温度控制精度、稳定性、可靠性和人机界面等方面的要求。

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计一、概述电加热炉温度控制系统是一种常见的自动化控制系统。

它通过控制加热元件的加热功率来维持加热炉内的温度,从而实现对加热过程的精确控制。

本文将介绍一种基于单片机的电加热炉温度控制系统的设计。

二、系统设计1. 硬件设计本系统采用单片机作为控制核心,传感器检测加热炉内的温度,并将数据反馈给单片机进行处理。

通过触摸屏交互界面,用户可以设定希望维持的温度值,单片机将控制加热元件的加热功率,以实现温度的稳定控制。

2. 软件设计单片机程序主要分为三个部分:(1)传感器数据采集和处理,通过定时器进行数据的采样,然后通过计算分析实现温度值的读取。

(2)温度控制,设定一个目标温度值后,单片机通过PID算法来控制加热元件的加热功率,保持温度的稳定。

(3)交互界面的设计,实现用户与系统的交互,包括设定目标温度值和实时温度显示等。

三、系统优势相对于传统的手动控制方式,本系统具有以下优势:(1)精度高,通过PID算法,可以实现对温度的精确控制,大大提高了生产效率。

(2)舒适度高,传统的手动控制方式需要人员长时间待在生产车间,而本系统的自动化控制方式,可以让人员远离高温环境。

(3)可靠性高,系统精度高,响应迅速,可以有效减少因为控制失误带来的损失。

四、结论本系统的设计基于单片机实现电加热炉温度的精确控制。

相对于传统的手动控制方式,具有精度高、舒适度高和可靠性高等优势。

在未来的生产过程中,随着物联网的发展,本系统也可以进行联网控制,实现对设备的远程控制和监控,提高设备的效率和安全性。

加热炉控温方法

加热炉控温方法

加热炉是一种广泛应用于工业生产中的加热设备,其控温方法主要包括以下几种:
1. 手动控温:通过手动调节加热炉的加热功率或温度控制器的设定值来控制温度。

这种方法适用于简单的加热需求,但需要操作人员不断观察和调整温度,以确保加热效果和安全性。

2. 自动控温:使用温度控制器自动控制加热炉的温度。

温度控制器可以通过传感器感知加热炉内部的温度,并根据设定的温度值自动调整加热功率,以保持加热炉内部的温度稳定。

这种方法适用于需要精确控温的场合,可以提高加热效率和稳定性。

3. 比例积分微分(PID)控温:PID 控温是一种更为精确的自动控温方法,它可以根据加热炉内部的温度变化自动调整加热功率,以保持温度的稳定性。

PID 控温系统通常包括温度传感器、PID 控制器和执行器等组成部分,可以实现快速、准确的温度控制。

4. 分段控温:对于需要在不同温度范围内进行加热的场合,可以采用分段控温的方法。

将加热炉分成多个加热区域,并分别控制每个区域的温度,可以实现更精确的温度控制。

5. 远程控温:通过网络或其他通信方式实现远程控温。

操作人员可以在远程控制中心对加热炉的温度进行监测和控制,提高了加热炉的可操作性和管理效率。

电加热炉温度控制系统模型建立及控制算法

电加热炉温度控制系统模型建立及控制算法

电加热炉温度控制系统模型建立及控制算法一、电加热炉温度控制系统模型建立1.电加热元件电加热元件是实现加热过程的关键组件,通过电流通过电加热元件时会产生热量,从而提高电加热炉的温度。

通常采用的电加热元件有电阻丝或者电加热器。

2.温度传感器温度传感器用于实时检测电加热炉的温度,常见的温度传感器有热电偶、热敏电阻等。

传感器将温度信号转换为电信号并输出给控制器。

3.控制器控制器是温度控制系统的核心部分,通过对电加热元件的控制,实现对炉温的控制。

常见的控制器有PID控制器、模糊控制器、自适应控制器等。

控制器根据输入的温度信号和设定值进行比较并产生控制信号,然后将控制信号送至电加热元件。

4.反馈装置反馈装置用于实时反馈炉温信息给控制器,以便控制器能够根据反馈信息进行调整,从而实现温度的稳定控制。

典型的反馈装置有温度传感器、红外线测温仪等。

二、控制算法1.PID控制算法PID控制器是最常用的控制算法之一,其通过比例、积分和微分三个部分组合来实现对温度的控制。

PID控制器的控制信号计算公式如下:u(t) = Kp * e(t) + Ki * ∑e(t)dt + Kd * de(t)/dt其中,u(t)为控制信号,Kp、Ki、Kd分别为比例、积分和微分系数,e(t)为偏差,de(t)/dt为偏差的变化率。

2.模糊控制算法模糊控制算法通过模糊集合、模糊规则和模糊推理来实现对温度的控制。

基本的模糊控制算法包含模糊化、模糊规则的建立、模糊推理和解模糊化四个步骤。

3.自适应控制算法自适应控制算法通过对系统模型的实时辨识和参数的自动调整,实现对温度的自适应控制。

自适应控制算法常见的有模型参考自适应控制、最小均方自适应控制等。

三、总结电加热炉温度控制系统模型的建立包括电加热元件、温度传感器、控制器和反馈装置四个主要组成部分。

常用的控制算法有PID控制算法、模糊控制算法和自适应控制算法。

通过合理选择控制系统的组成部分和控制算法,并根据实际需求进行参数调整和优化,可以有效实现对电加热炉温度的稳定控制。

加热炉温度串级控制系统说明书

加热炉温度串级控制系统说明书

设计说明书1加热炉的简介1.1加热炉的基本构成与组成加热炉是一种直接受热加热设备主要用于加热气体或液体,所用燃料通常有燃料油和燃料气。

加热炉的传热方式以辐射传热为主。

加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成。

(1)辐射室:通过火焰或高温烟气进行辐射传热的部分。

这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。

(2)余热回收系统:用以回收加热炉的排烟余热。

有空气预热方式和废热锅炉方式两种方法。

(3)对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。

(4)燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。

(5)通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。

其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。

1.2加热炉温度控制系统工作原理加热炉温度控制系统原理图控制原理图如上所示,加热炉的主要任务是把物料加热到一定温度,以保证下一道工序的顺利进行。

燃料油经过蒸汽雾化后在炉膛中燃烧,物料流过炉膛四周的排管中,就被加热到出口温度。

在燃料油管道上装设一个调节阀,物用它来控制燃油量以达到所需出口温度T1的目的。

1.3加热炉出口温度控制系统设计目的及意义加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于加热炉具有强耦合、大滞后等特性,控制起来非常复杂。

同时,近年来能源的节约、回收和合理利用日益受到关注。

加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。

因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。

另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。

1.4加热炉温度控系统工艺流程及控制要求加热炉的主要任务是把原制油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。

加热炉自动控制系统维修应用知识考题(附答案)

加热炉自动控制系统维修应用知识考题(附答案)

导读●一、填空题每题1分,共20分●二、判断题每题1分,共10分●三、选择题每题2分,共40分●四、简答题每题4分,共40分●五、开放题每题5分,共10分●六、案例分析题每题15分,共30分加热炉自动控制系统维修应用知识考题一、选择题20个1. 加热炉自动控制系统中,PID控制器的P代表:A. 比例B. 积分C. 微分D. 延迟答案:A2. 加热炉温度控制中,常用哪种传感器来测量炉温?A. 光电传感器B. 红外传感器C. 热电偶D. 超声波传感器答案:C3. 在自动控制系统中,执行机构接收控制器的信号并直接调节的是:A. 传感器B. 变送器C. 调节阀D. 显示仪表答案:C4. PLC(可编程逻辑控制器)在加热炉控制系统中主要承担什么角色?A. 数据采集B. 逻辑控制C. 人机界面D. 信号放大答案:B5. 闭环控制系统与开环控制系统的区别在于是否:A. 有控制器B. 有执行器C. 有反馈D. 有设定值答案:C6. 加热炉温度控制系统中,PID控制器的微分作用是:A. 减小超调量B. 提高响应速度C. 消除静差D. 稳定控制答案:A7. 用于长距离传输温度信号,通常会采用:A. 4-20mA电流信号B. 0-10V电压信号C. 数字通信D. 直接电缆连接答案:A8. 加热炉自动点火控制系统中,检测火焰是否点燃的传感器通常是:A. 热敏电阻B. 紫外线或红外火焰探测器C. 压力传感器D. 流量计答案:B9. 加热炉控制系统中,防止温度过高的保护措施是:A. 过热连锁B. 超温报警C. 紧急停炉D. 以上都是答案:D10. 炉温控制中,采用双位控制的优点是:A. 控制精度高B. 结构简单C. 过渡过程平稳D. 无超调答案:B11. 加热炉的燃烧控制中,燃料与空气的比例调节属于:A. 压力控制B. 流量控制C. 比例控制D. 逻辑控制答案:C12. 自动控制系统中,用于显示实时炉温和设定值的设备是:A. 传感器B. 显示仪表C. 执行器D. 控制器答案:B13. 炉温控制系统中,PID参数调试的第一步通常是调整:A. P参数B. I参数C. D参数D. 同时调整答案:A14. 加热炉控制系统中,防止炉膛熄火的安全措施称为:A. 点火自检B. 熄火保护C. 燃烧控制D. 风门控制答案:B15. 用于控制加热炉燃料气流量的调节阀,通常会选择:A. 直通单座阀B. 角型阀C. 套筒阀D. 蝶阀答案:C16. 在加热炉的控制系统中,用于实现远程监控和数据采集的系统是:A. SCADA系统B. DCS系统C. FCS系统D. 以上都可以答案:D17. 加热炉的燃烧控制系统中,空气过剩系数的自动调整是为了:A. 提高燃烧效率B. 降低NOx排放C. 避免不完全燃烧D. 以上都对答案:D18. 加热炉的温度控制中,使用比例控制时,如果比例带设置过窄,会导致:A. 控制平稳B. 响应迅速C. 超调严重D. 稳定性好答案:C19. 炉温控制系统中,若温度波动较大,首先应考虑调整的是:A. P参数B. I参数C. D参数D. 传感器位置答案:A20. 加热炉的燃烧安全联锁控制系统中,风门未开到位时应:A. 禁止点火B. 自动点火C. 打开燃气阀门D. 以上都不对答案:A二、判断题1. 加热炉的控制系统中,PID调节器只能进行手动调节。

煤气工业加热炉自动控制系统操作说明书

煤气工业加热炉自动控制系统操作说明书

自制煤气工业加热炉自动控制系统操作说明书二零零四年三月目录一、系统上电 (2)二、开机运行 (2)(一)系统画面 (3)(二)控制画面 (3)1、控制区 (4)2、温度曲线设置区 (6)3、实时温度曲线显示区 (7)(三)历史曲线画面 (8)三、停机退出 (8)四、系统断电 (9)五、系统修复操作过程说明 (10)自制煤气工业加热炉自动控制系统操作说明书一、系统上电闭合系统电源开关,系统上电,计算机、仪表、变频器待机运行,仪表下显示窗交替显示设定值和Stop。

二、开机运行按下计算机电源开关,计算机启动运行。

并直接进入华晋公司自制煤气工业加热炉自动控制系统如图1所示。

图1(一)系统画面(如图1所示)此操作画面上有三个链接按钮。

ENTER 、操作说明和EXIT。

1、ENTER:点击ENTER时,系统进入主控画面,如图2所示。

2、操作说明:点击操作说明时,系统打开本系统的操作明书,如图3所示,以供操作员参考。

3、EXIT:点击EXIT时,系统退出,计算机关机。

(二)控制画面(如图2所示)当在系统画面上点击时,系统进入此画面。

图2控制画面分为三个区:控制区(画面上方)、温度曲线设置区(画面中间)和实时温度曲线显示区(画面下方)。

图31、控制区控制区包括退出按钮、当前状态、启动系统按钮、停止系统按钮、系统时间和历史曲线按钮。

1)退出按钮点击退出按钮时,系统退回系统画面,如图1所示。

2)当前状态当前状态后面的框中显示系统运行的当前状态,(1)、刚进入系统时或点击停止系统按钮之后,显示系统停止,表明系统没有启动运行或已停止运行,处于待机状态。

仪表下显示窗交替显示设定值和Stop。

(2)当工艺曲线设置完以后,点击启动系统按钮,闪烁显示正在运行,表明系统已经启动运行,现在可以点火,装炉。

(3)、当工艺完成以后,显示工艺完成,表明整个工艺已经完成,现在可以出炉。

仪表下显示窗交替显示设定值和Hold。

3)、启动系统按钮当需要启动系统时,点击启动系统按钮,系统启动运行,当前状态闪烁显示正在运行,仪表上显示窗显示实际值,下显示窗显示设定值,运行时间开始计时。

工业加热炉温度控制系统设计

工业加热炉温度控制系统设计

0引言在科学技术日新月异的今天,工艺精度、产品质量的提高对于工业加热炉温度控制系统的要求日益增强。

对工业加热炉的工作进行监视及报警,温度值是加热炉随着加热的需要随时变化进行控制的重要参数.但目前国内绝大多数工业还是采用加湿机等设备通过人工来控制加热炉的温度,很难达到最佳控制效果的,同时也无法进行温度数据的自动记录与时事管理。

因此,工业加热炉的温度自动控制系统取代人工完成成为了一种刻不容缓的需要,工业加热炉的温度自动控制系统也是在这种需求的驱动下被开发和实现的,并且达到了温度控制、声音报警的要求.由于工业加热炉的温度控制系统和报警自动监控器系统均采用电能作能源,因而可以通过对输入功率的控制,达到对温度、声音报警的控制.利用简单的单片机芯片组实现系统的控制功能,能够实现并满足系统的需要,又在经济上节约了支出,避免了系统小功能浪费的现象。

经过深入调查和认真分析本系统是一个二级计算机测控系统。

现场计算机承担各个加热炉的温度实时检测与控制以及报警监视和报警的任务。

控制中心位于中央控制室,负责对现场计算机的工作进行管理,完成实时数据收集、显示系统、打印报表以及对现场计算机的工作状态和温度给定值的设置等工作。

位于车间的工作人员值班室的值班机上,平时作为电子表运行。

当报警发生时,值班机能以声、显示数据等报警形势指示出报警的加热炉。

且当控制总台关机时,值班机能自动上升为主机代替上位机接管通讯系统向控制器发出报警查询控制字。

由于单片机的使用,现场计算机的任务也由单片机控制系统的人机接口部分来完成,再通过模数转换通道部分实现对系统的精确控制,最后采用8051单片机为主处理芯片实现对系统进行控制处理]1[]2[。

1工业加热炉温度控制系统1.1 温度控制系统简介1.1。

1选题的背景温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式、燃料、控制方案也有所不同。

加热炉炉温自动调节控制系统

加热炉炉温自动调节控制系统

/ 空气双交叉限幅控制。 自动之程序设定方式(A2 方式):根据不同的规格和坯料,有不同
的加热制度,即对应各个供热段不同的炉膛温度。工艺人员可以将不同 规格和坯料的理想炉温设定值以数据库的形式保存在仪表 PLC 系统 中,只要在“钢种选择画面”中选择指定的“钢种”,就可以对各段炉温进 行批量设定。
自动之程序设定方式(A3 方式):加热炉接受炉区 L2 计算机发送 的温度设定值,实施燃烧控制。此时,炉区 L2 计算机可以工作在模型方 式,也可以是调度方式。
二、漏电保护 1、施工用电应实行三级配电、二级保护。临时用电规范规定施工现 场采用两级漏电保护:即设置总配电箱或室内总配电柜、分配电箱、开 关箱三级配电装置,这样可以实现分级分段的漏电保护,又能大大提高 用电的安全性,还能快速检测出漏电的部位。 2、漏电保护器的选择:(1)在开关箱(末级)内的漏电保护器,其额 定漏电动作电流不应大于 30MA,额定漏电动作时间不应大于 0.1s,使 用于潮湿场所时,其额定漏电动作电流应不大于 15MA,额定漏电动作 时间不应大于 0.1s。(2)总配电箱内的漏电保护器,其额定漏电动作电 流应大于 30MA,额定漏电动作时间应大于 0.1s。但其额定漏电动作电 流(I)与额定漏电动作时间(t)的乘积不应大于 30MA.s(I.T≤30MA.s)。 3、注 意 事 项 :(1)施 工 用 电 配 电 箱 、开 关 箱 应 采 用 铁 板(厚 度 为 1.2—2.0mm)或阻燃绝缘材料制作,不得使用木质配电箱、开关箱及木 质电器安装板。(2)安装漏电开关的用电设备,接零保护仍不可少。因漏 电开关也有一定缺陷:一是它是只能保护单相触电,当人同时触及两相 时或其中一相和工作零线时,漏电开关不起保护作用;二是当漏电电流 小于漏电开关额定动作电流时,漏电开关不动作,而且其他相再发生漏 电时由于零序电流互感器是因流进流出电流不平衡才会动作,所以其 他相的电流要大于额定动作电流才会动作。(3)保护零线不得穿过漏电 开关,保护零线必须跨接到第一级漏电开关前侧(进线端)的零线或接 零干线上。 综上所述,施工单位根据施工图纸,按照施工现场的实际情况和工 程需要,确定施工现场用电设备的数量。在充分了解施工现场的地形、 地貌、地下管线、周围建筑物等情况后,确定线路的选择和各种设备的 选配。安全用电技术措施:包括安全用电在技术上所采取的措施和为了 保护安全用电和供电的可靠性在组织上所采取的各项措施,如各种制 度的建立和组织管理等一系列内容。

(word完整版)加热炉温度控制系统..

(word完整版)加热炉温度控制系统..

第1章绪论1.1 综述在人类的生活环境中,温度扮演着极其重要的角色。

温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。

无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。

自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。

在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素.在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数.例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

1.2 加热炉温度控制系统的研究现状随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。

单片机温度控制系统是数控系统的一个简单应用,在冶金、化工、建材、机械、食品、石油等各类工业中,广泛使用于加热炉、热处理炉、反应炉等.温度是工业对象中的一个重要的被控参数。

由于炉子的种类不同,因而所使用的燃料和加热方法也不同,例如煤气、天然气、油、电等;由于工艺不同,所需要的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,控制温度的精度也不同,因而对数据采集的精度和所采用的控制算法也不同。

传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。

不仅如此,传统的控制方式不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于它主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。

加热炉温度自动控制系统的基本原理和作用

加热炉温度自动控制系统的基本原理和作用

加热炉温度自动控制系统的基本原理和作用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!加热炉温度自动控制系统的基本原理和作用引言加热炉在现代工业生产中扮演着至关重要的角色,它们被广泛应用于金属加工、玻璃制造、化工生产等领域。

电加热炉温度控制系统设计方案

电加热炉温度控制系统设计方案

电加热炉温度控制系统设计方案1.系统概述2.系统组成2.1温度传感器:用于实时感知炉内温度,并将温度信号转换成电信号进行采集。

2.2控制器:负责对温度信号进行处理和判断,并生成相应的控制信号。

2.3加热功率调节器:根据控制信号调整电加热炉的加热功率。

2.4人机界面:为操作人员提供温度设定、显示和报警等功能。

2.5电源和电路保护装置:为电加热炉提供稳定的电源和安全的电路保护。

3.控制原理电加热炉温度控制系统采用了闭环控制的原理,即通过与实际温度进行比较,调整加热功率来实现温度的控制。

控制器根据实际温度和设定温度之间的偏差,产生相应的控制信号,通过加热功率调节器对电加热炉的加热功率进行调整,使实际温度逐渐接近设定温度,并保持在一定范围内。

4.系统算法4.1温度传感器采集到的温度信号经过模数转换,转换成数字信号输入到控制器。

4.2控制器对传感器采集到的温度信号进行处理和判断,计算出温度偏差。

4.3控制器根据温度偏差通过PID控制算法产生相应的控制信号,控制信号的大小决定了加热功率的调整幅度。

4.4控制信号经过加热功率调节器进行放大和整流,并驱动电加热炉进行相应的加热功率调整。

4.5加热功率调整会导致炉内温度变化,温度变化会反过来影响温度传感器采集到的温度信号,形成一个闭环控制的循环过程。

5.人机界面5.1人机界面通过触摸屏或按钮等形式,提供温度设定、显示和报警等功能。

5.2操作人员可以通过人机界面设置所需的温度设定值。

5.3人机界面会显示当前的实际温度,并根据温度偏差的大小显示相应的报警信号。

5.4人机界面可以设定温度上下限,当温度超出设定范围时自动报警。

6.电源和电路保护装置6.1在电加热炉温度控制系统中,电源提供稳定的电压和电流给电路运行。

6.2为了确保系统的安全运行,在电路中设置过流保护、过压保护、欠压保护等电路保护装置。

6.3当发生过流、过压或欠压等异常情况时,电路保护装置会立即切断电源,以保护电路和设备的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加热炉的温度自动控制系统
一.系统设计的目的及意义
加热炉被广泛应用于工业生产和科学研究中。

由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。

在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。

对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。

在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。

在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。

为此,可靠的温度的监控在工业中是十分必要的。

二.控制要求
加热炉设备的控制任务是根据生产负荷的需要,供应热量,同时要使加热炉在安全、经济的条件下运行。

按照这些控制要求,加热炉设备将有主要的控制要求:
加热炉燃烧系统的控制方案要满足燃烧所产生的热量,适应物料负荷的需要,保证燃烧的经济型和加热炉的安全运行,使物料温度与燃料流量相适应,保持物料出口温度在一定范围内。

三.系统介绍
本加热炉温度控制系统采用单回路控制方案,即可实现控制要求。

在运行过程中,当物料出口温度受干扰影响改变时,温度检测元件测得的模拟信号也会发生对应的改变,该信号经过变送器转换后变成调节器可分析的数字信号,进入调节器,
将变动后的信号再与给定相比较,得出对应偏差信号,调节器将给定温度与测得的温度进行比较得出偏差值,然后经PID 算法给出输出信号,执行器接收调节器发来的信号后,根据信号调节阀门开度,进而控制燃料流量,改变物料出口温度,实现对物料出口温度的控制。

不断重复以上过程,直至物料出口温度接近给定,处于允许范围内,且达到稳定。

由此消除干扰的影响,实现温度的控制要求。

四.具体控制系统设计
1 测温元件
本控制系统的测温元件采用Pt100热电阻,工业用铂电阻作为温度测量变送器,通常用来和显示、记录、调节仪表配套,直接测量各种生产过程中从0 ~
500℃
范围内的液体、蒸汽和气体介质以及固体等表面温度。

2 调节控制器件
DDZ-III 型PID 调节器TDM-400性能指标如下表所示: 表 DDZ-III 型PID 调节器性能指标
被控量
给定量
3 执行器选型
本系统中,执行器是系统的执行机构,是按照调节器所给定的信号大小和方向,改变阀的开度,以实现调节燃料流量的装置。

在加热炉温度控制系统中,执行器的调节阀选择气开阀:执行机构采用正作用方式,调节机构正装以实现气开的气动薄膜调节蝶阀。

1)调节阀的流量特性:
调节阀的流量特性的选择,在实际生产中常用的调节阀有线性特性、对数特性、抛物线特性和快开特性四种,在本系统中执行器的调节阀的流量特性选择等百分比特性。

2)调节阀的口径:
调节阀的口径的大小,直接决定着控制介质流过它的能力。

为了保证系统有较好的流通能力,需要使控制阀两端的压降在整个管线的总压降中占有较大的比例。

所选择电/气阀门定位器ZPD-01
表ZPD-01参数表。

相关文档
最新文档