对数函数及其性质,对数的公式互化,详尽的讲解

合集下载

对数与指数函数的性质与运算

对数与指数函数的性质与运算

对数与指数函数的性质与运算对数与指数函数是高中数学中的重要部分,它们在数学和实际应用中都有广泛的应用。

本文将介绍对数与指数函数的性质与运算。

一、对数函数的性质对数函数是指以某个正数为底的对数函数,用常用对数以10为底或自然对数以e为底为例进行说明。

对数函数的性质如下:1. 定义域与值域常用对数函数的定义域是正实数集(0, +∞),值域是实数集;自然对数函数的定义域是正实数集(0, +∞),值域是实数集。

2. 增减性常用对数函数和自然对数函数均是严格增函数,即当x1 < x2时,对数值logx1 < logx2。

3. 对数函数的图像常用对数函数和自然对数函数的图像均具有特殊的形状,且图像关于y轴对称。

二、指数函数的性质指数函数是以常数e为底的指数函数,以指数函数y = a^x为例进行说明。

指数函数的性质如下:1. 定义域与值域指数函数的定义域是实数集,值域是正实数集(0, +∞)。

2. 增减性指数函数a^x的增减性与指数a的大小有关。

当a > 1时,指数函数是增函数;当0 < a < 1时,指数函数是减函数。

3. 指数函数的图像指数函数的图像具有特殊的形状,与指数底a的大小有关。

当a > 1时,指数函数图像递增;当0 < a < 1时,指数函数图像递减。

三、对数与指数函数的运算性质对数与指数函数在运算中有一些重要的性质,包括以下几个方面:1. 对数的运算性质(1)对数的乘法性质:loga(M * N) = logaM + logaN,其中a为底数,M,N为正数。

(2)对数的除法性质:loga(M / N) = logaM - logaN。

(3)对数的幂运算性质:loga(M^p) = p * logaM,其中a为底数,M为正数,p为任意实数。

2. 指数的运算性质(1)指数的乘法性质:a^m * a^n = a^(m+n),其中a为底数,m,n 为实数。

高二对数函数知识点总结

高二对数函数知识点总结

高二对数函数知识点总结对数函数是数学中重要的一类函数,也是高中数学中的重要内容之一。

在高二阶段,学生们开始接触和学习对数函数,并掌握其相关知识点。

本文将对高二对数函数的知识点进行总结。

一、基本概念对数函数是指以指数为自变量,对数为函数值的函数。

对数函数常用的底数有10和e。

其中,以底数10为底的对数函数叫做常用对数函数,记作log₋₁₀x;以底数e为底的对数函数叫做自然对数函数,记作lnx。

二、对数函数的性质1. 定义域和值域:对于常用对数函数log₋₁₀x,定义域为正实数集(0,+∞),值域为实数集;对于自然对数函数lnx,定义域为正实数集(0,+∞),值域为实数集。

2. 基本性质:(1) 对于常用对数函数log₋₁₀x,log₋₁₀(1) = 0;(2) 对于自然对数函数lnx,ln(1) = 0;(3) 对于常用对数函数和自然对数函数,log₋₁₀10 = 1,ln e= 1。

3. 对数函数的图象:(1) 常用对数函数y = log₋₁₀x的图象是一条过点(1, 0)的递增曲线;(2) 自然对数函数y = lnx的图象是一条过点(1, 0)的递增曲线。

三、对数函数的运算1. 对数乘法运算法则:logₐ(xy) = logₐx + logₐy2. 对数除法运算法则:logₐ(x/y) = logₐx - logₐy3. 对数幂运算法则:logₐ(xⁿ) = n·logₐx4. 换底公式:logᵦa = logₐa / logₐb四、对数函数的常用性质1. 对数函数的奇偶性:(1) 常用对数函数log₋₁₀x是奇函数,即log₋₁₀(-x) = -log₋₁₀x;(2) 自然对数函数lnx是奇函数,即ln(-x) = -lnx。

2. 对数函数的单调性:(1) 常用对数函数log₋₁₀x在定义域内是递增的;(2) 自然对数函数lnx在定义域内是递增的。

3. 对数函数的图象变换:(1) 常用对数函数y = log₋₁₀(ax)与y = log₋₁₀x的图象相比,沿x轴方向压缩(0 < a < 1)或伸长(a > 1);(2) 自然对数函数y = ln(ax)与y = lnx的图象相比,沿x轴方向压缩(0 < a < 1)或伸长(a > 1)。

对数函数知识点总结

对数函数知识点总结

对数函数知识点总结对数函数是指可以用对数形式表示的函数,它的定义域为正实数集合,值域为实数集合。

对数函数具有一些特殊的性质和运算规则,在数学中得到广泛应用。

本文将对对数函数的定义、性质、运算规则以及常见的应用进行总结。

一、对数函数的定义与性质:1. 对数的定义:对于任意的正实数a和b (a ≠ 1),对数函数 y = loga(b) 表示满足 a^y = b 的唯一实数y。

2.对数函数的定义域为正实数集合,值域为实数集合。

3. 常见的对数函数是以自然常数e为底的自然对数函数 y = ln(x)和以常数10为底的常用对数函数 y = log10(x)。

4. 对数函数与指数函数是互逆变换关系,即 loga(a^x) =a^(loga(x)) = x。

5. 对数函数的图像特点:以对数函数 y = loga(x) 为例,当 a > 1 时,函数图像过点(1,0),在区间(0,+∞)上是单调递增的,当x趋于0时,y趋于负无穷;当 a < 1 时,函数图像过点(1,0),在区间(0,+∞)上是单调递减的,当x趋于0时,y趋于正无穷。

6. 对数函数具有对称性,即 loga(a/x) = -loga(x)。

二、对数函数的运算规则:1. 对数的乘法规则:loga(mn) = loga(m) + loga(n)。

2. 对数的除法规则:loga(m/n) = loga(m) - loga(n)。

3. 对数的幂次规则:loga(m^p) = p * loga(m)。

4. 对数的换底公式:loga(b) = logc(b) / logc(a),其中c为任意的正实数(c ≠ 1)。

5. 对数函数的反函数:对于对数函数 y = loga(x),其反函数为指数函数 x = a^y。

三、对数函数的应用:1.解指数方程和指数不等式:对于形如a^x=b或a^x<b的方程或不等式,可以通过取对数将其转化为对数方程或对数不等式进行求解。

对数函数知识点总结

对数函数知识点总结

对数函数(一)对数1.对数的概念:一般地,如果a xN ( a 0, a 1) ,那么数 x 叫做以 a 为底 的对数,. .. N记作: x log a N ( a — 底数, N — 真数,log a N — 对数式)说明: ○ 注意底数的限制 a 0 ,且 a 1 1 ; ○2a x Nlog a N x ;○3 注意对数的书写格式.两个重要对数:○常用对数:以 10 为底的对数 lg N ; 1○2 自然对数:以无理数 e 2.71828 为底的对数的对数 ln N .(二)对数的运算性质如果 a 0 ,且 a1 , M 0 , N 0 ,那么:○1 log a (M · N ) log a M + log a N ; ○2 log a Mlog a M - log a N ; N○3 log a M n n log a M (n R).注意:换底公式log a b log c b 0 ,且a 1; c 0 ,且c 1; b 0 ). log c (a a 利用换底公式推导下面的结论(1) log am b nnlog a b ;( 2) log ab 1 .m log b a(二)对数函数1、对数函数的概念:函数y log a x(a 0 ,且 a 1) 叫做对数函 数,其中 x 是自变量,函数的定义域是( 0, +∞).注意: ○对数函数的定义与指数函数类似,都是形式定义,注意 1辨别。

如:y 2 log 2 x ,y log5x都不是对数函数,而只能称5 其为对数型函数.○ 对数函数对底数的限制: ( a 0 ,且 a 1) .2 2、对数函数的性质:a>10<a<1 332 . 5 2 . 5 221 . 5 1 . 51 1 1 10 . 5 0 . 5-1 0-.51 23 45 6 7 8-1 0-.512 3456 781 1-1-1-1.5-1.5-2-2-2.5-2.5定义域 x> 0 定义域 x>0 值域为 R 值域为 R在 R 上递增在 R 上递减函数图象都函数图象都过定点过定点( 1,0)( 1,0)对数函数·例题解析例 1. 求下列函数的定义域:(1) y log a x 2; ( 2) y log a (4 x) ; ( 3) y log a (9 x 2) .解:( 1)由 x 2>0 得 x 0 ,∴函数 y log a x 2的定义域是x x 0 ;( 2)由 4 x 0 得 x 4 ,∴函数 y log a (4 x) 的定义域是 x x 4 ;( 3 ) 由 9-x 2 0 得 -3 x 3 , ∴ 函 数 y l og(9 x 2 ) 的 定 义 域 是 ax1x 3 x 3 .例 2. 求函数 y 5x 解:( 1) 1y 2 ∴ f 1(x) log 1 5 5 x 2 1( 2) 1y - 2 ∴ f -1 ( x) 2 例 4. 比较下列各组数中两个值的大小:x 21 12 ( x 0) 的反函数。

(完整版)对数公式及对数函数的总结

(完整版)对数公式及对数函数的总结

(完整版)对数公式及对数函数的总结对数运算和对数函数对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数。

③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =?=>≠>。

常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中2.71828e =…).对数函数及其性质类型一、对数公式的应用1计算下列对数=-3log 6log 22 =?31log 12log 2222=+2lg 5lg =61000lg=+64log 128log 22 =?)24(log 432 =++)2log 2)(log 3log 3(log 9384=++3log 23log 2242 =?16log 27log 32 =+-2log 90log 5log 333=++c b a 842log log log =+++200199lg 43lg 32lgΛ =++32log 8log 8log 842 =+25.0log 10log 255 =-64log 325log 225 =)))65536(log (log (log log 22222 解对数的值:18lg 7lg 37lg214lg -+- 0 =-+-1)21(2lg 225lg-1 13341log 2log 8??-? ???的值0 提示:对数公式的运算如果0,1,0,0a a M N >≠>>,那么(1)加法:log log log ()a a a M N MN += (2)减法:log log log a a aMM N N-= (3)数乘:log log ()na a n M M n R =∈ (4)log aN a N = (5)log log (0,)b n a a nM M b n R b=≠∈(6)换底公式:log log (0,1)log b a b NN b b a=>≠且(7)1log log =?a b b a (8)a b b a log 1log =类型二、求下列函数的定义域问题 1函数)13lg(13)(2++-=x xx x f 的定义域是)1,31(-2设()x x x f -+=22lg,则??+??? ??x f x f 22的定义域为 ()()4,11,4Y --3函数()f x = ]1,0()0,1(Y - )提示:(1)分式函数,分母不为0,如0,1≠=x xy 。

对数公式及对数函数的总结

对数公式及对数函数的总结

对数公式及对数函数的总结对数是数学中的一个重要概念。

如果一个数N可以表示为a的x次方(a>0且a≠1),那么x就是以a为底N的对数,记作x=logaN。

其中a称为底数,N称为真数。

负数和零没有对数。

对数式与指数式可以互相转化:x=logaN等价于ax=N (a>0,a≠1,N>0)。

常用的对数有lgN(即以10为底N的对数)和lnN(即以自然常数e为底N的对数)。

自然常数e≈2..对数函数是指函数y=logax(a>1或0<a<1)的图像。

它的定义域为正实数集,值域为实数集。

对数函数的图像经过点(1,0),在(0,+∞)上是增函数,在(0,1)上是减函数。

当x=1时,y=0.对数函数既非奇函数也非偶函数。

对数公式在数学中有广泛的应用。

例如,可以用对数公式计算各种对数值,如log26-log23=2,log212+log25=log=3,等等。

还可以用对数公式来解对数的值,如lg14-2lg7+lg7/lg18-2lg2-(-1)=log0.5,以及2(lg2+lg5)+log3(4/27)的值等。

在第一象限内,a越大图像越靠下,在第四象限内,a越大图像越靠上。

总之,对数及其函数在数学中有着广泛的应用,是不可或缺的数学工具。

4、已知a>b>c,那么a>b>c。

3、设a=log3π,b=log23,c=log32,则a>b>c。

2、如果a>b>logc1,那么B选项___c。

5、如果a>1,且a-x-logaxy。

1、已知函数f(x)=logx,如果f(ab)=1,则f(a)+f(b)=2.6、设函数f(x)={x-1,x<2;2logx-1,x≥2},那么f(f(2))=2log2-1.7、设函数f(x)满足:当x≥4时,f(x)=1/x;当x<4时,f(x)=f(x+1),那么f(2+log23)=1/7.参数问题部分无需改写。

对数函数及其性质

对数函数及其性质

对数函数及其性质对数函数是数学中的一种特殊函数,广泛应用于科学和工程领域。

它的性质包括增减性、定义域、值域等。

本文将详细介绍对数函数及其性质,帮助读者深入理解并运用该函数。

一、对数函数的定义对数函数是指以某个固定的正数(底数)为底,将任意的正数(真数)映射到另一个数上的函数。

对数函数的常见表示形式为y=logₐx,其中底数a>0且a≠1,真数x>0。

二、对数函数的性质1. 增减性对数函数的增减性与底数a的大小有关。

当底数a>1时,对数函数随着真数的增加而增加;当底数0<a<1时,对数函数随着真数的增加而减小。

2. 定义域和值域对数函数的定义域为正实数集,即x>0。

值域为实数集,即y∈R。

3. 特殊值当真数x=1时,对数函数的值为0,即logₐ1=0。

当底数a=1时,对数函数无定义。

4. 对数函数的基本关系(1)对数函数和指数函数的互逆关系:对于任意的正实数x和底数a>0且a≠1,有aⁿ=x⇔logₐx=n。

(2)对数函数的乘积法则:logₐ(xy)=logₐx+logₐy,其中x、y>0。

(3)对数函数的商法则:logₐ(x/y)=logₐx-logₐy,其中x、y>0。

(4)对数函数的幂法则:logₐ(xⁿ)=nlogₐx,其中x>0,n为任意实数。

5. 对数函数的图像当底数a>1时,对数函数的图像呈现典型的递增曲线;当底数0<a<1时,对数函数的图像呈现典型的递减曲线。

对数函数在x轴的正半轴上的图像称为对数曲线。

三、对数函数的应用1. 数据压缩与展示对数函数可以用于对数据进行压缩和展示。

当数据的幅度较大时,可以通过对数函数对其进行压缩,从而使得数据更易读取和呈现。

2. 指数增长模型对数函数常用于描述指数增长模型,如人口增长、物种繁殖等。

对数函数能够将指数增长转化为线性关系,便于模型的建立和求解。

3. 信号处理对数函数在信号处理中有广泛的应用,如音频信号处理、图像处理等领域。

对数的性质和运算

对数的性质和运算

对数的性质与运算如果a^n=b,那么log(a)(b)=n。

其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。

log(a)(b)函数叫做对数函数。

对数函数中b的定义域是b>0,零和负数没有对数;a的定义域是a>0且a≠1对数的性质及推导定义:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)推导1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、因为a^b=a^b令t=a^b所以a^b=t,b=log(a)(t)=log(a)(a^b)3、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}两种方法只是性质不同,采用方法依实际情况而定又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)4、与(3)类似处理MN=M÷N由基本性质1(换掉M和N)a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]由指数的性质a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M÷N) = log(a)(M) - log(a)(N)5、与(3)类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)] = {a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(b^m)÷ln(a^n)换底公式的推导:设e^x=b^m,e^y=a^n则log(a^n)(b^m)=log(e^y)(e^x)=x/yx=ln(b^m),y=ln(a^n)得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)由基本性质4可得log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}再由换底公式log(a^n)(b^m)=m÷n×[log(a)(b)](性质及推导完)函数图象1.对数函数的图象都过(1,0)点.2.对于y=log(a)(n)函数,①当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.其他性质性质一:换底公式log(a)(N)=log(b)(N)÷log(b)(a)推导如下:N = a^[log(a)(N)]a = b^[log(b)(a)]综合两式可得N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N) / log(b)(a)公式二:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1在Excel中如何求得反对数,即对数的真数?假设以a为底的对数为N,那么其反对数=a^N。

对数函数的定义与性质

对数函数的定义与性质

对数函数的定义与性质对数函数是数学中一种常见的特殊函数,它在很多领域都有着重要的应用。

在本文中,我们将探讨对数函数的定义与一些基本性质。

一、对数函数的定义对数函数是指以某个常数为底数的对数函数。

通常用log表示。

对于任何正数x和正数a(a≠1),对数函数可以用以下公式表示:y = logₐx其中,a表示底数,x表示真数,y表示以a为底x的对数。

二、常见的对数函数1. 自然对数函数:当底数a取自然常数e(e≈2.71828)时,对数函数称为自然对数函数。

自然对数函数的常用记法为ln,即y = ln⁡x。

2. 以10为底的对数函数:当底数a取10时,对数函数称为常用对数函数。

常用对数函数用log表示,即y = log₁₀x。

三、对数函数的性质对数函数具有以下几个基本性质:1. 定义域和值域:对于底数a大于1的对数函数,其定义域为正实数集(0,+∞),值域为实数集。

对于底数a等于1的对数函数,其定义域为正实数集(0,+∞),值域为空集。

2. 单调性:对数函数在定义域内是严格递增函数。

当底数a大于1时,对数函数随着真数的增大而增大;当底数a在0和1之间时,对数函数随着真数的增大而减小。

3. 对数的运算性质:(1)对数乘法公式:logₐ(x·y) = logₐx + logₐy。

即对数函数中两个数的积等于对数函数中各自对应数的对数之和。

(2)对数除法公式:logₐ(x/y) = logₐx - logₐy。

即对数函数中两个数的商等于对数函数中各自对应数的对数之差。

(3)对数的幂运算公式:logₐ(b^x) = x·logₐb。

即对数函数中一个数的指数幂等于对数函数中该数对应底数的对数乘以指数。

4. 特殊值:(1)对于底数a大于1的对数函数,当真数x等于1时,对数函数的值为0,即logₐ1 = 0。

(2)对于底数a大于1的对数函数,当真数x等于底数a时,对数函数的值为1,即logₐa = 1。

(完整版)对数函数公式汇总

(完整版)对数函数公式汇总

(完整版)对数函数公式汇总引言对数函数是数学中常见的一类函数,具有广泛的应用。

本文将对常见的对数函数公式进行汇总和解释,旨在帮助读者更好地理解和应用这些公式。

一、自然对数函数自然对数函数(Natural logarithm n)是以底数为常数e(自然常数)的对数函数。

其公式如下:$$ y = \ln(x) $$其中,x为自变量,y为函数值。

二、常用对数函数$$ y = \log_{10}(x) $$其中,x为自变量,y为函数值。

三、换底公式换底公式(Change of Base Formula)用于将对数函数转换到不同的底数上。

对于任意正数a、b和x,换底公式如下:$$ \log_a(x) = \frac{\log_b(x)}{\log_b(a)} $$四、对数函数的性质- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。

- 自然对数函数和常用对数函数是单调递增函数,即函数随着自变量的增加而增加。

- 对数函数的图像是一条曲线,其形状取决于底数。

五、对数函数的应用对数函数广泛应用于科学、工程、经济等领域。

主要的应用包括:1. 数据比较:对数函数可以用于比较数据的大小,特别是在数据跨度较大的情况下,比较各个数据点的对数值可以更加直观地观察数据的差异。

2. 指数增长:对数函数常用于模拟指数增长的现象,如人口增长、病毒传播等。

3. 解方程:对数函数常用于解决含对数的方程,通过变换可以简化计算过程,提高解题效率。

结论本文对自然对数函数、常用对数函数及其应用进行了总结和解释。

通过深入理解对数函数的基本公式和性质,读者可以更好地应用对数函数解决实际问题,提高数学建模的能力。

对数的概念与运算PPT课件

对数的概念与运算PPT课件
则 a>b>c .
-
12
三、解不等式 (1) 33-x<6
(2) lg(x-1)<1
四、图象的变换
y
已知f(x)=lgx的图象,画出下列 函数的图象,并指出与y=f(x)之 间的关系.
(1) y=f(-x)
(2) y=-f(x)
O1
x
(3) y=f(x+1) (4)y=f(x)-2
(5) y=f(∣x∣) (6) y=∣f(x)∣
对数
对数的概念 1. 对数的概念
与运算
2. 对数恒等式
3. 对数的运算性质
4. 换底公式
如果a(a>0,a≠1)的b次幂等于N,即 ab=N,那么就称b是以a为底N的对数, 记作logaN=b.其中,a叫做对数的底 数,N叫做真数,N>0.
lgN叫常用对数, lnN叫自然对数
对数函数
-
1
对数
对数的概念 1. 对数的概念
M
② loga N =logaM-logaN
③ loga M n =nlogaM
其中a>0,a≠1,M>0,N>0,n∈R
对数函数
-
3
对数
对数的概念 1. 对数的概念
与运算
2. 对数恒等式
3. 对数的运算性质
4. 换底公式
lo
ga
N
logc logc
N a
其中a>0,a≠1,c>0,c≠1,N>0
log31= 0 , lg1000= 3 ,
1
log2 2 = 2 ,
log256-log27=
1
log2 2 =
-1 , log327=

对数函数运算公式

对数函数运算公式

对数函数运算公式对数函数是高中数学中的一个重要概念,它在数学和科学运算中都有广泛的应用。

对数函数有着丰富的性质和运算规则,下面将介绍对数函数的运算公式。

1.对数函数的定义:对数函数是指关于求对数的函数,一般表示为y = logₐx,其中a是底数,x是真数,y是对数。

对数函数的定义域是x > 0,值域是实数集。

2.对数的含义:对数的含义是指一个数相对于一个给定底数的幂次。

对数函数的运算公式是以底数为底的指数函数的反函数。

即x = a^y,y = logₐx。

3.基本对数函数的性质和运算规则:- logₐa = 1:任何数以自己为底的对数都等于1- logₐ1 = 0:任何底数为自然数的对数都等于0。

- logₐaⁿ = n:任何底数为幂的对数等于指数。

- logₐxy = logₐx + logₐy:两个数的乘积的对数等于它们的对数之和。

- logₐ(x/y) = logₐx - logₐy:两个数的商的对数等于它们的对数之差。

- logₐxⁿ = nlogₐx:一个数的幂的对数等于幂次与对数的乘积。

- logₐa = 1/logₐa:对数函数的互逆性,任何数以底数为底的对数等于指数函数的互逆。

4.对数函数的换底公式:换底公式是指当给定一个对数的底不是我们所熟悉的常用底数,需要将其换成我们所熟悉的底数的公式。

换底公式如下:logₐx = logᵦx / logᵦa其中,a,b,x为正实数,且a≠1,b≠15.对数函数与指数函数的关系:对数函数和指数函数是互为反函数的关系,即对数函数是指数函数的反函数,反之亦然。

对数函数可以用来求解指数方程,而指数函数可以通过对数函数求解指数方程的解。

6.常用对数函数:在实际应用中,常用的对数函数是以10为底的常用对数函数(log₁₀x),以及以自然对数e为底的自然对数函数(lnx)。

常用的对数函数主要用于科学计算、对数缩尺、音量、酸碱度等方面。

总结起来,对数函数的运算公式包括对数函数的性质和运算规则、换底公式、对数函数与指数函数的关系等。

对数公式与对数函数的总结

对数公式与对数函数的总结

对数公式与对数函数的总结对数公式是数学中常用的一类公式,对数函数则是对数公式的应用。

下面是对数公式与对数函数的总结:一、对数公式的定义和性质:1. 定义:设a>0且a≠1,b是任意正数,则称满足a^x=b的方程x=log_a(b)为以a为底的对数方程,其中x称为以a为底b的对数,记作x=log_a(b)。

其中,底数a决定对数的性质,真数b是要求的值。

2.特性:- 若a^x=b,则x=log_a(b);- 对于任意a、b,log_a(1)=0,log_a(a)=1,log_1(a)是无定义的;- a^log_a(b)=b,log_a(a^x)=x,log_a(b^x)=xlog_a(b);- 对于任意x,log_a(a^x)=x,a^log_a(x)=x;- 对于任意a、b、c,log_a(bc)=log_a(b)+log_a(c),log_a(b/c)=log_a(b)-log_a(c),log_a(b^c)=clog_a(b);- 对于任意a,b>0且c>0且c≠1,若log_a(b)=log_c(b),则a=c;- 对于任意a,b、c>0,若log_a(c)=d且log_b(c)=e,则d=log_a(b)e;- 设a>1,则对数函数y=log_a(x)是单调递增函数,且图像关于y=ax对称;- 设0<a<1,则对数函数y=log_a(x)是单调递减函数,且图像关于y=ax对称。

二、常见的对数公式及其应用:1. 换底公式:设x>0,a>0且a≠1,b>0且b≠1,则有log_a(b)=log_c(b)/log_c(a),其中c为任意正数。

应用:用换底公式,可以将任意底数的对数转换为以10或以e为底的对数,方便计算。

2. 对数的乘法法则:对于任意a>0且a≠1、b>0且b≠1,以及任意正整数n,有log_a(b^n)=nlog_a(b)。

对数函数的运算公式

对数函数的运算公式

对数函数的运算公式对数函数是数论中的重要概念,它描述了一个数在一些底数下所对应的指数。

在解决复杂数学问题时,对数函数的运算公式是必不可少的。

本文将介绍基本的对数函数运算公式,并以实际问题为例,进一步说明如何运用这些公式。

一、定义与性质如果 a^x = b,那么 x = log_a(b)其中a为底数,x为指数,b为对数的真数。

1.对数函数的定义域是正实数集,值域是实数集;2. 对于 a > 1,log_a(x) 是递增函数;对于 0 < a < 1,log_a(x) 是递减函数;3. 对于 a > 1,log_a(a) = 1;对于 0 < a < 1,log_a(a) = 1二、基本运算公式1.换底公式:log_b(x) = log_a(x) / log_a(b)其中a,b为底数,x为对数的真数。

换底公式是对数函数中应用最广泛的公式之一,它在计算对数时可以选择任意底数,通常选择底数为10(常用对数)或底数为e(自然对数)进行计算。

2.对数相等的性质:如果 log_a(b) = log_c(b),则 a = c。

这个性质说明了对数函数在底数相等的情况下,当两个对数的真数相等时,它们的底数一定相等。

3.对数乘法公式:log_a(b * c) = log_a(b) + log_a(c)其中a为底数,b,c为对数的真数。

对数乘法公式表示,对数函数在真数相乘时,对数相加。

4.对数除法公式:log_a(b / c) = log_a(b) - log_a(c)其中a为底数,b,c为对数的真数。

对数除法公式表示,对数函数在真数相除时,对数相减。

5.对数的幂运算公式:log_a(b^c) = c * log_a(b)其中a为底数,b为对数的真数,c为幂数。

对数的幂运算公式表示,对数函数在真数进行幂运算时,对数乘以幂数。

6.指数函数与对数函数的关系:a^log_a(b) = b其中a为底数,b为对数的真数。

《对数对数函数》课件

《对数对数函数》课件

CHAPTER
06
对数函数的计算方法
对数函数的换底公式
换底公式
log_b(a) = log_c(a) / log_c(b),其 中c是任意正实数,且c ≠ 1。
应用场景
当需要将不同底数的对数转换为同底 数时,可以使用换底公式进行转换。
注意事项
换底公式中的c不能取值为1或0,因 为log_1(x)和log_0(x)都是未定义的
对数函数的奇偶性
总结词
对数函数的奇偶性是指函数值对于自变量取反时是否保持不变的性质。
详细描述
对于偶函数,如以e为底的自然对数函数,当自变量取反时,函数值不变;对于奇函数 ,如以π为底的对数函数,当自变量取反时,函数值也取反。
对数函数的周期性
总结词
对数函数的周期性是指函数值在一定周 期内重复出现的性质。
定义域
$x > 0$
值域
$y in mathbf{R}$
图像特点
在第一象限内,函数图像从下方向上方向上升,与x轴相交于点(1,0),无上界。
对数函数图像的变换
函数变换
通过平移、伸缩、翻转等变换,可以得到不 同的对数函数图像。
伸缩变换
将函数图像沿x轴或y轴进行伸缩,可以得到 不同的对数函数图像。
平移变换
对数函数的定义域和值域
定义域
对于自然对数ln(x),定义域为x>0;对于常用对数lg(x),定义域为x>0。
值域
对数函数的值域为全体实数R。
CHAPTER
02
对数函数的性质
对数函数的单调性
总结词
对数函数的单调性是指函数值随着自变量的增加而增加或减少的性质。
详细描述
对于底数大于1的对数函数,如以10为底的对数函数,当自变量增加时,函数值也增加,因此是单调 递增的。而对于底数在0到1之间的对数函数,如以0.1为底的对数函数,当自变量增加时,函数值减 小,因此是单调递减的。

高三对数函数相关知识点

高三对数函数相关知识点

高三对数函数相关知识点近年来,高考数学的考题中出现了越来越多与对数函数相关的题目。

对数函数作为数学的一个重要分支,对于高三学生来说非常重要。

在复习高考数学的过程中,我们不得不深入了解和掌握对数函数的相关知识点。

一、对数函数的定义和性质对数函数是指以一个正数为底数的指数函数,常见的对数函数有以10为底数的常用对数(log)和以自然常数e为底数的自然对数(ln)。

对数函数的定义为:若a>0且a≠1,那么对于任意的正实数x,a^x 的对数叫做以a为底的对数,记作logₐx。

对数函数的性质有以下几点:1. 对数函数的定义域为正实数集,值域为实数集。

2. 对数函数的图像与指数函数的图像关于y=x对称。

3. 对数函数的导数为其自身的倒数。

二、对数函数的基本关系式1. logₐ(x·y) = logₐx + logₐy2. logₐ(x/y) = logₐx - logₐy3. logₐ(x^k) = k·logₐx这些基本关系式在解决对数函数相关问题时非常有用,熟练掌握它们能够大大提高解题的效率。

三、对数函数的性质和图像对数函数具有以下几个重要的性质:1. 对数函数的递增性:当0<a<1时,logₐx随着x的增加而增加;当a>1时,logₐx随着x的增加而减小。

2. 对数函数的奇偶性:logₐ(-x)不存在实数解,所以对数函数是定义在正实数集上的。

3. 对数函数的零点:logₐ1=0,即对数函数的底数的1次幂的结果为1。

对数函数在数学中的图像具有一定的特点:1. 当0<a<1时,对数函数的图像在一象限内,且逐渐逼近x轴。

2. 当a>1时,对数函数的图像在一象限内,且逐渐逼近y轴。

了解对数函数的性质和图像,能够帮助我们更好地理解和运用对数函数。

四、对数函数的应用对数函数在实际应用中有着广泛的应用,以下介绍两个常见的应用场景:1. pH值的计算:pH值是用来表示溶液酸碱程度的指标,其计算公式为pH = -log[H+],其中[H+]表示溶液中氢离子(酸性物质)的浓度。

对数函数的性质及运算

对数函数的性质及运算

对数函数的性质及运算对数函数是数学中经常使用的一种函数,它在许多领域都有重要的应用。

本文将探讨对数函数的性质及其运算规则。

一、对数函数的定义及性质对数函数的定义:给定一个正数a(a>0且a≠1),那么以a为底的对数函数记作logₐ(x),定义为满足a的x次方等于b的数x,即aˣ=b,其中b>0。

1. 对数函数的定义域和值域:对数函数的定义域是(0, +∞),值域是(-∞, +∞)。

当底数a>1时,对数函数是递增的;当0<a<1时,对数函数是递减的。

2. 对数函数的性质:(1)logₐ(a)=1,即对数函数的基本性质。

(2)logₐ(aˣ)=x,即对数函数的反函数性质。

(3)logₐ(a×b)=logₐ(a)+logₐ(b),即对数函数的乘法公式。

(4)logₐ(a/b)=logₐ(a)-logₐ(b),即对数函数的除法公式。

(5)logₐ(a^k)=k·logₐ(a),即对数函数的幂函数公式。

(6)logₐ1=0,即对数函数的特殊性质。

二、对数函数的运算规则1. 对数运算的基本性质:(1)logₐ(m×n)=logₐ(m)+logₐ(n),即对数乘法法则。

(2)logₐ(m/n)=logₐ(m)-logₐ(n),即对数除法法则。

(3)logₐ(m^k)=k·logₐ(m),即对数幂函数法则。

(4)logₐ(a)=1/logₐ⁡(a),即对数底变换公式。

2. 特殊情况下的对数运算:(1)logₐ(a)=1,其中a是正实数且a>0,即指数和对数的底为同一个数时,结果为1。

(2)logₐ(a)≠0,其中a是正实数且a>0,即指数和对数的底不相等时,结果不为0。

三、对数函数的应用对数函数在科学研究和实际生活中有着广泛的应用,例如:1. 财务与利息计算:对数函数可以用于计算复利、年化利率等问题。

2. 生物学与医学研究:对数函数可以用于研究生物体的生长和代谢等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2 对数函数 2.2.1 对数与对数运算1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ⇔x =log a N ,从而得对数恒等式:a log a N =N .(2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a MN=log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( )①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立.在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x的值.错解由对数的性质可得x 2+3x =x +3.解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了. 正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0∴3x =7或3x =-1(舍去) ∴x =log 37. 答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2. 3.log 56·log 67·log 78·log 89·log 910的值为( )A .1B .lg5 C.1lg5D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( )A .lg7·lg5B .lg35C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案 2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2. 8.log (2-1)(2+1)=________. 答案 -1解析 log 2-1(2+1)=log 2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3,即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值;(2)已知log 189=a,18b=5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ),∴xy =(x -2y )2,即x 2-5xy +4y 2=0.即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a ,∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a. 11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z=0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1),则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0. 即lg(c 2-b 2)-2lg a =0,故c 2-b 2=a 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形.2.2.1 对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化. 2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引 1.如果a (a >0且a ≠1)的b 次幂等于N ,就是a b =N ,那么数b 叫做以a 为底N 的对数,记作b =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质有:(1)1的对数为零; (2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3.分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x=24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N =c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3.5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3,∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值(1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值; (2)若log 2 003(x 2-1)=0,则求x 值.解 (1)∵log 3⎝⎛⎭⎫1-2x 9=1,∴1-2x 9=3∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log 224;(2)x =log 93;(3)x =71-log 75;(4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x =4,∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝ ⎛⎭⎪⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ).2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50.精品文档分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1.(3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5) =(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622 =log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36,∴x =log 336,y =log 436, 由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y=2log 363+log 364 =log 36(32×4)=log 3636=1.(2)∵log 189=a,18b =5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值.精品文档解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a3-a+1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式: x =log 2.51 000,y =log 0.251 000, 则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005)=log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________.答案 a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5)=12lg10=12.方法二原式=lg427-lg4+lg7 5=lg42×757×4=lg(2·5)=lg10=12.(2)方法一原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg52+lg4=lg⎝⎛⎭⎫52×4=lg10=1.方法二原式=(lg10-lg2)2+2lg2-lg22=1-2lg2+lg22+2lg2-lg22=1.10.若26a=33b=62c,求证:1a+2b=3c.证明设26a=33b=62c=k (k>0),那么⎩⎪⎨⎪⎧6a=log2k,3b=log3k,2c=log6k,∴⎩⎪⎨⎪⎧1a=6log2k=6log k2,1b=3log3k=3log k3,1c=2log6k=2log k6.∴1a+2b=6·log k2+2×3log k3=log k(26×36)=6log k6=3×2log k6=3c,即1a+2b=3c.2.2.2对数函数及其性质1.对数函数的概念形如y=log a x (a>0且a≠1)的函数叫做对数函数.对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a 必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.2.对数函数的图象及性质:a>10<a<1图象性质函数的定义域为(0,+∞),值域为(-∞,+∞)函数图象恒过定点(1,0),即恒有log a1=0当x >1时,恒有y>0;当0<x<1时,恒有y<0 当x>1时,恒有y<0;当0<x<1时,恒有y>0函数在定义域(0,+∞)上为增函数函数在定义域(0,+∞)上为减函数3.指数函数与对数函数的关系比较名称指数函数对数函数解析式y=a x (a>0,且a≠1)y=log a x(a>0,且a≠1) 定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)函数值变化情况a>1时,()()()⎪⎩⎪⎨⎧<<==>>1111xxxa x;0<a<1时,x()()()⎪⎩⎪⎨⎧<>==><1111xxxa xa>1时,log a x()()()⎪⎩⎪⎨⎧<<>==>>111xxx;0<a<1时,log a x()()()⎪⎩⎪⎨⎧<<>==><111xxx图象必过定点点(0,1)点(1,0)单调性a>1时,y=a x是增函数;0<a<1时,y=a x是减函数a>1时,y=log a x是增函数;0<a<1时,y=log a x是减函数图象y=a x的图象与y=log a x的图象关于直线y=x对称实际上,观察对数函数的图象不难发现,对数函数中的值y=log m n有以下规律:(1)当(m-1)(n-1)>0,即m、n范围相同(相对于“1”而言),则log m n>0;(2)当(m-1)(n -1)<0,即m、n范围相反(相对于“1”而言),则log m n<0.有了这个规律,我们再判断对数值的正负就很简单了,如log213<0,log52>0等,一眼就看出来了!题型一求函数定义域求下列函数的定义域:(1)y=log3x-12x+3 x-1;(2)y=11-log a(x+a)(a>0,a≠1).分析定义域即使函数解析式有意义的x的范围.解(1)要使函数有意义,必须{2x+3>0,x-1>0,3x-1>0,3x-1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba,log b a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1, log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R ,∴ax 2+2x +1>0对x ∈R 恒成立,即{ a >0Δ<0⇔{ a >04-4a <0⇔a >1.错因分析 出错的原因是分不清定义域为R 与值域为R 的区别. 正解 函数f (x )=lg(ax 2+2x +1)的值域是R ⇔真数t =ax 2+2x +1能取到所有的正数.当a =0时,只要x >-12,即可使真数t 取到所有的正数,符合要求;当a ≠0时,必须有{ a >0Δ≥0⇔{ a >04-4a ≥0⇔0<a ≤1. ∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a解析 ∵1e<x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0.∴a -b =t -2t =-t >0.∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅ 答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a 1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( ) A .c <b <a B .a <b <c C .b <c <a D .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数. 又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:x -2 0 2 f (x ) 0.694 1 1.44则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log ax ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数,因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2,又1≤x ≤2,∴0≤log 2x ≤1.∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过点(1,0),即log a1=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1a x的图象关于x轴对称对数函数y=log a x(a>0且a≠1)和指数函数y=a x_(a>0且a≠1)互为反函数.一、对数函数的图象例1下图是对数函数y=log a x的图象,已知a值取3,43,35,110,则图象C1,C2,C3,C4相应的a值依次是()A.101,53,34,3B .53,101,34,3C .101,53,3,34D .53,101,3,34答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ; (2)若logm0.5>logn0.5,则m n. 答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域:(1)y =3log 2x ;(2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义,必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小: (1)log 0.81.5与log 0.82; (2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)内是减函数, ∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64, ∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小: (1)log 0.52.7,log 0.52.8; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1). 解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数. 又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数,∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围.分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a .当a >1时,1a <34<a ,∴a >43.当0<a <1时,1a >34>a ,∴0<a <34.∴a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性. (2)解决与对数函数相关的问题时要遵循“定义域优先”原则. (3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围. 解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎪⎨⎪⎧0<2a +1<10<3a <12a +1<3a,解得⎩⎪⎨⎪⎧-12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎪⎨⎪⎧2a +1>13a >12a +1>3a,解得⎩⎨⎧a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

相关文档
最新文档