线性代数第二版 主编 吴传生 第一章 线性方程组的消元法和矩阵的初等变换
线性代数课件 第一章
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
《线性代数》课件
(1)当m=1时,矩阵只有一行,称为行矩阵,即
A a11 a12 a1n
(2)当n=1时,矩阵只有一列,称为列矩阵,即
a11
A
a21 an1
(3)当m=n时,称A为n阶矩阵或n阶方阵。
例1. 设
A
2 3
1 4
71
B
3 7
5 8
则A是一个2×3矩阵,B是一个2阶方阵,
A的(2,3)元是1。
线性代数
讲课教师: 理学院数学系
电话:
3885761
李金玉
第一章 消元法
1 矩阵及其初等变换 2 消元法
第一节 矩阵及其初等变换 一、基本概念 引例 A、B、C、D四地有直航班如图
B
A
C
A
D
B
两地有航班用1表示,
C
无航班用0表示。
D
ABCD
01 10 10 01
10 10 01 10
1.矩阵的定义
0
0
0
继续使用初等行变换,将B化为行最简阶梯形矩阵:
1 2 1 1 2
1 2 1
B
1
6 r3
0
0
0
3 0 0
2 0 0
2
1
r2 2r3 r1 r3
0
1 13
0
0
0
0
3 0 0
2 0 0
0 73
0
1
3
1 13
0
0
1 2 1
1
3 r2
0
1
2 3
0 0 0
0
0
0
0 0
7 3 1 9
矩阵A与B等价,记作 A B.
线性代数第二版 主编 吴传生 第一章 线性方程组的消元法和矩阵的初等变换)
a22 x2 a2 n xn b2
am 2 x2 am n xn bm
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组 (1) 分析系数
a11 x1 a12 x2 a1n xn b1
a21 x1 a22 x2 a2n xn b2
am1 x1 am2 x2 amn xn bm
两边同乘以已知常数 ,得到一个新的线性方程:
a1 x1 a2 x2 L an xn b.
线性方程与常数相乘,也称为方程的数乘。
线性方程的线性组合
将线性方程(1)和(2)分别称两个已知常数 1, 2
再将所得的两个方程相加,得到新方程:
1a11 2a21 x1 1a12 2a22 x2 L
方程组转换成 x2 , ,xn 的方程组来解 ,
若 x1 的系数不全为0,则利用变换(1),使 a11 0 . (2) 化简:利用初等变换(3),分别把第一个方程的 ai1 倍
a11 加到第 i 个方程,则方程组可以变成:
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组
a11 x1 a12 x2 a1n xn b1
c11 x1 c12 x2 c1n xn d1
c22 x2 c2n xn d2
crr xr crn xn dr
0 dr1
00
00
(II)当 dr1 0 或方程组中根本没有0 0 的方程,分两种情形:
ii)r n . 这时阶梯型方程组为:
c11 x1 c12 x2 c1r xr c1,r1 xr1 c1n xn d1
定理1 线性方程组的初等变换总是把方程组变成 同解方程组 .
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
线性代数第二版第一章1
a11 a12 = a11a22 - a12a21 a21 a22
并称之为二阶行列式.
备注
定义
由四个数排成二行二列(横排称行、 由四个数排成二行二列(横排称行、竖排
称列) 称列)的数表
a11 a12 a21 a22 ( 4)
表达式 a11a22 − a12 a21称为数表( 4)所确定的二阶 称为数表( a11 行列式, 行列式,并记作 a21
n
= l
1
l
2
L l
n
,
例5 计算对角行列式
0 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0
五.小结
(1) 上三角形行列式 (主对角线下侧元素都为0) 主对角线下侧元素都为 )
a11 a12 L a1n a2 n = a11a22 L ann M ann
0 a22 L D= M M O 0 0 L
其中每一条实线上的三个元素的乘积带正号, 其中每一条实线上的三个元素的乘积带正号,每一 条虚线上的三个元素的乘积带负号, 条虚线上的三个元素的乘积带负号,所得六项的代 数和就是三阶行列式的展开式. 数和就是三阶行列式的展开式.
注意
例 2
计算三阶行列式
1 D= 2 - 1
- 2 1 1
1 - 3 - 1
a11 a21 a31
a12 a22 a32
a13 a23 = a11a22 a33 + a12 a23 a31 + a13 a21a32 a33 - a11a23 a32 - a12 a21a33 - a13 a22 a31
= a11 (a22 a33 - a23 a32 ) - a12 (a21a33 - a23 a31 ) + a13 (a21a32 - a22 a31 )
线性代数简明教程(第二版)-电子课件ch2
继续消去⑥、⑦中的x2,可以得到 同 解
(Ⅳ)
通 过 回 代 , 可 以 很 容 易 的 解 得 方 程 组 (Ⅳ) 的 解 : x1=1, x2=2, x3=-1,也即求得了原方程组(Ⅰ)的解。 分析上述消元法过程,我们对线性方程组施行了三种变换: (1)交换两个方程的位置; (2)用一个不等于零的数乘某一个方程; (3)用一个数乘某个方程后加到另一个方程上. 称这三种变换为线性方程组的初等变换.
阶梯形矩阵
定义 设 m 矩n 阵 A 的 [前aijr](r≤n)行均全不为零,其余
行全为零. A的第k行第1个非零元素为 ,若满足
akjk
每个台阶的高度都是1,也即从上
则称A为阶梯j形1 矩j阵2 ,并往称下jr 每行为第阶一梯个头非。零元素的位置必
须向右ak边jk 至少缩进一个位置
例如
1 8 5 0 0 0 1 0 0 0 2 1 0 0 0 0
进一步观察一下消元法的过程可以发现,消元法中作的 变化仅仅是对方程组的系数和常数项作的变化,可把系 数项和常数项单独拿出来处理。
2 3 1 5
(Ⅰ)
取出系数和常数 项排成矩形数阵
1 2 1 2
4 2 7 7
1 1 2 3
消元法的两方个程方组程跟互这换样的数表是相互唯数一表对的应两的行互换
(Ⅱ)
取出系数和常数 项排成矩形数阵
第2章 线性方程组
在科学研究和生产实践中,许多实际 问题往往涉及到解线性方程组。因此, 对线性方程组的研究具有十分重要的 意义,其本身也是线性代数的重要内容 之一.
2.1 消元法
上一章导出的克拉默法则在理论上是一个非常 完美的结果,利用行列式,把线性方程组的解以 公式解的形式表示了出来。
线性代数 第1章 解线性方程组的消元法与矩阵的初等变换PPT课件
线性关系问题简称线性问题. 解线性方程组是最 简单的线性问题.
-3-
内容介绍
第一章 解线性方程组的消元法与矩阵的初等变换 (4) 第二章 矩阵的理论基础 (12) 第三章 向量空间 (8) 第四章 线性方程组解的结构 (4)
(1)
am1x1am2x2amnxnbm
若b1, b2,…, bm不全为0,则称(1)为非齐次线性方程组;
a11x1a12x2a1nxn0
若b1, b2,…, bm全为0 ,即: a21x1a22x2a2nxn0
(2)
am1x1am2x2 amnxn 0
则称(2)为(1)的导出的齐次线性方程组。
-6-
§1 若干典型问题
引例1 四个城市间的单向航线如图: 1
4
2
3
可简单地用一个数表来表示:
①②③④
① 0 1 1 1 ② 1 0 0 0
③ 0 1 0 0
④ 1 0 1 0
-7-
引例2 线性方程组( P1 )
a11x1 a12x2 a21x1 a22x2
a1nxn b1 a2nxn b2
则称 A 与 B 相等,记作 A = B.
思考1:零矩阵
A
0 0
0 0
与零矩阵
B
0
0
0 0
0
0
相等吗?
思考2:矩阵
1 Ab
a c 0,B0
1 d,
且 A=B
则 a,b,c,d?
- 17 -
矩阵的初等变换
初等变换是研究矩阵的性质、求矩阵的逆和解线 性方程组的重要工具.
考研数学之线性代数讲义(考点知识点+概念定理总结归纳)
收集自网络,不以任何盈利为目的。
欢迎考研的同学,下载学习。
线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m?n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m?n型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4?5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1n a11 a12… a1n b1A= a21 a22… a2n 和(A|?)= a21 a22… a2n b2…………………a m1 a m2… a mn a m1 a m2… a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,? ,a n的向量可表示成 a1(a1,a2,? ,a n)或 a2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n矩阵,右边是n?1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m?n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为?1,??2,? ,?n时(它们都是表示为列的形式!)可记A=(?1,??2,? ,?n).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量?和?相等(记作?=?),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m?n的矩阵A和B可以相加(减),得到的和(差)仍是m?n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m?n的矩阵A与一个数c可以相乘,乘积仍为m?n的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0? c=0 或A=0.转置:把一个m?n的矩阵A行和列互换,得到的n?m的矩阵称为A的转置,记作A T(或A?).有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当?是列向量时,?? T表示行向量,?当?是行向量时,? T表示列向量.向量组的线性组合:设?1,??2,…,?s是一组n维向量, c1,c2,…,c s是一组数,则称c1?1+c2?2+…+c s?s为?1,??2,…,?s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|?),用初等行变换把它化为阶梯形矩阵(B|?).(2)用(B|?)判别解的情况:如果最下面的非零行为(0,0, ?,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|?)的零行,得到一个n×(n+1)矩阵(B0|?0),并用初等行变换把它化为简单阶梯形矩阵(E|?),则?就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵?A是阶梯形矩阵.(B) A是上三角矩阵?A是阶梯形矩阵.(C) A是上三角矩阵?A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12 (1)a21 a22 (2)……… .a n1 a n2… a nn如果行列式的列向量组为?1,??2, … ,?n,则此行列式可表示为|?1,??2, … ,?n|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a11 a12a21 a22 = a11a22-a12a21 .a11 a12 a13a21 a22 a23 = a11a22a33+ a12a23a31+ a13a21a32-a13a22a31- a11a23a32-a12a21a33.a31 a32 a33一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)………a n1 a n2… a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定?(j 1j 2…j n )为全排列j 1j 2…j n的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21nj j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,??(436512)=3+2+3+2+0+0=10. 至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题第三类初等变换(倍加变换)不改变行列式的值.化零降阶法用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:①把行列式转置值不变,即|A T|=|A| .②某一行(列)的公因子可提出.于是, |c A|=c n|A|.③对一行或一列可分解,即如果某个行(列)向量???????则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量?换为?或??所得到的行列式.例如|?,?1+?2???|=|?,?1???|+|?,?2???|.????④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A||B|.O B * B范德蒙行列式:形如1 1 1 (1)a1 a2 a3 … a na12 a22 a32… a n2…………a1n-i a2n-i a3n-i… a n n-i的行列式(或其转置).它由a1,a2 ,a3,…,a n所决定,它的值等于因此范德蒙行列式不等于0? a1,a2 ,a3,…,a n两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,?,D n/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|?)作初等行变换,使得A变为单位矩阵:(A|?)?(E|?),?就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A| 0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x1 1 1 11 1+x2 1 1 .1 1 1+x3 11 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(?, ?1, ?2 ,?3),B=(?, ?1, ?2 ,?3),|A|=2, |B|=3 ,求|A+B| .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式 两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出). 例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111nni i i i i n i i a c c c a b c c -+==-∑∏.… … … … b n ?????????? … 0 c n提示: 只用对第1行展开(M 1i 都可直接求出). 另一个常见的n 阶行列式: 例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn i ii a b a b a b ++-=-=-∑(当a ?b 时).0 0 0 … a+b b 0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x1+x2+x3=a+b+c,ax1+bx2+cx3=a2+b2+c2,bcx1+acx2+abx3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x3(x+4). ③ a3(a+10).例2 1875.例3 x1x2x3x4+x2x3x4+x1x3x4+x1x2x4+x1x2x3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 a m2… a mn ,b n1 b n2… b ns ,c m1 c m2… c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A?0推不出B=C.(无左消去律)由BA=CA和A?0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质: |AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A 的连乘积.规定A 0=E . 显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则: ① A k A h = A k+h . ② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等! n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定 f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (A ?B )2=A 2?2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A和B,可以先用纵横线把它们切割成小矩阵(一切A的纵向切割和B的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A11 A12 B11 B12 = A11B11+A12B21 A11B12+A12B22A21 A22 B21 B22 A21B11+A22B21 A21B12+A22B22要求A ij的列数B jk和的行数相等.准对角矩阵的乘法:形如A1 0 0A= 0 A2 0………0 0 …A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A1 0 ... 0 B1 0 0A= 0 A2 ... 0 , B= 0 B2 0………………0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B1 0 0AB = 0 A2B2 … 0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是m?n矩阵B是n?s矩阵. A的列向量组为?1,?2,…,?n,B的列向量组为?1,??2,…,?s, AB的列向量组为?1,??2,…,?s,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:?i=A?i,i=1,2,…,s.即A(?1,??2,…,?s)=(A?1,A?2,…,A?s).②?=(b1,b2,…,b n)T,则A?= b1?1+b2?2+…+b n?n.应用这两个性质可以得到:如果?i=(b1i,b2i,…,b ni)T,则?i=A?I=b1i?1+b2i?2+…+b ni?n.即:乘积矩阵AB的第i个列向量?i是A的列向量组?1,??2,…,?n的线性组合,组合系数就是B的第i个列向量?i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵?从左侧乘一个矩阵,相当于用?的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵?从右侧乘一个矩阵,相当于用?的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(?,?,?), C=(?+2?-?,3?-?+?,?+2?),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i?j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j 列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B 有s列,设B=(?1,??2,…,?s),则X也应该有s列,记X=(X1,X2,…,X s),则有AX i=?i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B 有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)?(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)?(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0?B=0;AB=AC?B=C.(左消去律);BA=0?B=0;BA=CA?B=C. (右消去律) 如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C?B=A-1C. BA=C?B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆?|A|?0.证明“?”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|?0. (并且|A-1|=|A|-1.) “?”因为|A|?0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E?BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c?0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)?(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为 A11 A21… A n1A*= A12 A22… A n2 =(A ij)T.………A1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc?0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1??=(1,-2,3) T,?=(1,-1/2,1/3)T, A=?? T,求A6.讨论:(1)一般地,如果n阶矩阵A=?? T,则A k=(?T?)k-1A=(tr?A??)k-1A .(2)乘法结合律的应用:遇到形如?T?的地方可把它当作数处理.① 1 -1 1??T= -1 1 -1 ,求?T?.(2003一)??????????????②设?=(1,0,-1)T, A=??T,求|a E-A n|.③?n维向量?=(a,0,?,0,a)T, a<0, A=E-??T, A-1=E+a-1?? T,求a. (03三,四)④ n维向量?=(1/2,0,?,0,1/2)T, A=E-?? T, B=E+2?? T,求AB. (95四)⑤ A=E-?? T,其中?,?都是n维非零列向量,已知A2=3E-2A,求?T?.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)?????????????????????????例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.????????????????????????????例4??设A为3阶矩阵, ?1,?2,?3是线性无关的3维列向量组,满足A?1=?1+?2+?3, A?2=2?2+??3, A?3=2?2+3?3.求作矩阵B,使得A(?1,?2,?3)=(?1,?2,?3)B. (2005年数学四)例5设3阶矩阵A=(?1,?2,?3),|A|=1,B=(?1+?2+?3,?1+2?2+3?3,?1+4?2+9?3),求|B|.(05)例6 3维向量?1,??2,??3,??1,??2,??3满足?1+?3+2?1-?2=0,?3?1-?2+?1-?3=0,???2+?3-?2+?3=0,已知??1,??2,??3|=a,求|??1,??2,??3|.例7设A是3阶矩阵,??是3维列向量,使得P=(?,A?,A2?)可逆,并且A3?=3A?-2A2?.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设?1=(5,1,-5)T,??2=(1,-3,2)T,??3=(1,-2,1)T,矩阵A满足A?1=(4,3) T, A?2=(7,-8) T, A?3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则?|A|=1.例15 设矩阵A=(a ij)3?3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)?0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设?是n维非零列向量,记A=E-??T.证明(1) A2=A??T? =1.(2)??T? =1? A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆? E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab?0,证明(1) A-b E和B-a E都可逆.(2) A可逆? B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E?A n-2(A2-E)=A2-E ? A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设?1,?2,…,?s是一个n维向量组.如果n维向量?等于?1,?2,…,?s的一个线性组合,就说?可以用?1,?2,…,?s线性表示.如果n维向量组?1,??2,…,?t?中的每一个都可以可以用?1,?2,…,?s线性表示,就说向量?1,?2,…,?t可以用?1,?2,…,?s线性表示.判别“?是否可以用?1,??2,…,?s线性表示? 表示方式是否唯一?”就是问:向量方程x1?1+?x2?2+…+x s?s=?是否有解?解是否唯一?用分量写出这个向量方程,就是以??1,??2,…,?s????为增广矩阵的线性方程组.反之,判别“以?A???为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“?是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.????????向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个列向量都可以表示为A的列向量组的线性组合,从而AB的列向量组可以用A的列向量组线性表示;反之,如果向量组?1,?2,…,?t可以用?1,?2,…,?s线性表示,则矩阵(?1,?2,…,?t)等于矩阵(?1,?2,…,?s)和一个s?t矩阵C的乘积.C可以这样构造: 它的。
[理学]第一章线性方程组的消元法和矩阵的初等变换
主讲人:何童
线性代数
教 材:《经济数学——线性代数》第二版 吴传生等编 高等教育出版社
参考书: 《线性代数》第五版
同济大学编 高等教育出版社
《线性代数》
居余马等编 清华大学出版社
《线性代数复习指导》
马杰编
机械工业出版社
第一章 线性方程组的消元法 和矩阵的初等变换
线性方程组的消元法 矩阵的初等变换
3x3 1 x3 5
x3 6
用“回代”的方法求出解:
阶梯形方程组
x1 9
x2
1
x3 6
x1 9
即:
x2
1
x3 6
小结:
1.用消元法解方程组的过程中,始终把方程 组看作一个整体变形,用到如下三种变换
(1)交换方程次序; ( i 与 j 相互替换)
ij
(2)以不等于0的数乘某个方程;
线性方程与常数相乘,也称为方程的数乘。
线性方程的线性组合:
将线性方程(1)和(2)分别乘两个已知常数 1, 2
再将所得的两个方程相加,得到新方程:
1a11 2a21 x1 1a12 2a22 x2 1a1n 2a2n xn 1b1 2b2 (3)
称为原来两个方程(1)和(2)的一个线性组合,1, 2
第一节 线性方程组的消元法
一、线性方程组的基本概念
1. 线性方程组的定义
由一次方程构成的方程组称为线性方程组。
例如
2xx11
x2 x2
x3 x3
1 0
x1 5 x2 3x2 2
4
而方程组
x1
x32
x3
1 为非线性方程组。
2x1 x2 x3 0
线性方程组的一般表达形式 :
线性代数第1章消元法.ppt
1 0
1 1
-2 -1
1 1
4 0
r4 - 2r3
0 0
0 0
0 0
1 0
- 03
1 0 -1 0 4
r1 - r2 0 1 - 1 0 3
r2 - r3 0 0 0 0
0 1 - 3 0 0 0
定义 (等价关系)
在一个集合 S 中如果有一种关系 R 满足: (1) 自反性:aRa;
(2) 对称性:aRb bRa; (3) 传递性:aRb, bRc aRc。
(1)-(3)×2,(2)+(3)×2
x1
-
x2 3 x2
-3 6
x3 2
r1 - 2 r3 r2 2 r3
1
1
0 - 3
0 -3 0 6
0 0 1 2
(2) ×(-1/3)
x1 x2 x2
-3 -2
x3 2
r2
-
1 3
1
1
0
- 3
0 1 0 -2
0 0 1 2
a21
a22
am1 am2
n) 和常数项 bk
a1n b1
a2n
b2
amn bm
引例2 ( P2 问题3 ) 四个城市间的单向航线如图:
1
4
2
3
可简单地用一个数表来表示:
①②③④
②①
0 1
1 0
1 0
1 0
③ 0 1 0 0 ④ 1 0 1 0
1表示有航班,0 表示没有航班
定义 由m n个数aij (i 1,2,, m;j 1,2,, n)排成
例如
1 5 -1 -1
1 5 -1 -1
线性代数第一章第一节PPT课件
01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。
线性代数考研讲义完整版
线性代数考研讲义完整版Newly compiled on November 23, 2020考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1nxn=b1,a21x1+a22x2+…+a2nxn=b2,…………am1x1+am2x2+…+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b2=…=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由mn个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个mn 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个45矩阵.对于上面的线性方程组,称矩阵a11 a12… a1na11a12… a1nb1A= a21 a22… a2n和(A|)= a21 a22… a2n b2…………………a m1 am2… amnam1am2… amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2, ,a n的向量可表示成a1(a1,a2, ,an)或 a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1n矩阵,右边是n1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个mn的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为1,2, ,n 时(它们都是表示为列的形式!)可记A=(1,2, ,n).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个mn的矩阵A和B可以相加(减),得到的和(差)仍是mn矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个mn的矩阵A与一个数c可以相乘,乘积仍为mn的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0 c=0 或A=0.转置:把一个mn的矩阵A行和列互换,得到的nm的矩阵称为A的转置,记作A T(或A).有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T表示行向量,当是行向量时, T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c 11+c22+…+css为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|).(2)用(B|)判别解的情况:如果最下面的非零行为(0,0, ,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|)的零行,得到一个n×(n+1)矩阵(B0|0),并用初等行变换把它化为简单阶梯形矩阵(E|),则就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵A是阶梯形矩阵.(B) A是上三角矩阵A是阶梯形矩阵.(C) A是上三角矩阵A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式:a11 a12… a1na 21 a22… a2n… … … . a n1 a n2 … a nn如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 . a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33. a 31 a 32 a 33 一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n … … … a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10. 至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握. 3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | . ② 某一行(列)的公因子可提出. 于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0. ⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0. ⑦ 如果A 与B 都是方阵(不必同阶),则 A * = A O =|A ||B |. O B * B 范德蒙行列式:形如 1 1 1 … 1 a 1 a 2 a 3 … a na 12 a 22 a 32 … a 2…………a1n-i a2n-i a3n-i… ann-i的行列式(或其转置).它由a1,a2 ,a3,…,a n所决定,它的值等于因此范德蒙行列式不等于0 a1,a2 ,a3,…,a n两两不同.对于元素有规律的行列式(包括n阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D1/D, D2/D,,Dn/D),这里D是系数行列式的值, D i是把系数行列式的第i个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|)作初等行变换,使得A变为单位矩阵: (A|)(E|),就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x1 1 111 1 .1 1+x211 1 1+x31 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 1 2 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A | =2, |B |=3 ,求|A +B | . 例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 y y-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01) 2 2 2 2 0 -7 0 0 5 3 -2 2 3.几个n 阶行列式 两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0 证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出). 例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111nni i i i i n i i a c c c a b c c -+==-∑∏.… … … … b n … 0 c n提示: 只用对第1行展开(M 1i 都可直接求出). 另一个常见的n 阶行列式: 例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn i ii a b a b a b ++-=-=-∑(当ab 时).0 0 0 … a+b b 0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开. 4.关于克莱姆法则的题 例14 设有方程组x 1+x 2+x 3=a+b+c, ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等. (2)在此情况求解. 参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10). 例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22… a2nB= b21b22… b2sC=AB=c21c22… c2s………………………a m1 am2… amn, bn1bn2… bns, cm1cm2… cms,则c ij =ai1b1j+ai2b2j+…+ainbnj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A0推不出B=C.(无左消去律)由BA=CA和A0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (AB )2=A 22AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ). 二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A10 ... 0 B1 0 0A= 0 A2... 0 , B= 0 B2 0………………0 0 …A k 0 0 …B k 如果类型相同,即A i和B i阶数相等,则A1B10 0AB = 0 A2B2… 0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是mn矩阵B是ns矩阵. A的列向量组为1,2,…,n,B的列向量组为1,2,…,s, AB 的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).② =(b1,b2,…,bn)T,则A= b11+b22+…+b nn.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则i=A I=b1i1+b2i2+…+b nin.即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A 的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(,,), C=(+2-,3-+,+2),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(ij):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s 列,设 B=(1,2,…,s),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s 个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0B=0;AB=ACB=C.(左消去律);BA=0B=0;BA=CAB=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=CB=A-1C. BA=CB=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆|A|0.证明“”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|0. (并且|A-1|=|A|-1.)“”因为|A|0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=EBA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… An1A*= A12 A22… An2=(Aij)T.………A 1n A2n… Amn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 =(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A= T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,,0,a)T, a<0, A=E-T, A-1=E+a-1 T,求a. (03三,四)④ n维向量=(1/2,0,,0,1/2)T, A=E- T, B=E+2 T,求AB. (95四)⑤ A=E- T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+42+93),求|B|.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A3=3A-2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,1求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)33满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆. 讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A T =1.(2)T =1 A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆 E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab0,证明(1) A-b E和B-a E都可逆.(2) A可逆 B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-EA n-2(A2-E)=A2-E A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s线性表示.如果n维向量组1,2,…,t中的每一个都可以可以用1,2,…,s线性表示,就说向量1,2,…,t可以用1,2,…,s线性表示.判别“是否可以用1,2,…,s线性表示表示方式是否唯一”就是问:向量方程x11+x22+…+xss=。
线性代数(第二版)(2016年科学出版社出版的图书)
ቤተ መጻሕፍቲ ባይዱ材目录
(注:目录排版顺序为从左列至右列)
教学资源
《线性代数(第二版)》有配套的慕课——“线性代数”。
获得荣誉
2021年9月26日,《线性代数(第二版)》被国家教材委员会授予首届全国教材建设奖全国优秀教材(高等 教育类)二等奖。
作者简介
陈建龙,1963年生,毕业于南京师范大学,东南大学基础数学系教授、博士生导师。从事代数学的教学和科 研工作,涉及环论、模论、同调理论、矩阵论及广义逆理论。
《线性代数(第二版)》共五章,分别是矩阵、n维向量、线性方程组、矩阵的特征值和特征向量、二次型。
成书过程
修订情况
修订背景
出版工作
随着时代的发展和科技的进步,特别是信息化时代的到来为《线性代数》的再版升级提供了新的机遇。
结合中国国内外教材改革的形势以及读者提出的意见和建议,该轮修订在第一版的基础上,利用现代的信息 化手段,进行了修改和补充,主要体现在以下几个方面:
参加该教材修订的是东南大学陈建龙教授、周建华教授、韩瑞珠教授、周后型教授以及张小向教授,主编是 陈建龙教授。其中,第1章由韩瑞珠教授负责修订,第2章和第3章由周建华教授负责修订,第4章和第5章由陈建 龙教授负责修订,数学实验室MATLAB简介部分由周后型教授负责修订,综合实践1、2分别由韩瑞珠教授和周后型 教授负责修订,各章的小结以及配套的手机应用中的视频和附录D中的应用案例则由张小向编写制作。
线性代数(第二版)(2016 年科学出版社出版的图书)
2016年科学出版社出版的图书
01 成书过程
03 教材目录 05 获得荣誉
目录
02 内容简介 04 教学资源 06 作者简介
《线性代数(第二版)》是由陈建龙、周建华、张小向、韩瑞珠、周后型编,科学出版社于2016年6月16日 出版的“十二五”普通高等教育本科国家级规划教材、“十二五”江苏省高等学校重点教材。该书可供高等院校 非数学专业(理工科、经济、管理类等)的学生使用,也可以供自学者和科技工作者阅读。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 考查方程组 a m1 x1 a m 2 x 2 a mn x n bm () 分析系数 1
其中 aij ( i 1,2,, m ;j 1,2,, n) 称为系数 , bi ( i 1,2,, m ) 称为第 i 个方程的常数项 .
若常数项均为0,则称方程组为齐次线性方程组,
否则 ,称为非齐次线性方程组 .
2.
线性方程组的线性组合
线性方程的加法:将两个线性方程
a11 x1 a12 x2 a1n xn b1 , a21 x1 a22 x2 a2 n xn b2
(1)
(2)
的左右两边相加得到如下的新线性方程:
a11 a12 x1 a12 a22 x2 a21 a2n xn b1 b2
称为原来两个线性方程的和。
线性方程乘常数 将线性方程
a1 x1 a2 x2 an xn b,
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
() 分析系数 1 ( ) 化简 2 ( ) 化为阶梯型方程组: 3
c11 x1 c12 x 2 c1n x n d 1 c22 x 2 c2 n x n d 2 crr x r crn x n d r 0 d r 1 00 00 (I) 有 0 d r 1 , 而 d r 1 0 . 这时原方程组无解;
1a1n 2 a2n xn 1b1 2b2
(3)
称为原来两个方程(1)和(2)的一个 线性组合, 1 , 2 称为这个线性方程的组合系数。 将(1)和(2)看作一个线性方程组,其任意组解一定是 线性组合(3)的解。对给定的两个线性方程组(I)和(II), 如果(II)中每个方程都是(I)中方程的线性组合,就称 (II)是(I)的线性组合。 若方程组(I)和(II)互为线性组合,则称这两个方程组 等价, 等价的线性方程组一定同解。 将方程组(I)变成 方程组(II)的过程称为同解变换。
() 分析系数 1
ai1 ( ) 化简:利用初等变换( 2 3 ),分别把第一个方程 的 倍 a11 加到第 i 个方程 ,则方程组可以变成:
a11 x1 a12 x 2 a1n x n b1 a 22 x 2 a 2 n x n b2 a m 2 x 2 a mn x n bm
1 2
3
( B1 )
4 1 2
3
2 3 4
21 31
3
( B2 )
4
1 2 2 3 52 4 32
x1 x2 2 x3 x4 4, x x x 0, 2 3 4 2 x4 6, x4 3, x1 x2 2 x3 x4 4, x x x 0, 2 3 4 x4 3, 0 0,
(II)当 d r 1 0 或方程组中根本没有0 0 的方程,分两种情形:
(II)当 d r 1 0 或方程组中根本没有0 0 的方程,分两种情形: i) r n . 这时阶梯型方程组为: c11 x1 c12 x 2 c1n x n d1 c22 x 2 c2 n x n d 2 cnn x n d n
x1 x4 40 , x2 x5 20 , x3 x6 10
x1 x4 40 , x2 x5 20 , x3 x6 10 x1 x2 x3 45 , x4 x5 x6 25
再来看总运费,由表1-1:
1 2
总运费S 45x1 58 x2 92 x3 58 x4 72 x5 36 x6 表 1-1 于是,题目要解决的问题是: C ij A1 x , xA,2x , x , A3, x 如何选择非负数 x
表 1-1
C ij
A1
45 58
A2
58 72
A3
92 36
B1 B2ຫໍສະໝຸດ 不妨假设每吨货物每公里的运费为 1 元 ,问各厂 的产品如何调配才能使总运费最少?
解
设各厂到各用户的产品数量如表 1-2
表 1-2
A1 B1 B2 x1 x4
A2 x2 x5
A3 x3 x6
依题意,3个厂的总产量和用户的总用量相等:
由各产地 Ai 到各用户 B j 的距离为 Cij ,如表1 1所示,
引例 有三家生产同一种产品的工厂 A1 、A2 、 A3, 其年产量分别为40t ,20t 和 10t ,该产品每年有 两个用户 B1、B2 ,其用量分别为 45t 和 25t
由各产地 Ai 到各用户 B j 的距离为 Cij ,如表1 1所示,
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 考查方程组 a m1 x1 a m 2 x 2 a mn x n bm
c11 x1 c12 x 2 c1n x n d 1 c22 x 2 c2 n x n d 2 crr x r crn x n d r 0 d r 1 00 00
两边同乘以已知常数
a1 x1 a2 x2 an xn b.
线性方程与常数相乘,也称为方程的数乘。 线性方程的线性组合 将线性方程(1)和(2)分别称两个已知常数
, 得到一个新的线性方程:
1 , 2
再将所得的两个方程相加,得到新方程:
1a11 2a21 x1 1a12 2a22 x2
c11 x1 c12 x 2 c1n x n d 1 c22 x 2 c2 n x n d 2 crr x r crn x n d r 0 d r 1 00 00
1 2
3
( B3 )
4 1 2
3
3
4
4 23
( B4 )
4
用“回代”的方法求出解:
x1 x3 4 于是解得 x2 x3 3 其中x3为任意取值. x 3 4
或令x3 c, 方程组的解 也称为通解)可记作 (
x1 c 4 x2 c 3 x , x3 c x 3 4
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 考查方程组 a m1 x1 a m 2 x 2 a mn x n bm
二、线性方程组的消元法
1、线性方程组的初等变换 例1 求解线性方程组
2 x1 x2 x3 x4 2, x x 2 x x 4, 1 2 3 4 4 x1 6 x2 2 x3 2 x4 4, 3 x1 6 x2 9 x3 7 x4 9,
1 2
3
2
(1)
4
解
1 2 3 2
(1)
x1 x2 2 x3 x4 4, 2 x x x x 2, 1 2 3 4 2 x1 3 x2 x3 x4 2, 3 x1 6 x2 9 x3 7 x4 9, x1 x2 2 x3 x4 4, 2 x 2 x 2 x 0, 2 3 4 5 x2 5 x3 3 x4 6, 3 x 2 3 x 3 4 x 4 3,
(以
i
3.上述三种变换都是可逆的.
若( A) 若( A) 若( A)
i i i
j
k k
j
(B ), 则(B ) (B ), 则(B ) (B ), 则(B )
i i i
j
( A);
k ( A); k
j
( A).
由于三种变换都是可逆的,所以变换前的方程 组与变换后的方程组是同解的.故这三种变换是同 解变换. 定理1 线性方程组的初等变换总是把方程组变成 同解方程组 .
1 2 3 4 5 6
45 58 B1 使之满足方程组 ① 和 ② 58 72 B2 并使总运费最少 .
92 36
几个线性方程联立在一起,称为线性方程组,若未知 数的个数为 n ,方程个数为 m ,则线性方程组可以写成如 下形式 :
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 am 1 x1 am 2 x2 amn xn bm
第一章 线性方程组的消元法 和矩阵的初等变换
线性方程组的消元法 矩阵的初等变换
第一节 线性方程组的消元法
一、线性方程组的基本概念
1. 线性方程组的定义
引例 有三家生产同一种产品的工厂 A1 、A2 、 A3, 其年产量分别为40t ,20t 和 10t ,该产品每年有 两个用户 B1、B2 ,其用量分别为 45t 和 25t
(II)当 d r 1 0 或方程组中根本没有0 0 的方程,分两种情形: ii) r n . 这时阶梯型方程组为: c11 x1 c12 x 2 c1r x r c1,r 1 x r 1 c1n x n d 1 c22 x 2 c2 r x r c2,r 1 x r 1 c2 n x n d 2 crr x r cr,r 1 x r 1 crn x n d r