第3章数值分析---曲线拟合

合集下载

数值分析Ch3函数逼近与曲线拟合

数值分析Ch3函数逼近与曲线拟合
与正交,权函数等概念。
正交,这就需要引进范数与赋范线性空间,内积
3.1 函数逼近的基本概念
• 定义 设集合 S 是数域 P 上的线性空间,元 素 x1 , x2 , , xn S ,若存在不全为零的数 1 , 2 , , n P ,使得 1 x1 2 x2 n xn 0 则称 x1 , x2 , , xn 线性相关,否则,若仅对
数 值 分 析
Computational Method
Chapter 3 函数逼近
第三章 函数逼近与曲线拟合 设函数 y f x 的离散数据(有误差)为
x y

x0 y0
x1 y1
x2 y2

xn yn
希望找到简单函数 Px 整体上有 是某度量, 0 是指定精度。
f x Px
1 x1
2 x2 x 2 , 1 1 1 , 1 x , x , 3 2 2 3 x3 3 1 1 2 , 2 1 , 1
xn , 1 xn , 2 xn , n1 1 2 n1 n xn 1 , 1 2 , 2 n1 , n1 k 1 xk , i i ( k 1,2,, n) 简写为: k x xk i 1 i , i

x

2

(连续) f x Ca, b
b
常见范数:
f x 1 f x dx • 1范数: a ,
• 2-范数:
f x 2
2 f x dx a b
1 2
f x max f x • 范数: , a ,b

曲线拟合实验报告[优秀范文5篇]

曲线拟合实验报告[优秀范文5篇]

曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。

⑵学会基本的矩阵运算,注意点乘与叉乘的区别。

实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。

三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。

思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。

前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。

算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。

数值分析第三章

数值分析第三章
a≤ x≤b b ∫a | f ( x ) | dx,
称为1 − 范数 , 称为 2 − 范数 .
(
b 2 ∫a f ( x )dx
),
1 2
三、内积与内积空间
R n中向量x及y定义内积 : ( x, y ) = x1 y1 + L + x n y n .
定义3 上的线性空间, 定义3 设X是数域 K ( R或C)上的线性空间,对 ∀u, v ∈ X, 中一个数与之对应, 并满足条件: 有K中一个数与之对应,记 为( u, v ),并满足条件: (1) ( u,v ) = (v , u), ∀u,v ∈ X ; (2) (αu,v ) = α ( u,v ), α ∈ R; (3) ( u + v , w ) = ( u,w ) + (v,w ), ∀u,v,w ∈ X ; (4) ( u, u) ≥ 0, 当且仅当 u = 0时, , u) = 0. (u 则称( u, v )为X上的u与v的内积. 定义了内积的线性空间 称 的共轭, 为内积空间. (v , u)为( u,v )的共轭,当 K = R时 (v , u) = ( u,v ).
2)
j =1
∑ α ju j = 0 ⇔ ( ∑ α ju j , ∑ α ju j ) = 0
j =1 n j =1
n
n
n
⇔ ( ∑ α j u j , uk ) = 0, k = 1,L, n.
j =1
∴ G非奇异 ⇒ u1 , u2 ,L, un线性无关 (反证法 );反之亦然 .
在内积空间X上可以由内积导出一种范数, 即对u ∈ X , 记 || u ||= (u , u ), Cauchy − Schwarz不等式得出. (1.10) 易证它满足范数定义的正定性和齐次性, 而三角不等式由

数值分析3-4(最小二乘法)ppt课件

数值分析3-4(最小二乘法)ppt课件

i0
j0
f (xi )]k (xi )
展开
n
m
m
a j ( xi ) j ( xi )k ( xi ) ( xi ) f ( xi )k ( xi )
j0 i0
i0
法方程
解方程组
有唯一解ak ak (k 0,1,..., n)
则S ( x) a00 ( x) a11( x) ... ann ( x)
本例经过计算可得
max i
|

(1) i
|
0.568

103
, max i
|

(2) i
|
0.277

103
而均方误差为
m
m
(
(1) i
)2
1.19 103 ,
(
( i
2)
)
2

0.34 103
i 1
i 1
由此可知第二个模型较好。
结论:
选择拟合曲线的数学模型,并不一定开始 就能选好,往往需要通过分析若干模型后, 经过实际计算才能选到较好的模型,如本 例的指数模型就比双曲线模型好得多。
三、求解步骤
确定拟合曲线的形式
最困难!
确定变量对应的数据
确定法方程
求解法方程
四、举例
例1. 已知一组实验数据如下,求它的拟合曲线.
xi
1
2
3
4
5
fi
4 4.5 6
8 8.5
ωi
21311
解 根据所给数据,在坐标纸上标出,从图 中看到各点在一条直线附近,故可选择 线性函数作拟合曲线,即令
S1( x) a0 a1 x

数值分析之曲线拟合

数值分析之曲线拟合

xi 强度 ¿ Ç È ¶ yi
5.5 5 5.5 6.4 6 5.3 6.5 7 8.5 8 8.1 8.1
9
纤维强度随拉伸 倍数增加而增加 并且24个点大致分 布在一条直线附近
因此可以认为强度 y与拉伸倍数x的主 要关系应是线性关系
8 7 6 5 4 3 2 1
1
2
3
4
5
6
7
8
9
10
y( x) 0 1 x

[ a ( x ) ( x ) f ( x )] 0
i 0 j 0 n j j i k i i k i
m
n
a ( x ) ( x ) f ( x )
i 0 j 0 j j i k i i 0 i k i
m
m
a ( x ) ( x ) f ( x )
定义2 设 ψn(x) 是[a,b]上首项系数 an≠0 的 n次多项 式,ρ(x)为[a,b]上权函数,如果多项式序列 满足关系式:
则称为多项式序列 为在[a,b]上带权ρ(x)正交, 称ψn(x)为[a,b]上带权ρ(x)的n次正交多项式。
只要给定区间[a,b]及权函数ρ(x), 均可由一族 线性无关的幂函数 { 1 , x , … , xn , … } 利用逐个正交化手续(Gram-Schmidt正交化方法):
j 0
n
* 2 称为最小二乘解的平方 误差
在确定了拟合函数 S( x)后, 如何求拟合系数 a j ( j 0,1,, n)
使得S *( x ) a* j j ( x ) 满足拟合条件(3)呢?
j 0 n
2
三、法方程组

S ( x ) a j j ( x )

常用数值分析方法3插值法与曲线拟合

常用数值分析方法3插值法与曲线拟合
8/37
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值

数值分析---函数逼近与曲线拟合

数值分析---函数逼近与曲线拟合
2 1 2
于是
1 5 1 5 17 2 2 ( x) x ( x ) x x 9 7 4 7 252
2
3)几种常用的正交多项式
• 勒让德多项式 当区间[-1,1],权函数ρ(x) ≡1时,由 {1,x,…,xn,…}正交化得到的多项式就称为 勒让德多项式,并用P0(x),P1(x),…,Pn(x),… 表示. 其简单的表达式为
全体,按函数的加法和数乘构成连续函数 空间---- C[a, b]
3.1 函数逼近的基本概念
1)线性无关
设集合S是数域P上的线性空间,元素
x1,x2,…,xn∈S,如果存在不全为零的数
a1,a2,…,an∈P,使得
a1 x1 a2 x2 ... an xn 0,
则称x1,x2,…,xn线性相关.
( x , 0 )
2
1
0
于是
1
1 1 ( x) x 4
1 x ln xdx 9
2
1 1 2 1 1 7 2 (1 , 1 ) ( ln x)( x ) dx (ln x)( x x )dx 0 0 4 2 16 144
1 5 ( x , 1 ) ( ln x) x ( x )dx 0 4 144
且有以下常用公式
p 0 ( x) 1 p1 ( x ) x p 2 ( x ) (3 x 2 1) / 2 p 3 ( x ) (5 x 3 3 x ) / 2 p 4 ( x ) (35x 4 30x 2 x ) / 8 p 5 ( x ) (63x 5 70x 3 15x ) / 8 p 6 ( x ) ( 231 x 6 315x 4 105x 2 5) / 16

数值分析作业答案

数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。

(1)用单项式基底。

(2)用Lagrange 插值基底。

(3)用Newton 基底。

证明三种方法得到的多项式是相同的。

解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。

数值分析第三章答案

数值分析第三章答案

数值分析第三章答案【篇一:常州大学数值分析作业第三章】答:matlab 程序function [a,y]=lagrange(x,y,x0) %检验输入参数if nargin 2 || nargin 3error(incorrect number of inputs); endif length(x)~=length(y)error(the length of x must be equal to it of y); endm=length(x);n=m-1;l=zeros(m,m); %计算基本插值多项式的系数for i=1:n+1 c=1;for j=1:n+1if i~=jif abs(x(i)-x(j))eps abs(x(i)-x(j))epserror(there are two two same nodes);endc=conv(c,poly(x(j)))/(x(i)-x(j));end endl(i,:)=c; end%计算lagrange插值多项式的系数 a=y*l;%计算f(x0)的近似值 if nargin==3y=polyval(a,x0);工程(专)学号:14102932enda=fliplr(a); return[a,y] = lagrange(x,y,x0); p1 = vpa(poly2sym(a),3) y[a,y] = lagrange(x,y,x0); p2=vpa(poly2sym(a),3) yp2 = x2 - 0.109x - 0.336 y =0.5174[a,y]=lagrange(x,y,x0); p4=vpa(poly2sym(a),3) yp4 =x4 + 0.00282x3 - 0.514x2 + 0.0232x + 0.0287 y =0.5001次多项式在2.8处的值。

答:matlab 程序 function[t,y0]=aitken(x,y,x0,t0) if nargin==3 t0=[]; endn0=size(t0,1);m=max(size(x)); n=n0+m;t=zeros(n,n+1);t(1:n0,1:n0+1)=t0; t(n0+1:n,1)=x; t(n0+1:n,2)=y; if n0==0 i0=2; elsei0=n0+1; endfor i=i0:nfor j=3:i+1t(i,j)=fun(t(j-2,1),t(i,1),t(j-2,j-1),t(i,j-1),x0); end endy0=t(n,n+1); returnfunction [y]=fun(x1,x2,y1,y2,x) y=y1+(y2-y1)*(x-x1)/(x2-x1); return%选取0、1、3、4四个节点,求三次插值多项式 x=[0,1,3,4];y=[0.5,1.25,3.5,2.75]; x0=2.8;[t,y0]=aitken(x,y,x0) t =0 0.5000 00 0 1.01.25002.6000 0 0 3.03.50003.29993.23000 4.02.75002.07502.28503.4190 y0 =3.41900000000000016、选取适当的函数y=f(x)和插值节点,编写matlab程序,分别利用lagrange插值方法,newton插值方法确定的插值多项式,并将函数y=f(x)的插值多项式和插值余项的图形画在同一坐标系中,观测节点变化对插值余项的影响。

数值分析论文--曲线拟合的最小二乘法

数值分析论文--曲线拟合的最小二乘法

曲线拟合的最小二乘法姓名:学号:专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是y的误差。

设 x 和 y 的函数关系由理论公式y=f(x;c1,c2,……cm)(0-0-1)给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。

对于每组观测数据(xi,yi)i=1,2,……,N。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取 m 组测量值代入式(0-0-1),便得到方程组yi = f (x ;c1 ,c2 ,……cm)(0-0-2)式中 i=1,2,……,m.求 m 个方程的联立解即得 m 个参数的数值。

显然N<m 时,参数不能确定。

y 2 y 在 N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则 y 的观测值 yi 围绕着期望值 <f (x ;c1,c2,……cm)> 摆 动,其分布为正态分布,则 yi 的概率密度为p y i1 exp,式中i是分布的标准误差。

为简便起见,下面用 C 代表(c1,c2,……cm )。

数值分析第3章

数值分析第3章
(3) (u v, w) (u, w) (v, w), u, v, w X; (4) (u,u) 0, 当且仅当u 0 时,(u,u) 0. 则称 (u,为v)X上 与u 的内v 积.
20
定义了内积的线性空间称为内积空间. 定义中(1)的右端 (u称, v为) 的(u共,轭v), 当K为实数域R时 (u, v) .(v, u) 如果 (u, v,) 则 称0 与 正交u ,这v 是向量相互垂 直概念的推广.
b a
f
2
(
x)dx
2
33
若 0 ,1,,n是 C[a, b]中的线性无关函数族,记 span{0 ,1,,n}, 它的格拉姆矩阵为
G G(0 ,1,,n )
(0 ,0 ) (0 ,1) (0 ,n )
(1
,
0
)
(1 , 1 )
(1
,
n
)
(n ,0 )
(n ,1 )
(
n
,
n
)
(1.17)
Hn span{1, x,, xn},
且 (a0 , a1,, an ) 是 p(x) 的坐标向量,H n 是 n 1维的.
8
对连续函数 f (x) C[a,b],它不能用有限个线性无关的 函数表示,故 C[a,b]是无限维的,但它的任一元素 f (x) 均可用有限维的 p(x) Hn逼近,使误差
与数的乘法构成实数域上的线性空间, 记作 R n,称为 n维
向量空间.
4
对次数不超过 n( n为正整数)的实系数多项式全体,
按通常多项式与多项式加法及数与多项式乘法也构成数域
R上一个线性空间,用
H
表示,称为多项式空间.
n
所有定义在 [a,b] 上的连续函数集合,按函数加法和

第3章数值分析曲线拟合

第3章数值分析曲线拟合
3.1函数逼近
一、问题的提出: (1)函数关系有明确表达式,但比较复杂,不易计算,需要简单表达式; (2)函数关系是通过实验、观察得出的数据给出,只能得出区间上离
散点对应的函数值,要得到区间上整体表达式.
二、问题的解决 (1)函数逼近
f (x) A c[a,b],求p(x) B(n次多项式),使得min{ f (x), p(x)}
P74定义7.哈尔条件
13
非线性模型举例
1 线性 x x0 x1 y y0 y1

xn
设拟合曲线

yn
y c0 c1x
0 ( x)1
1( x)x
(
i
n 0
1)

c0
n
(
i0
xi ) c1

n i0
yi
(
i
n 0
1
xi
)

c0
xi2 1) c2
n
yi
i0
i0
i0
i0
n
n
( 1 xi ) c0 (
n
xi xi ) c1 (
xi2 xi ) c2
n
(xi yi )
i0
i0
i0
i0
n
(
n
1 xi2 ) c0 (
x1

xn
y a bx5
有Y a bX
x 与y具有线性关系 y1 yn 令Y Y ,X x5 5
x05 x15 xn5
y0 y1 yn
16
练习:观察物体直线运动,得以下数据
时间t 0 0.9 1.9 3 3.9 5

数值分析—第3章函数逼近与数据拟合法

数值分析—第3章函数逼近与数据拟合法
j 0
称为广义多项式。
数值分析
三、函数的最佳平方逼近 对于给定的函数 f ( x) C[a, b] 如果存在 使
* ( x) Span 0 , 1 , , n } {

b
a
( x) f ( x) ( x) dx min
* 2
( x ) a
mn mn0 mn0
(2) 递推关系
相邻的三个切比雪夫多项式具有三项递推关系式: T0 ( x ) 1, T1 ( x ) x (n 1, 2, ) Tn1 ( x ) 2 x Tn ( x ) Tn1 ( x ) Tn (x) 的最高次项系数为 2n-1 (n = 1, 2, …)。
连续函数在[a, b]上线性无关的充分必要条件是它们 的Gramer行列式Gn 0,其中
( 0 , 0 ) ( 0 , 1 ) ( 0 , n ) G n G n ( 0 , 1 , , n ) (1 , 0 ) (1 , 1 ) (1 , n ) ( n , 0 ) ( n , 1 ) ( n , n )
(n 1, 2, )
(3) 奇偶性: 当n为偶数时,Pn (x)为偶函数; 当n为奇数时,Pn (x)为奇函数。 (4) Pn (x)的n个零点都是实的、相异的,且全
部在区间[-1, 1]内部。
数值分析
2.切比雪夫(Tchebyshev)多项式 称多项式
Tn ( x) cos(narc cos x)
Span{ 0 , 1 , , n }
并称 0 ( x), 1 ( x), , n ( x) 是生成集合的一个基底。 设函数系{
0 ( x), 1 ( x), , n ( x) ,…}线性无关,

第三章函数逼近和曲线拟合

第三章函数逼近和曲线拟合
则称 x1, x2 ,..., xn 为空间S的一组基,记为:
S=span{ x1,..., xn}
并称该空间为n维空间。1,2 ,...,n P
称为x在这组基下的坐标。 例:n次多项式
p(x) Hn , p(x)=a0 + a1x ... an xn Hn span{1, x, x2 ,..., xn}
4
11
4.5
12
4.6
强 度 yi 编 号 拉伸倍数 xi
1.4
13
5
1.3
14
5.2
1.8
15
6
2.5
16
6.3
2.8
17
6.5
2.5
18
7.1
3
19
8
2.7
20
8
4
21
8.9
3.5
22
9
4.2
23
9.5
3.5
24
10
强 度 yi
5.5 5
5.5
6.4 6
5.3 6.5
7 8.5
8 8.1 8.1
6
内积与内积空间 定义3:设X为数域K(R或C)上的线性空
间,满足条件:
u, v X , k (u, v) K, st.
(1) (u, v) (v, u)
(2) (u, v) (u, v), for K
(3) (u v, w) (u, w) (v, w), for w X
(4) (u, u) 0, u 0 iff (u, u) 0
存在唯一实数 g ,满足条件:
(1) x 0; x 0 iff x 0
(2) x x , R
(3) x y x y , x, y R

数值分析第3讲

数值分析第3讲
j 1 n j 1
n
n
n
( j u j , uk ) 0, k 1,, n.
j 1
G非奇异 u1 , u2 ,, un线性无关(反证法);反之亦然 .
在内积空间X上可以由内积导出一种 范数, 即对u X , 记 || u || ( u, u), (1.10) 易证它满足范数定义的 正定性和齐次性, 而三角不等式由 Cauchy Schwarz不等式立得.



设0 ,, n C[a, b], 则Gram矩阵为
G G ( 0 ,, n ) ( 0 , 0 ) ( , ) 1 0 ( , ) n 0 ( 0 ,1 ) (1 ,1 ) ( n ,1 ) ( 0 , n ) (1 , n ) ( n , n )
2 内积 ( x , y ) i xi yi;范数 || x ||2 i xi i 1 i 1
n n
1/2
.
若x , y Cn,则定义加权内积 ( x , y ) i xi y i .
i 1
n
定义4 设 ( x )是区间[a , b]上的非负函数, 如果满足条件 (1) (2)
则称 || || 为线性空间S上的范数,S与 || || 一起称为赋范 线性空间,记为X .
例如,对R n上的向量x ( x1 ,, xn )T ,有 三种常用范数: || x || max | xi | , 称为 范数或最大范数,
|| x ||1 | xi , |
例如,三角函数族 1, cos x , sin x , cos 2 x , sin 2 x ,, 为[ , ]上的正交函数族,

数值分析李庆版

数值分析李庆版
为[a,b]上的权函数, 若多项式序列{ pn( x)}0 ,满足正交性
(2.2),则称{ pn( x)}0 为以( x)为权函数的[a,b]上的正交 多项式序列. 称pn( x)为以( x)为权函数的[a,b]上的n次正
交多项式.
只要给定[a,b]上的权函数( x), 由{1, x, xn,}利用逐个
例2 设f ( x), g( x) C[a,b], ( x)为[a,b]上的权函数,则可
定义内积
( f , g) ab( x) f ( x)g( x)dx. 1,( f , g) ab f (x)g(x)dx.
容易验证内积定义中的四个性质,并导出范数
||
f ( x) ||2
有限维空间 vs 无限维空间.
Rn, C[a,b],
定理 1(维尔斯特拉斯) 如果f ( x) C[a,b], 那么 0,
多项式p( x),使得
| f ( x) p( x) | , 对于一切a x b.
伯恩斯坦(1912)给出一种构造性证明:伯恩斯坦多项式
Bn (
j1
j1
只有零解。
k 1,,n.
n
n
n
2) juj 0 ( juj , juj ) 0
j1
j1
j1
n
( ju j ,uk ) 0, k 1,,n.
j1
G非奇异 u1, u2,, un线性无关(反证法);反之亦然.
在内积空间X上可以由内积导出一种范数,即对u X ,记
1
|| f ||2 ab f 2( x)dx 2, 称为2 范数.
三、内积与内积空间
Rn中向量x及y定义内积 : ( x, y) x1 y1 , xn yn. 定义3 设X是数域K(R或C)上的线性空间,对u,v X, 有K中一个数与之对应,记为( u, v ),并满足条件:

数值分析第三章函数逼近与 曲线拟合习题答案

数值分析第三章函数逼近与    曲线拟合习题答案

6。对,定义 问它们是否构成内积。 解: 令(C为常数,且) 则 而 这与当且仅当时,矛盾 不能构成上的内积。 若,则 ,则 若,则 ,且 即当且仅当时,. 故可以构成上的内积。 7。令,试证是在上带权的正交多项式,并求。 解: 若,则 令,则,且,故 又切比雪夫多项式在区间上带权正交,且 是在上带权的正交多项式。 又 8。对权函数,区间,试求首项系数为1的正交多项式 解: 若,则区间上内积为 定义,则 其中 9。试证明由教材式给出的第二类切比雪夫多项式族是上带权的正交多 项式。 证明: 若 令,可得 当时, 当时, 又,故 得证。 10。证明切比雪夫多项式满足微分方程 证明:
若 且,则 则法方程组为 解得 故关于的最佳平方逼近多项式为 17。求函数在指定区间上对于的最佳逼近多项式: 解: 若 且,则有 则法方程组为 从而解得 故关于的最佳平方逼近多项式为 若 且,则有 则法方程组为 从而解得 故关于的最佳平方逼近多项式为 若 且,则有 则法方程组为 从而解得 故关于的最佳平方逼近多项式为 若 且则有 则法方程组为 从而解得 故关于最佳平方逼近多项式为 18。,在上按勒让德多项式展开求三次最佳平方逼近多项式。 解: 按勒让德多项式展开 则 从而的三次最佳平方逼近多项式为 19。观测物体的直线运动,得出以下数据:
切比雪夫多项式为 从而有 得证。 11。假设在上连续,求的零次最佳一致逼近多项式? 解: 在闭区间上连续 存在,使 取 则和是上的2个轮流为“正”、“负”的偏差点。 由切比雪夫定理知 P为的零次最佳一致逼近多项式。 12。选取常数,使达到极小,又问这个解是否唯一? 解: 令 则在上为奇函数 又的最高次项系数为1,且为3次多项式。 与0的偏差最小。 从而有 13。求在上的最佳一次逼近多项式,并估计误差。 解: 于是得的最佳一次逼近多项式为 即 误差限为 14。求在上的最佳一次逼近多项式。 解: 于是得的最佳一次逼近多项式为 15。求在区间上的三次最佳一致逼近多项式。 解: 令,则 且 令,则 若为区间上的最佳三次逼近多项式应满足 当 时,多项式与零偏差最小,故 进而,的三次最佳一致逼近多项式为,则的三次最佳一致逼近多项式为 16。,在上求关于的最佳平方逼近多项式。 解:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xi2 xi2 ) c2
n
(xi2 yi )
i0
i0
i0
i0
14
3一般非线性
x x0 y y0
x1 y1
xn
设拟合曲线
非线性问题能否线性化 ?
yn yaebx
y a ebx,ln y ln a bx Y A BX
X x X 0 x0 X1 x1 X n xn
Y ln y
利用下面的程序,可在Matlab中完成上例的多项式拟合.
18
(x) c00 (x) c11(x) ... cnn (x)
用最小二乘标准构造出误差的平方和
m
Q(c0 , c1,..., cn ) [ f (xi ) (xi )]2 i0 m
[ f (xi ) (c00 (xi ) c11(xi ) ... cnn (xi ))]2 i0 关于c0, c1,..., cn的函数 6
误差的平方和最小 Q 令 0,i 0,1,2,..., n c 多元函数 极值理论 i 线性方程组,解出c0, c1,..., cn ? 组装出y (x)
7
例. i 0 1 2 3 4 5 6 xi 1 2 3 4 5 6 7
7 8 9 10 8 9 10 11
yi 1.3 3.5 4.2 5 7 8.8 10.1 12.5 13 15.6 16.1
( n 11) c0 ( n
n
xi 1) c1 (
xi2 1) c2
n
yi
i0
i0
i0
i0Βιβλιοθήκη nn( 1 xi ) c0 (
n
xi xi ) c1 (
xi2 xi ) c2
n
(xi yi )
i0
i0
i0
i0
(
n
1 xi2 ) c0
(
n
n
xi xi2 ) c1 (
i0
i0
10
10
xi yi 749.5, xi2 506
i0
i0
代入得 c0 0.276,c1 1.517
所得拟合曲线y (x) c0 c1x 0.276 1.517x
令x 12,有y 0.276 1.517*12 17.928 x12
10
理论分析:最小二乘问题就转化为求多元函数
3.1函数逼近
一、问题的提出: (1)函数关系有明确表达式,但比较复杂,不易计算,需要简单表达式; (2)函数关系是通过实验、观察得出的数据给出,只能得出区间上离
散点对应的函数值,要得到区间上整体表达式.
二、问题的解决 (1)函数逼近
f (x) A c[a,b],求p(x) B(n次多项式),使得min{ f (x), p(x)}
c1
cn
n
c j( j ,0) ( f ,k ), k 0,1,..., n.(正规方程组、法方程组) (4.6)
j0
12
上方程组(法方程)的系数矩阵
(0 ,0 ) (0 ,1)
G
(1
,
0
)
(1 , 1 )
(n ,0 ) (n ,1)
(0 ,n )
(1
,
n
)
.
(n ,n )
(4.7)
求曲线拟合函数 y (x) ,且计算出x=12时,y的值
解.(1)根据离散数据描点画散点图,由散点图中点的分布情况 大致猜测离散数据,应符合的函数关系式
y (x) c0 c1x,把它视为y的拟合
(2)构造误差的平方和
10
10
Q(c0 , c1) ( yi (xi ))2 ( yi c0 c1xi )2
n
f (xm )0 (xm ) 0 (xm ) c j j (xm ) 0 j0
n
移项整理得 c j( j ,0) ( f ,0 ) j0
其中f ( f (x0 ), f (x1),..., f (xm )),
0 (0 (x0 ),0 (x1),...,0 (xm ))
同理分析 Q 0, ,Q 0得出
这里关于c0,c1,..., cn的线性方程组,可以改写为
当k
0时,
Q c0
m
0,有 [ f
i0
(xi )
n
cj
j0
j (xi )]0 (xi )
0
11
n
f (x0 )0 (x0 ) 0 (x0 ) c j j (x0 ) j0
n
f (x1)0 (x1) 0 (x1) c j j (x1) j0
Y0
Y1
Yn
此时x与ln y具有线性关系,可用最小二乘法得正规方程
(
n i0
1)
n
A(
i0
Xi)B
n i0
Yi
(
n i0
Xi)
A
n
(
i0
Xi
Xi)B
n i0
( X iYi )
A
, B
?
由BA
ln b
a ,
最后求出a,
b.
P75例10
15
4其他非线性一
x x0 y y0
x1 y1
xn
m
n
Q(c0 , c1, , cn ) [ f (xi ) c j j (xi )]2
i0
j 0
的极小点 (c0*, c1*, , cn* ) 问题.
(4.4)
由求多元函数极值的必要条件,有
I
ck
m
n
2 [ f (xi ) c j j (xi )]k (xi ) 0
i0
j 0
(k 0,1, , n).
最小二乘法(误差的平方和最小)
3
曲线拟合是什么?
它不同于插值,它是寻找一条曲线(有函数表 达式),满足 : (1)未必通过所有离散点; (2)只要能反映离散点的分布情况.
4
(1)曲线拟合对应的数学问题
已知y
f
x (x),
x0
x1
xm ,在某个标准下,
y y0 y1 ym
寻找y s(x),使得y f (x)与y s(x)的距离最小.
矩阵G对应的行列式不为零,因此正规方程
有唯一解( P54, 定理3)
注 : 一般地,0 (x),1(x),...,n (x)线性无关,可以保证
0
(0
(
x0
),
0
(
x1
),...,
0
(
xn
)),
1
,...,
线性无关
n
P74定义7.哈尔条件
13
非线性模型举例
1线性 x x0 x1 y y0 y1
2二次
0
i0
xi yi
(
i0
xi )c0
(
i0
xi2 )c1
i0
9
(3)由最小二乘法得标准方程(正规方程)
10
10
10
i0
10
i0
yi xi yi
( 1)c0 ( xi )c1
i0
i0
,
10
10
( xi )c0 ( xi2 )c1
i0
i0
10
10
yi 97.1, ( xi ) 66
(2)曲线拟合
寻找一个有函数表达式的曲线, 满足: a, 未必通过所有点; b, 只能反映离散点的分布情况.
注 : 插值法、曲线拟合都是函数逼近问题的一种 1
基本概念及定义 P51-66
n维向量空间,线性空间,函数空间 线性相关或无关 赋范线性空间 内积与内积空间 权函数 正交、正交函数族、标准正交函数族 正交多项式(legendre多项式、切比雪夫多项式、等)
xn
设拟合曲线
yn
y c0 c1x
0 ( x)1
1( x)x
(
i
n 0
1)
c0
n
(
i0
xi ) c1
n i0
yi
(
i
n 0
1
xi
)
c0
n
(
i0
xi2 ) c1
n i0
(xi yi )
x x0 x1 y y0 y1
xn
设拟合曲线
yn
y c0 c1xc2 x2
0 ( x)1
1 ( x) x,2 ( x) x2
2
3.4曲线拟合的最小二乘法
若 f (x)是 [a, b]上的一个列表函数,在
a x0 x1 xm b
上给出 f (xi )(i 0,1, , m) ,要求 P* 使
m
f P * min
2
P
f
P
2
min P
[ f (xi ) P(xi )]2
i0
(1.20)
则称 P*(x) 为 f (x)的最小二乘拟合.
练习:观察物体直线运动,得以下数据
时间t 0 0.9 1.9 3 3.9 5
距离s 0
10
30
50
, 80 110
求运动方程。
17
关于多项式拟合,Matlab中有现成的程序
a polyfit (x, y, m)
其中输入参数 x,为y 要拟合的数据, 为m拟合多项式的次数, 输出参数 a为拟合多项式的系数.
(2)曲线拟合中常用的标准
用y s(x)去作为y f (x)的近似,希望误差的平方和最小,
m
即 [ f (xi ) s(xi )]2最小 (最小二乘标准) i0
5
(3)曲线拟合问题的转化
先确定一个线性无关函数族{0 (x),1(x),...,n (x)},
相关文档
最新文档